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Setting

What is modelled?
@ Tumour evolution and related quantities such as

o Volume/size of tumour
o Growth of tumour patters, speed of growth, shape of growth
o Mutations, heterogenity and homogenity

@ Interplay between the tumour and

o Immune system
o Healthy cells
o Environmental factors

© And many other ...
Models should be as simple as possible, but as detailed as necessary.
Simplification: Tumour can be described on different scales

microscopic < mesoscopic < macroscopic
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Introduction

Setting

How do we model?
@ Ordinary differential equations (also systems of ODEs)

Mesoscopic or macroscopic desription.

Describe specific quantities of the tumour in certain regimes.
Comparably easy for the analysis and simulations — compare with data.
In many cases deterministic.

No spatial structure.
How to justify such equations?

What are the right equations?

@ Stochastic models

microscopic description of cells, mutations, interactions
Describe collection of cells as a stochastic process.
Analysis and simulations are more challenging

— how to compare with experimental data?

Include a spatial structure.

What are the right models?
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Setting

What are we interested in?

@ Description of microscopic tumours by spatial birth-and-death models.
@ Reducing complexity

o What are the main building blocks?
o Derivation of effective equations from these models
— spatial analogues of ODEs
o What is the effect of: immune system, other cells, environmental factors?

@ Time evolution of (spatial) correlations
@ Invariant states, equilibrium states

What is not done: Comparison with data
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Going beyond

What could/should, in principle, be done
O Cells with additional marks (mutations, fitness, ...)
@ Motion of cells (migration, metastasis, go-or-growth, ...)
© Non-Markov dynamics (equations with delay, fractional derivatives in time, ...)

@ Time-inhomogeneous models (time-dependent parameters due to therapy)
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System of Tumour cells

We suppose that
o Tumour cells are indistinguishable (among one type)
o Sufficiently many cells, i.e. statistical description is adequate.

@ Each cell has position and maybe other traits.
It can be represented as an element x € RY.

The collection of all cells forms a microscopic state
y={xeR|n>1}.

System may be:
o finite, i.e. |y] < oo.
o infinite, i.e. |y N K| < oo for all balls K C R¢.

P ={yCR?| |yNK| < oo for all balls K ¢ R}.

We mainly focus on the infinite case.
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General modelling strategy

Environment

Environment is another particle system with microscopic state
w={y, eR | n>1}

Configuration space
M ={wcR?| |wNK| < oo for all balls K ¢ R’}.

Environment could be
o Fixed configuration w € I'E.
@ An equilibrium process on 'E with some invariant measure.
@ Non-equilibrium spatial birth-and-death process.

Joint microscopic state is (v, w), i.e. an element in

r2.=r°xret.
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Statistical description

Observable quantities are
Fhei= [ Fo)tne)
rSxre

where 1 is a probability measure (= state) on * x '€

o Number of tumour cells in volume A°

/Wmﬁmm%m.
|'S

@ Second order correlations: A° x A ¢ R? x RY

Iy N A® [Jw N AE|dp(y, w).
rSxre

o Higher order correlations

T[T ozl TT 0 Aflduty, ).
k=1

rsxre k=1
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Space of admissible measures

k}(]{n,m)

w state on 2. Correlation function is locally integrable function s.t.

k=1
S«rE + A= —
r>xr /\1><~-><A,, AL XAy

Example:

o k0 =) =1
e n+ m =1 yields for A C R? compact

/ I A Adp(r) = / KO / v A Ald(y) = / KOD(y)dy.
r2 A

Up to some mathematical aspects, we obtain a one-to-one correspondence

states j1 «— correlation functions k, = (k\"™)3%, o
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Dynamics

Model time evolution by an evolution of states
f(mm) J(msm)
Mo — [ Or I Y
Elementary events:
@ Birth: Each particle creates a new particle, a particle may appear from the outside.
Y=y U{x}, x €.
Birth rate: b(x,~,w) > 0.
@ Death: Particles have a lifetime and compete for resources.
v N\ {x}, xen

Death rate: d(x,vy,w) > 0.
@ Motion, migration, mutations and many others are possible.

w € TE takes influence of environment into account.
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Markov operator

Let Lfy(w) be the Markov operator for the tumour cells, i.e.

(L5@)F)() =Y dx,9\x,w)(F(7\x) = F())
+ / b(x,~y,w)(F(yUx) — F(v))dx.

Environment is assumed to be of similar form but with different birth-and-death rates.
These rates will be specified later on.
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General modelling strategy

Dynamics

Markov evolution is described by solutions to (backward) Kolmogorov equation

OF,
ap = (L@ +LOF, Fleo=F,

Then (F;), is the time evolution of the expected value of F in state p.

We are interested in the evolution of states po — ps.
We should have (F;), = (F),,.

Can rewrite this into a system of equations

k"™
ot

= (L), Ko = K™

where L2 is a double-matrix. Then

(k™) 2o — pae.
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General modelling strategy

Evolution of correlation functions

k"™
ot

— (LAkt)(n,m)7 k§n7m)|t:0 _ kén,m)

o L% can, for many models, be computed explicitly from L3 (w), L5.

o Explicit form in coordinates

ak(n ,m) o
Z Lkl nmk kt(n’m)\t:o = kén’m)-
k,I1=0

@ In some cases the right-hand side has recursive structure, i.e.

n,m

Z Lkl nmk kt(n'm)\t:o = ké"’m)-

k,I=0

k(" »m)

Hence it may be solved explicitly.
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Aim: Simplification

@ We are interested in the projections yf of yu: onto I', i.e.
115 (A) == pe(A X TF) kfjg = k).

Equation for k‘(;-) depends on all kLZ‘m). Projection is not Markov.
t

o Find a closed equation (after proper scaling) for ,uf or kﬂs.
t

o The limiting equation should recover the Markov property.
o Works in a certain regime of parameters on the interactions.

@ Find closed equations for particle densities kt(l’o), kfo’l), i.e.

2 X E X
00— 02, py), - 2250 = V() )

Mesoscopic equations which are obtained after certain scalings.
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Environment

Environment is Glauber dynamics with formal Markov operator

(LEF)(w) = > (F(w\x) = F(w))

XEw

+z / e B9 (F(w U x) — F(w))dx

RrRd

@ z > 0 activity parameter.

@ Relative energy

Eo(x,w) =Y plx—y), xR, werlr

yEw

Death rate is constant to 1.

Birth rate is given by ze™ Fe(x«),
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Environment

Assumptions

o Interaction potential ¢(x) = ¢(—x) > 0 with integrability condition

Blp) == /(1 — e ?M)dx < oo,

R

@ Small activity regime

z < ! .
eB(p)
Then
@ There exists an evolution of states (j¢)¢>o0.
o There exists a unique invariant measure (Gibbs measure) piny.

@ Evolution of states is ergodic, i.e.

ft — [iny  OF kfb'? — k)

Hinv?

Vn, t— oo.
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System

Free branching with rates

d(x,7\x;w) = m+g Y d(x—y)

yYEw

b(x,y,w) =Y _a*(x—y)

Y€y

e m > 0 mortality rate of cells.
e at(x —y) = a"(y — x) > 0 integrable and bounded, proliferation kernel for cells
o d(x —y) =d(y — x) > 0 integrable and bounded, interaction with environment.

@ g > 0 coupling constant for interaction with environment.

Consider finite system such that m < A := [ a*(x)dx.
Rd
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Reduced description

Scaling Markov operator Li(w) + éLE for € > 0 yields when € — 0 reduced description:

d(x,7\x) = m + &(x)
b(x,7) =Y a'(x—y)

yey
where
8(x /Z d(x — y)dpiny(w // (x — y)e 5V dyd iy (w)
re yEw rE rd
= g/ d(x — y)ki), (v)dy.

RrRd
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Reduced description

Consequences
@ System is effectively a free branching process with modified mortality rate.
@ Space inhomogeneous death rate may be a consequence of interactions with
environment.
© Different environments yield the same reduced description:
e depends only on invariant state and interactions.

@ Environment may regulate the system:
o Without environment or interactions the number of particles grows exponentially, since

m< = /a"’(x)dx.

Rd
o For g - z large enough all particles die, i.e. i, — dg as t — oo.
Equivalently ké") —+0forn>1ast— oco.
t
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System

Free branching with birth-and-death rates

d(x,v\x,w) ferZ (x—vy +g02dxfy)

YEY\x yEw

bx,7,w) =Y a'(x—y)+& > blx—y)

Y€y yeEw

@ a (x—y)=a (y —x) > 0 integrable and bounded, competition kernel for cells.

e b(x —y) = b(y — x) > 0 integrable and bounded, proliferation kernel from
environment.

@ go, g1 > 0 coupling constant for interaction with environment.
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Reduced description

Suppose the following conditions:

@ There exists © > 0 such that ©a~ — a' is a stable potential.

@ There exists ¢ > 0 such that b < c-d.

e m is sufficiently large.

Scaling Markov operator L2 S(w)+ 2 LE for € > 0 yields when ¢ — 0 reduced description:

d(x,\x)=m+g)+ > a (x—y)

yeY\Xx
b(x,7) =Y at(x—y) +2(x)
yey
where Z(x) = g1 [ > b(x — y)dpiny(w) and
rE yew
— / S d(x — )i ()
reE yYEw
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Consequences

Without presence of environment:

@ Dynamics is asymptotlcally degenerated, i.e. ur — Jdy as t — oo.
Equivalently km — 0 foralln>1ast— oc.

In the presence of environment

@ Dynamics has non -trivial mvanant measure [ such that p: — poo as t — 0.
Equivalently kM ) kHoo forall n,m >0 as t — oo.

After reduced description

@ Dynamics has non-trivial invariant measure 7 such that i, — 1, as t — oo.
Equivalently ké") — k%") forall n>0as t — oo.
t oo
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Consequences

Without presence of environment:
@ Kinetic equation is

) — )~ [ 4™ v+ [ 4= )y

Rd R

In the presence of environment

— [ et=y)pE(v)ay

90 _ ) 4 ze
50D gt~ [ &= S0 — [ o= P IareE0)
+ / at(x —y)pi (y)dy + / b(x — y)pc (v)dy.
After reduced desniiption N
D) (o + 7O+ [ x4 70
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Dynamics

Tumour cells

A7\ w) =Y a (x—y)

yEw

b(x,v,w) =Y a'(x—y)

yey
Immune system

d*(x, 7, w\x) =m+> b (x—y)

yey

BECx,yw) =D (1—e %) bl (x—y) + 2

yEw

Derive kinetic equations.

WV ETS T W STEEEN I TRV TRV H (TR e GO TEHTEMULT Birth-and-death evolutions in random environments

02.12.2016

24 /29



Dynamics

Kinetic equations

S
28— [ -t + [ o= ey
apéigx) =—|m- / b~ (x — y)pi (y)dy | o (x)

= [ ew=y)pf(wy
+/b+(xfy) 1-e pe(y)dy +z

RrRd
Space-homogeneous version: X = p° and Y = pf
X' =(a" —a"Y)X
Y =z—mY+b'Y1—-e?)—b XY.

WV ETS T W STEEEN I TRV TRV H (TR e GO TEHTEMULT Birth-and-death evolutions in random environments 02.12.2016

25 /29



Dynamics

Tumour cells

dix\xw) =m+ Y b (x=y)+ Y ¢ (x—v)

YEY\x yEw

b(x,7,w) =Y b (x—y)+> ¢ (x—v)

yey YEw
Immune system

d*(x,rw\x) =m"+ > a (x—y)

yEw\x

bE (x,7,w) = Z at(x—y)+z

yYEw

Environment has still invariant measure fiiny with uf — piin, as before.
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Reduced description

Have birth-and-death rates

dx,\x)=m*+3 () + > b (x—y)

yEY\x

b(x,7) =Y b (x—y)+2(x)

yey

where 5 (x) = [ 3 ¢~ (x — y)dptinv(w) and

rE yew

200 = [ 306" 0x - )i ().

rE yeEw
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Kinetic equations

Without environment

0 _
péix) =- m5+/b (x = y)pe(y)dy pt(X)+/b+(X—y)pt(y)dy.
Rd Rd
Reduced description
op _ - _ _
P e+ [ 5y | 2o
R4

+/ww—mmnw+ﬂn

Rd
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Kinetic equations

Thank You!
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