Christmas Exercise Sheet

Exercise 1 (4 Points)

Let $(X_n)_{n\in\mathbb{N}} \subset \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ be a sequence of independent, identically distributed random variables. Prove that

$$n\mathbb{P}\left(|X_1| \ge \varepsilon \sqrt{n}\right) \to 0 \text{ as } n \to \infty, \text{ for all } \varepsilon > 0.$$

Does $n^{1/2} \max\{|X_1|, \ldots, |X_n|\}$ converges in probability as $n \to \infty$?

Exercise 2 (4 Points) Let X and $(X_n)_{n \in \mathbb{N}}$ be random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Prove that

$$X_n \to X$$
 in probability $\iff \lim_{n \to \infty} \mathbb{E}\left[\frac{|X_n - X|}{1 + |X_n - X|}\right] = 0.$

Exercise 3 (4 Points)

Let X, Y be random variables and suppose that the joint distribution of (X, Y)on \mathbb{R}^2 is given by

$$\mu_{(X,Y)}(dx, dy) = \exp\{-x - y\} \mathbb{1}_{\mathbb{R}^2_+}(x, y) dx dy.$$

Show that

- (a) the random variables X + Y and X/Y are independent.
- (b) the random variables X + Y and X/(X + Y) are independent.

Exercise 4 (4 Points)

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and \mathcal{F}, \mathcal{G} two σ -algebras on Ω such that $\mathcal{F} \subset \mathcal{G} \subset \mathcal{A}$. Let X be a random variable with $\mathbb{E}[X^2] < \infty$. Show that

$$\mathbb{E}\left[\left(X - \mathbb{E}\left[X \mid \mathcal{G}\right]\right)^{2}\right] + \mathbb{E}\left[\left(\mathbb{E}\left[X \mid \mathcal{G}\right] - \mathbb{E}\left[X \mid \mathcal{F}\right]\right)^{2}\right] = \mathbb{E}\left[\left(X - \mathbb{E}\left[X \mid \mathcal{F}\right]\right)^{2}\right].$$

Exercise 5 (4 Points)

Let X and Y be two independent $\exp(\lambda)$ -distributed random variables ($\lambda > 0$). Calculate

$$\mathbb{E}(X | X + Y)$$
 and $\mathbb{P}(X \leq x | X + Y)$ for $x \geq 0$.

Exercise 6 (4 Points)

For a $\alpha > 0$ let $(X_n)_{n \in \mathbb{N}}$ be an independent and identically $[0, \alpha]$ -uniform distributed sequence of random variables. Let $Y_n := \max\{X_1, \ldots, X_n\}, Z_n := n(\alpha - Y_n),$ and $\mu_n := \mathbb{P} \circ Z_n^{-1}$. Prove that μ_n converges weakly to μ^{α} as $n \to \infty$, where μ^{α} denotes the exponential distribution with parameter $1/\alpha$.

Exercise 7 (4 Points)

Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of random variables with corresponding distribution functions

$$F_n(x) = \left(1 - \frac{1}{n}\right) \mathbb{1}_{[0,n)}(x) + \mathbb{1}_{[n,\infty)}(x).$$

Show that X_n converges in distribution to a random variable X with distribution function F. Further, prove that $\mathbb{E}[|X_n|^k]$ does not converge to $\mathbb{E}[|X|^k]$. Is this contradicting Portmanteau's Theorem?

Exercise 8 (4 Points)

For two distribution functions F and G let

$$d_L(F,G) := \inf \left\{ \varepsilon > 0 : F(t-\varepsilon) - \varepsilon \le G(t) \le F(t+\varepsilon) + \varepsilon \,\forall t \in \mathbb{R} \right\}.$$

One can check that d_L defines a metric on the set of distribution functions. Let $(F_n)_{n \in \mathbb{N}}$ be a sequence of distribution functions, and F be a distribution function.

(a) Suppose $F_n(t) \to F(t)$ as $n \to \infty$ for all continuity points t of F. Prove that

$$d_L(F_n, F) \to 0 \quad \text{as } n \to \infty.$$

(b) Conversely, suppose that $d_L(F_n, F) \to 0$ as $n \to \infty$. Prove that

 $F_n(t) \to F(t)$ as $n \to \infty$ for all continuity point t of F.