§6 Julia-Mengen

Sei $G \subset \overline{\mathbb{C}}$ ein Gebiet. Eine holomorphe Abbildung $f: G \to G$ kann eine holomorphe oder eine meromorphe Funktion auf G sein.

Definition. Zwei holomorphe Abbildungen $f: G_1 \to G_1$ und $g: G_2 \to G_2$ heißen *konjugiert*, falls es eine biholomorphe Abbildung $\varphi: G_1 \to G_2$ gibt, so daß das folgende Diagramm kommutiert:

$$\begin{array}{cccc}
G_1 & \xrightarrow{f} & G_1 \\
\varphi & \downarrow & & \downarrow & \varphi \\
G_2 & \xrightarrow{g} & G_2
\end{array}$$

Es ist dann insbesondere $\varphi \circ f^n = g^n \circ \varphi$, wenn mit $f^n = f \circ \ldots \circ f$ die *n*-fach iterierte Abbildung bezeichnet wird.

Beispiele.

1. Jedes Polynom $p(z) = A_d z^d + \cdots + A_1 z + A_0$ vom Grad $d \geq 2$ ist auf \mathbb{C} konjugiert zu einem **normierten** Polynom. Setzen wir nämlich $\zeta = \varphi(z) := cz$, so gilt für $q := \varphi \circ p \circ \varphi^{-1}$:

$$q(\zeta) = \varphi(p(z)) = c \cdot p(z)$$

= $c \cdot (A_d z^d + \cdots) = c^{1-d} \cdot A_d \zeta^d + \cdots$

Mit $c^{1-d}A_d = 1$ folgt die Behauptung.

2. Das quadratische Polynom $p(z)=z^2-2$ auf $\mathbb{C}\setminus[-2,2]$ ist konjugiert zu $q(\zeta)=\zeta^2$ auf $\{\zeta\in\mathbb{C}:|\zeta|>1\}.$

Dazu sei $z = \psi(\zeta) = \zeta + \frac{1}{\zeta}$. Dann folgt:

$$p(\psi(\zeta)) = (\zeta + \frac{1}{\zeta})^2 - 2 = \zeta^2 + \frac{1}{\zeta^2} = \psi(\zeta^2).$$

Definition. Sei $f: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ eine **rationale** Funktion.

- 1. Fat $(f) := \{z \in \overline{\mathbb{C}} : \exists W = W(z), \text{ s.d. } (f^n|_W) \text{ eine normale Familie ist }\}$ heißt die Fatou-Menge von f.
- 2. $\operatorname{Jul}(f) := \overline{\mathbb{C}} \setminus \operatorname{Fat}(f)$ heißt die *Julia-Menge* von f.

Aus der Definition folgt sofort, daß $\operatorname{Fat}(f)$ offen und $\operatorname{Jul}(f)$ abgeschlossen ist.

6 Julia-Mengen 115

Beispiel.

Sei $p(z) = z^2$.

Dann konvergiert $p^n(z) = p(p(\dots p(z) \dots)) = z^{2^n}$ auf \mathbb{D} kompakt gegen 0 und auf $\{z : |z| > 1\}$ gegen ∞ . Also ist $\mathrm{Jul}(p) = \partial \mathbb{D}$ und $\mathrm{Fat}(p) = \overline{\mathbb{C}} \setminus \partial \mathbb{D}$.

6.1 Satz. Ist f rational, so sind die Mengen Fat(f) und Jul(f) invariant unter der Transformation f.

BEWEIS: Sei $F := \operatorname{Fat}(f)$ und $J := \operatorname{Jul}(f)$. Es genügt zu zeigen, daß $f(F) \subset F$ und $f^{-1}(F) \subset F$ ist, also:

$$z \in F \iff f(z) \in F$$
.

- a) Sei $f(z) \in F$. Dann gibt es eine Umgebung V von f(z), so daß $(f^n|_V)$ eine normale Familie ist. Also gibt es eine Teilfolge (f^{n_k}) , die auf V kompakt konvergiert. Dann konvergiert auch f^{n_k+1} auf $f^{-1}(V)$ kompakt, und $(f^n|_{f^{-1}(V)})$ ist eine normale Familie. Das bedeutet, daß z in F liegt.
- b) Sei umgekehrt $z \in F$. Dann gibt es eine Umgebung W von z und eine Teilfolge f^{n_k} , so daß $f^{n_k}|_W$ kompakt konvergiert. Aber f(W) ist eine Umgebung von f(z), und offensichtlich konvergiert f^{n_k-1} kompakt auf f(W). Damit gehört auch f(z) zu F.

Darüber hinaus ist $Jul(f) = Jul(f^N)$.

6.2 Satz. Sei f ein Polynom vom $Grad \geq 2$. Dann ist Jul(f) kompakt.

BEWEIS: Es gibt ein r > 0, so daß $|f(z)| \ge 2|z|$ für $|z| \ge r$ ist. Dann ist $|f^2(z)| \ge 2|f(z)| \ge 2^2|z|$, und allgemein

$$|f^k(z)| \ge 2^k r$$
 für $|z| \ge r$.

Also konvergiert $f^k(z)$ auf $V := \{z : |z| > r\}$ normal gegen ∞ , und V ist in $\overline{\mathbb{C}} \setminus \operatorname{Jul}(f)$ enthalten. Damit ist $\operatorname{Jul}(f)$ beschränkt und als abgeschlossene Menge kompakt.

Ab jetzt sei f stets ein normiertes Polynom vom Grad $d \ge 2$.

- **6.3 Satz.** Es sei $z_0 \in Jul(f)$ und $U = U(z_0)$ eine offene Umgebung.
 - 1. Es gibt ein $N \ge 1$ mit $\operatorname{Jul}(f) \subset \bigcup_{k=1}^{N} f^{k}(U)$.
 - 2. $\mathbb{C} \setminus \bigcup_{k=1}^{\infty} f^k(U)$ enthält höchstens einen Punkt.

3. Ist
$$z_1 \in \operatorname{Jul}(f)$$
 ein beliebiger Punkt, so liegt $\bigcup_{k=1}^{\infty} f^{-k}(z_1)$ dicht in $\operatorname{Jul}(f)$.

BEWEIS: Liegt z_0 in J := Jul(f), so ist $(f^n|_U)$ keine normale Familie, es kann also (nach dem Satz von Montel-Caratheodory) höchstens ein Wert ausgelassen werden.

1. Fall: $(f^n|_U)$ läßt gar keinen Wert aus. Dann ist $J \subset \mathbb{C} = \bigcup_{k=1}^{\infty} f^k(U)$. Da J kompakt und jede der Mengen $f^k(U)$ offen ist, gibt es ein N, so daß schon $\mathrm{Jul}(f) \subset \bigcup_{k=1}^N f^k(U)$ ist.

2. Fall: $(f^n|_U)$ läßt genau einen Wert w_0 aus. Dann ist

$$\bigcup_{k=1}^{\infty} f^k(U) = \mathbb{C} \setminus \{w_0\}.$$

Angenommen, es gibt ein $z \neq w_0$ mit $f(z) = w_0$. Dann liegt z in einem $f^m(U)$, also $w_0 \in f^{m+1}(U)$. Das kann nicht sein! Andererseits muß die Polynomgleichung $f(z) = w_0$ wenigstens eine Lösung haben, nach dem Fundamentalsatz der Algebra. Also ist $f(w_0) = w_0$ (d.h., w_0 ein Fixpunkt von f), und w_0 ist auch die einzige Lösung. Das bedeutet, daß $f(z) = w_0 + (z - w_0)^d$ ist, und allgemein

$$f^{n}(z) = w_0 + (z - w_0)^{d^n}.$$

Ist $K \subset \{z : |z - w_0| < 1\}$ kompakt, so strebt $f^n(z)$ auf K gleichmäßig gegen w_0 . Das bedeutet, daß $w_0 \in \operatorname{Fat}(f)$ ist, also $J \subset \mathbb{C} \setminus \{w_0\} = \bigcup_{k=1}^{\infty} f^k(U)$. Wegen der Kompaktheit von J kommt man schon mit endlich vielen Mengen aus.

Sei nun $z_1 \in J$ beliebig. Es ist $f^{-k}(z_1) = (f^k)^{-1}(z_1) = \{z : f^k(z) = z_1\}$. Wegen der Invarianz der Fatou-Menge ist $N := \bigcup_{k=1}^{\infty} f^{-k}(z_1)$ in J enthalten.

Sei nun U offene Umgebung eines weiteren beliebigen Punktes $z \in J$. Dann ist $J \subset \bigcup_{k=1}^{\infty} f^k(U)$, und es gibt ein k, so daß z_1 in $f^k(U)$ liegt. Das bedeutet, daß es ein $w \in U$ mit $f^k(w) = z_1$ gibt. Also ist $f^{-k}(z_1) \cap U \neq \emptyset$, und N liegt dicht in J.

Bemerkung. Der Satz liefert eine Methode zur Produktion der bekannten Computer-Bilder von Julia-Mengen. Man wähle einen Startpunkt z_1 in J, z.B. unter den Fixpunkten von f. Dann berechne man $f^{-k}(z_1)$ für $k = 1, \ldots, N$ durch Lösung der Gleichung $f^k(z) = z_1$. Bei kleinem Grad, etwa d = 2, ist diese Methode effektiv genug. Die so erhaltenen Punkte liefern eine gute Approximation der Julia-Menge.

Sei jetzt z_1 ein beliebiger Punkt von $\operatorname{Jul}(f)$, und es gebe einen Punkt $z_0 \in \operatorname{Jul}(f)$ mit der Eigenschaft, daß die Menge $\{f^k(z_0): k \in \mathbb{N}\}$ dem Punkt z_1 beliebig nahe kommt und außerdem keinen Punkt enthält, in dem f' verschwindet. Das ist fast immer erfüllt. Ist U eine kleine Umgebung von z_0 , so bildet f^k diese konform auf eine offene Umgebung W von $f^k(z_0)$ ab, und dann auch $U \cap \operatorname{Jul}(f)$ auf $W \cap \operatorname{Jul}(f)$. Das hat zur Folge, daß $\operatorname{Jul}(f)$ in der Nähe von so ähnlich aussieht, wie in der Nähe

6 Julia-Mengen 117

von z_0 . Diese "Selbstähnlichkeit" ist typisch für die "Fraktale", als die Julia-Mengen häufig in Erscheinung treten.

Ist f eine rationale Funktion, z_0 ein Fixpunkt von f und $g = h \circ f \circ h^{-1}$, so ist $h(z_0)$ ein Fixpunkt von g. Konjugierte Funktionen haben also die gleiche Anzahl an Fixpunkten. Ist z_0 ein Fixpunkt von f^k , so nennt man z_0 einen periodischen Punkt der Ordnung k von f.

Definition. Ist z_0 ein Fixpunkt von f, so nennt man $\lambda := f'(z_0)$ den Multiplikator von f in z_0 .

Ist $g = h \circ f \circ h^{-1}$, so ist

$$g'(h(z_0)) = h'(z_0) \cdot f'(z_0) \cdot (h'(z_0))^{-1} = f'(z_0).$$

Die Multiplikatoren konjugierter Funktionen sind also in entsprechenden Fixpunkten gleich.

Definition. Sei z_0 ein Fixpunkt von f, λ der Multiplikator von f in z_0 .

 z_0 heißt abstoßender (bzw. anziehender oder attraktiver) Fixpunkt, falls $|\lambda| > 1$ (bzw. $|\lambda| < 1$) ist. Ist $\lambda = 0$, so spricht man von einem superattraktiven Fixpunkt.

Ist $f(z) = z^d + a_{d-1}z^{d-1} + \cdots + a_1z + a_0$, so kann der unendlich ferne Punkt als Fixpunkt von f aufgefaßt werden. In diesem Fall hat f eine Polstelle der Ordnung d im Unendlichen, und die Funktion g(w) = 1/f(1/w) hat im Nullpunkt eine Nullstelle der Ordnung d. Deshalb nennen wir hier ∞ einen superattraktiven Fixpunkt.

Ist $w \in \mathbb{C}$ ein attraktiver Fixpunkt von f, so heißt

$$A(w) := \{ z \in \mathbb{C} : f^k(z) \to w \text{ für } k \to \infty \}$$

das Attraktions-Gebiet von w. Im Fall eines Polynoms vom Grad $d \geq 2$ interessiert zudem das Attraktions-Gebiet von ∞ :

$$A(\infty) := \{ z \in \mathbb{C} : f^n(z) \to \infty \}.$$

Es gibt ein R>0, so daß |f(z)|>2|z| für $|z|\geq R$ ist. Daraus folgt, daß (f^n) auf

$$U_R := \{ z \in \mathbb{C} : |z| > R \}$$

gleichmäßig gegen ∞ konvergiert. Insbesondere ist $U_R \subset \operatorname{Fat}(f)$.

6.4 Satz. Es ist $A(\infty) = \bigcup_{k=1}^{\infty} f^{-k}(U_R)$. Insbesondere ist $A(\infty)$ offen.

Beweis: Wir haben zu zeigen: $z \in A(\infty) \iff \exists k \geq 1 \text{ mit } f^k(z) \in U_R$.

1) Sei $z \in A(\infty)$. Dann konvergiert $(f^n(z))$ gegen ∞ . Offensichtlich gibt es dann ein $k \geq 1$ mit $f^k(z) \in U_R$.

2) Es gebe umgekehrt ein $k \geq 1$ mit $f^k(z) \in U_R$. Dann ist

$$|f^{k+1}(z)| = |f(f^k(z))| > 2 \cdot |f^k(z)| > 0,$$

und allgemein $|f^{k+m}(z)| > 2^m \cdot |f^k(z)| > 2^m \cdot R$. Das bedeutet, daß $(f^n(z))$ gegen ∞ konvergiert und z in $A(\infty)$ liegt.

Im Falle eines attraktiven Fixpunktes $w_0 \in \mathbb{C}$ kann man auf ähnliche Weise zeigen, daß es eine Umgebung $U = U(w_0)$ gibt, so daß $A(w_0) = \bigcup_{k=1}^{\infty} f^{-k}(U)$ ist. Ist nämlich $|f'(w_0)| < \varrho < 1$, so ist

$$|(f^n)'(w_0)| < \varrho^n \text{ und } |(f^n)(w) - w_0| \le \varrho^n \cdot |w - w_0|$$

nahe w_0 , und auf einer genügend kleinen Umgebung von w_0 in $D_1(w_0)$ konvergiert $(f^n(w))$ gleichmäßig gegen w_0 . Der Rest ergibt sich wie im obigen Beweis.

6.5 Satz. Sei f ein Polynom vom Grad $d \geq 2$. Dann ist $A(\infty)$ eine zusammenhängende offene Umgebung von ∞ . Der Rand von $A(\infty)$ ist die Julia-Menge Jul(f). Jede beschränkte Zusammenhangskomponente von $\mathbb{C} \setminus \text{Jul}(f)$ ist einfach zusammenhängend.

BEWEIS: Es ist $f(A(\infty)) \subset A(\infty)$ und $f^{-1}(A(\infty)) \subset A(\infty)$, also $f(\partial A(\infty)) \subset \partial A(\infty)$ und dann auch $f^n(\partial A(\infty)) \subset \partial A(\infty)$ für alle $n \geq 1$. Weil $A(\infty)$ eine Umgebung von ∞ enthält, ist f^n auf $\partial A(\infty)$ gleichmäßig beschränkt. Nach dem Maximumprinzip ist dann (f^n) auf jeder beschränkten Komponente von $\mathbb{C} \setminus \partial A(\infty)$ gleichmäßig beschränkt. Also kann $A(\infty)$ nur aus einer einzigen (nämlich der unbeschränkten) Zusammenhangskomponente von $\mathbb{C} \setminus \partial A(\infty)$ bestehen.

Auf jeder beschränkten Komponente von $\mathbb{C} \setminus \partial A(\infty)$ ist (f^n) eine normale Familie. Also gehören diese Komponenten zu $\operatorname{Fat}(f)$. Und die Menge $A(\infty)$ gehört natürlich auch zu $\operatorname{Fat}(f)$. Also ist $\operatorname{Jul}(f) \subset \partial A(\infty)$.

Ist umgekehrt $z_0 \in \partial A(\infty)$ und $U = U(z_0)$ eine offene Umgebung, so konvergiert $f^n(z)$ auf $U \cap A(\infty)$ kompakt gegen Unendlich. Weil die Folge $(f^n(z_0))$ aber beschränkt bleibt, kann keine Teilfolge von (f^n) auf U kompakt konvergieren. Das bedeutet, daß $z_0 \in \text{Jul}(f)$ ist.

Da $d \geq 2$ ist, hat die Polynomgleichung f(z) - z = 0 mindestens eine Nullstelle, f also mindestens einen Fixpunkt $z_0 \in \mathbb{C}$. Also ist $A(\infty) \neq \mathbb{C}$ und $Jul(f) \neq \emptyset$.

Da $A(\infty)$ zusammenhängend ist, ist auch $\overline{A} = A(\infty) \cup \partial A(\infty) \cup \{\infty\}$ zusammenhängend, also $\overline{\mathbb{C}} \setminus \overline{A}$ einfach zusammenhängend. Das bedeutet, daß jede beschränkte Komponente von $\mathbb{C} \setminus A(\infty)$ einfach zusammenhängend ist.

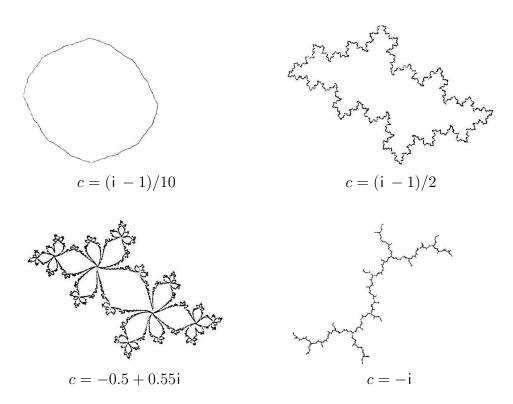
Sei jetzt speziell $f_c(z) := z^2 + c$.

Ist $h(z) = \alpha z + \beta$, so ist

$$h^{-1} \circ f_c \circ h(z) = \alpha z^2 + 2\beta z + \gamma$$
, mit $\gamma = \frac{1}{\alpha} (\beta^2 + c - \beta)$.

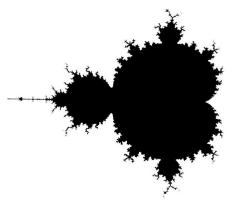
6 Julia-Mengen 119

Also ist jedes quadratische Polynom konjugiert zu einem f_c . Hier sind die Julia-Mengen einiger Polynome f_c :



Definition. $M := \{c \in \mathbb{C} : \operatorname{Jul}(f_c) \text{ ist zusammenhängend } \}$ heißt $\operatorname{Mandelbrot-}$ Menge (auch bekannt als "Apfelmännchen").

Das Bild dieser Menge ist auch wohlbekannt:



Die Mandelbrot-Menge M

Ohne Beweis seien noch folgende Resultate genannt:

Ist f(z) ein Polynom vom Grad $d \ge 2$, so ist $\operatorname{Jul}(f)$ genau dann zusammenhängend, wenn die Iterierten $f^n(z)$ jedes kritischen Punktes von f beschränkt bleiben.

Streben dagegen die Iterierten aller kritischen Punkte von f gegen ∞ , so ist $\mathrm{Jul}(f)$ total unzusammenhängend, und $\mathrm{Fat}(f)$ stimmt mit $A(\infty)$ überein.

Im Falle eines der Polynome $f_c(z)=z^2+c$ ist 0 der einzige kritische Punkt. Deshalb ist in diesem Falle

$$M = \{c \in \mathbb{C} : (f_c^k(0)) \text{ ist unbeschränkt }\}.$$

Diese Beschreibung bildet die Grundlage für die Computer-Bilder der Mandelbrot-Menge.