Übungen zur Funktionentheorie 1

SS 2017 Blatt 2 Prof. Fritzsche

5) Ist $M \subset \mathbb{C}$, so ist \overline{M} die Vereinigung von M mit den Häufungspunkten von M und \mathring{M} (oder M°) die Menge der inneren Punkte von M.

Zeigen Sie: Ist M offen, so ist $M \subset (\overline{M})^{\circ}$. Ist M abgeschlossen, so ist $\overline{(M^{\circ})} \subset M$. Zeigen Sie in beiden Fällen, dass die Gleichheit nicht zu gelten braucht.

- 6) Sei X ein topologischer Raum. Eine Teilmenge $A \subset X$ heißt *(überall)* dicht in X, falls $\overline{A} = X$ ist. Und A heißt nirgend dicht in X, falls $(\overline{A})^{\circ} = \emptyset$ ist. Zeigen Sie:
- Ist $A \subset X$ abgeschlossen, so ist A genau dann nirgends dicht in X, wenn $X \setminus A$ dicht in X ist. Gilt das auch für beliebige Mengen?
- 7) a) Sei X ein topologischer Raum und $A \subset X$ zusammenhängend. Zeigen Sie: Ist $A \subset B \subset \overline{A}$, so ist auch B zusammenhängend.
- b) Sei $S := \{(x,y) \in \mathbb{R}^2 : 0 < x \le 1 \text{ und } y = \sin(1/x)\}$. Zeigen Sie, dass $S \cup (\{0\} \times [-1,1])$ eine zusammenhängende Menge im \mathbb{R}^2 ist.
- **Afg. 8***: Sei X ein zusammenhängender topologischer Raum, $A, B \subset X$ abgeschlossene Teilmengen mit $X = A \cup B$. Zeigen Sie:

Ist $A \cap B$ zusammenhängend, so sind A und B beide zusammenhängend.

Abgabetermin: **Donnerstag**, 11.05.2017, 12 Uhr.

Es gibt pro Aufgabe maximal 12 Punkte.

Für eine richtige und vollständige Lösung der $\ast\text{-}\text{Aufgabe}$ gibt es sogar 18 Punkte.

Lösg. zu Afg. 5: Ist $A \subset B$, so ist $\overline{A} \subset \overline{B}$. Das wurde in der Vorlesung gezeigt, aber man kann es hier auch mitbeweisen (siehe (b)).

a) Sei $M \subset \mathbb{C}$ offen. Dann ist $M = M^{\circ}$. Zu jedem Punkt $x \in M$ gibt es eine offene Umgebung U = U(x), die ganz in $M \subset \overline{M}$ liegt. Also gehört x zu $(\overline{M})^{\circ}$. Damit ist $M \subset (\overline{M})^{\circ}$.

Gleichheit braucht nicht zu gelten: Für $0 \le r < R$ sei

$$A_{r,R} := \{ z \in \mathbb{C} : r < |z| < R \}.$$

Ist $M := A_{0,1} \cup A_{1,2}$, so ist $\overline{M} = \overline{D_2(0)}$ und $(\overline{M})^{\circ} = D_2(0)$, und diese Menge ist echt größer als M.

b) Sei $M \subset \mathbb{C}$ abgeschlossen. Dann ist $M = \overline{M}$. Ist $x_0 \in \overline{(M^\circ)}$, so ist entweder $x_0 \in M^\circ \subset M$ (und nichts weiter zu zeigen) oder x_0 Häufungspunkt von M° . Im zweiten Fall enthält jede offene Umgebung $U = U(x_0)$ einen Punkt $x \neq x_0$ von $M^\circ \subset M$. Damit liegt x_0 in $\overline{M} = M$.

Auch hier braucht die Gleichheit nicht zu gelten: Ist $M := \{0\} \cup \overline{A_{1,2}}$, so ist $M^{\circ} = A_{1,2}$ und $\overline{(M^{\circ})} = \overline{A_{1,2}}$

Lösg. zu Afg. 6: Sei A eine abgeschlossene Teilmenge des topologischen Raumes X.

a) Sei A nirgends dicht in X, also $(\overline{A})^{\circ} = \emptyset$. Beh.: $\overline{X \setminus A} = X$.

BEWEIS: Sei $x_0 \in X$. Ist $x_0 \in X \setminus A$, so ist man fertig. Ist $x_0 \in A$, so muss gezeigt werden, dass x_0 ein Häufungspunkt von $X \setminus A$ ist. Wäre das nicht der Fall, so gäbe es eine offene Umgebung $U = U(x_0) \subset X$ mit $U \cap (X \setminus A) = \emptyset$. Dann müsste jeder Punkt aus U in A liegen. Also wäre $U \subset A \subset \overline{A}$, und das bedeutet, dass $(\overline{A})^{\circ} \neq \emptyset$ ist. Widerspruch!

b) Sei $X \setminus A$ dicht in X, also $\overline{X \setminus A} = X$. Beh.: $(\overline{A})^{\circ} = \emptyset$.

BEWEIS: Annahme, es gibt einen Punkt x_0 in $(\overline{A})^{\circ}$. Dann gibt es sogar eine offene Umgebung $U = U(x_0) \subset \overline{A} = A = X \setminus (X \setminus A)$. Also kann x_0 nicht in $\overline{X \setminus A}$ liegen. Das ist ein Widerspruch zur Voraussetzung.

Gegenbeispiel: Sei $X = \mathbb{R}$ und $A = \mathbb{Q}$. Dann ist $(\overline{A})^{\circ} = \mathbb{R}^{\circ} = \mathbb{R}$, aber auch. $\overline{X} \setminus A = \mathbb{R}$. Das heißt, dass $X \setminus A$ dicht in X ist, aber A ist nicht nirgends dicht in X.

Die Folgerung (b) gilt nur, wenn $A\subset X$ abgeschlossen ist. Diese Voraussetzung ist hier verletzt.

Lösg. zu Afg. 7: a) Ist A = B, so ist nichts zu zeigen. Es sei also $A \subsetneq B$.

Sei $f: B \to \mathbb{Z}$ stetig. Dann ist auch $f|_A$ stetig, und weil A zusammenhängend ist, ist $f|_A \equiv c$. Sei nun $a_0 \in B \setminus A \subset \overline{A} \setminus A$ ein beliebiger Punkt und $c_0 := f(a_0)$.

Dann ist $M:=f^{-1}(c_0)$ offen in B, und es gibt eine offene Menge $U\subset X$ mit $U\cap B=M$. Offensichtlich liegt a_0 in $U\cap (\overline{A}\setminus A)$ und ist ein Häufungspunkt von A. In der Umgebung U muss demnach ein $a\in A$ liegen, mit $a\neq a_0$. Dann ist f(a)=c. Aber weil a in $U\cap B=M$ liegt, ist auch $f(a)=c_0$. Das heißt, dass $c_0=c$ ist. Weil a_0 beliebig gewählt wurde, ist f auf B konstant und B zusammenhängend.

b) Das Intervall I := (0,1] ist zusammenhängend, und die Abbildung $F : I \to \mathbb{R}^2$ mit $F(t) := (t, \sin(1/t))$ ist stetig. Also ist auch der Graph

$$S = F(I) = \{(x, y) \in \mathbb{R}^2 : x \in I \text{ und } y = \sin(1/x)\}$$

zusammenhängend.

Die Punkte $x_k := 1/(k\pi)$ liegen für $k \in \mathbb{N}$ in I, und die Punkte $F(x_k) = (x_k, 0) \in S$ konvergieren gegen den Nullpunkt. Ist $t \in [-1, 1]$ und $t \neq 0$, so ist $\arcsin(t) \in [-\pi/2, \pi/2] \setminus \{0\}$, und die Punkte $y_k := 1/(\arcsin(t) + 2k\pi)$ liegen für $k \in \mathbb{N}$ wieder in I. Die Punkte $F(y_k) = (y_k, t) \in S$ konvergieren gegen (0, t). Also ist

$$S \cup (\{0\} \times [-1,1]) = \overline{S},$$

und diese Menge ist ebenfalls zusammenhängend (siehe (a)).

Lösg. zu Afg. 8: Wäre $A \cap B = \emptyset$, so müsste eine der beiden Mengen leer sein, z.B. $A = \emptyset$ und B = X. Dann ist nichts weiter zu zeigen. Sei also $A \cap B \neq \emptyset$.

Sei $f:A\to \mathbb{Z}$ stetig. Zu zeigen ist, dass fkonstant ist. Im Fall der Menge Bläuft es analog.

Da f auch auf der zusammenhängenden Menge $A \cap B$ stetig ist, folgt: $f|_{A \cap B}$ konstant, etwa $\equiv c$. Dann definiere man $\widehat{f}: X \to \mathbb{Z}$ durch

$$\widehat{f}(x) := \left\{ \begin{array}{ll} f(x) & \text{für } x \in A, \\ c & \text{für } x \in X \setminus A \end{array} \right..$$

Dann ist $\widehat{f}(x) = c$ für alle $x \in B = (B \setminus A) \cup (A \cap B) = (X \setminus A) \cup (A \cap B)$. Nun muss gezeigt werden, dass \widehat{f} stetig ist. Weil \mathbb{Z} die diskrete Topologie trägt, bleibt zu zeigen, dass $\widehat{f}^{-1}(n)$ für jedes $n \in \mathbb{Z}$ eine offene Teilmenge von X ist.

a) Die Menge $M_c := f^{-1}(c)$ ist offen in A. Also gibt es eine offene Menge $U_c \subset X$ mit $U_c \cap A = M_c$. Weil $U_c \setminus A \subset B$ ist, folgt:

$$\widehat{f}^{-1}(c) = f^{-1}(c) \cup (X \setminus A) = U_c \cup (X \setminus A),$$

und das ist eine offene Teilmenge von X.

b) Sei nun $d \in \mathbb{Z}, d \neq c$. Dann ist $\{x \in B \,:\, \widehat{f}(x) = d\} = \emptyset$, also

$$\widehat{f}^{-1}(d) = \{x \in X \setminus B = A \setminus B : f(x) = d\} = (f|_{A \setminus B})^{-1}(d).$$

Die Menge $X \setminus B = A \setminus B$ ist zugleich in A und in X offen. Mit f ist auch $f|_{A \setminus B} : A \setminus B \to \mathbb{Z}$ stetig, und deshalb ist $\widehat{f}^{-1}(d) = (f|_{A \setminus B})^{-1}(d)$ offen in $A \setminus B$, also auch in X.

Damit ist gezeigt, dass \widehat{f} stetig ist und deshalb konstant sein muss. Insbesondere ist dann auch f auf A konstant. Das bedeutet, dass A zusammenhängend ist.

Zusatz:

Sei $X=[0,4],\ A:=[0,1)\cup(2,4],\ B:=[1,3].$ Dann ist $A\cup B=X$ zusammenhängend und $A\cap B=(2,3]$ zusammenhängend. Außerdem ist B zusammenhängend, aber A nicht. Es geht schief, weil A nicht abgeschlossen in X ist.