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1 Introduction

The theory of interacting particle systems (= IPS) is a fast growing area in modern probability
and infinite dimensional analysis with various applications in, e.g., mathematical physics, theo-
retical biology, ecology, social sciences and economy. The aim is to describe the time evolution of
a huge collection of interacting entities. Such entities are called (microscopic) particles and are
considered, depending on the particular choice of model, as molecules, cells, plants or animals,
humans and agents of a market. The collection of all particles, which is typically of order at
least 104 ´ 1023, is called microscopic state. Each particle from this state can, in principle, be
described by a physical/ecological/biological mechanism. A detailed understanding of such me-
chanism yields the possibility to describe the time evolution of the microscopic state by solutions
to certain systems of equations. Nevertheless, the complex structure of each particle makes it
practically impossible to determine all parameters involved. Moreover, due to the huge number
of particles it is hopeless to solve or even provide reasonable simulations for such large systems
of equations. As a simplification each particle is therefore modelled as a random process. The
parameters of such processes should be chosen in such a way that they fit with the experimen-
tal data. Moreover, the huge number of particles is described by statistical properties such as
expectations, correlations and particle densities. A mathematical realization of this ideas leads,
in the simplest case, to the description of a microscopic state in terms of a Markov process.

In this lecture notes we restrict our attention to IPS where particles may die or create
new particles due to random influences. Models of this type are the so-called birth-and-death
processes. Classical birth-and-death dynamics are described by a system of ordinary differen-
tial equations, also known as Kolmogorov’s differential equations, and are usually studied by
semigroup methods on (weighted) spaces of summable real-valued sequences, cf. Feller, Kato
[Kat54, Fel68, Fel71, HP74]. More recent attempts study such equations on the spaces `p for
p P r1,8q, see Arlotti, Banasiak [BA06] and others [BLM06, TV06]. All these models have in
common that they do not include the positions of the described particles. However, many mo-
dels from applications are intrinsically based on the positions of particles described (see e.g. the
BDLP-model [BP97, BP99, DL00, DL05] but also [Neu01, BCF`14, KM66, SEW05, FFH`15]).

The simplest possibility to include spatial structure is to assign to each particle a fixed site
on a graph (e.g. from the lattice Zd). This are the so-called lattice models. For such models a
rigorous study by semigroup methods is adequate and a detailed presentation can be found in
the classical book of Liggett [Lig05] and references therein. Several models, such as the BDLP
model, require that the positions of the particles are not a priori fixed. This means that Zd
should be replaced by a continuous location space, e.g. Rd.

Birth-and-death processes in the continuum share several properties with their lattice analo-
gues, but also include numerous unexpected features and require essentially different techniques
for their mathematical treatment. Taking into account that they describe real-world particles
it leads to the natural assumption that all particles are indistinguishable and any two particles
cannot occupy the same position in the location space, say for simplicity Rd. It is commonly
used to model such microscopic states γ as linear combination of point-masses δx, where x P Rd
is the position of a particle in the system. Hence we may write

γ “
ÿ

k≥1

δxk .
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Here we encounter two different cases which have to be treated by different techniques.

• Finite population if γpRdq ă 8

• Infinite population if γpRdq “ 8.

The Markov dynamics corresponding to finite populations can be analysed by a measure-valued
generalization of Kolmogorov’s differential equations. This equations have been first analysed by
Feller [Fel40] and have been afterwards further investigated in the next 60 years, cf. [FMS14] and
many others. A summary with applications to interacting particle systems is provided in the book
of Chen [Che04]. More recent results in this direction can be found in [EW03, Kol06, Bez15, Fri16]
(see also the references therein).

In this lectures we focus on spatial birth-and-death processes for infinite populations. Our aim
is to provide a comprehensive introduction to the construction of the corresponding processes
and outline how particular properties can be studied. For this purpose we consider a particular
example of a spatial branching process where particles may die at constant rate and, moreover,
undergo a certain proliferation mechanism.

This lectures are organized as follows. A general description of spatial birth-and-death pro-
cesses is given in the second section. In order to realize the general approach we introduce in
section three the notion of correlation functions. Finally we apply this scheme in the last section.

2 Spatial birth-and-death processes

2.1 The configuration space

It will be convenient to identify a microscopic state γ with a subset of Rd, i.e. we consider the
microscopic state as a collection of positions x P Rd. The state space (= configuration space) is,
by definition, the collection of all microscopic states γ. For technical reasons it is assumed to be
the space of all locally finite configurations

Γ “ tγ Ă Rd | |γ XK| ă 8 for all compacts K Ă Rdu.

Here and in the following we write |A| for the number of elements in A Ă Rd. Note that each
γ P Γ can be identified with the locally finite Radon measure

ř

xPγ δx. The configuration space
is equipped with the smallest topology such that

Γ Q γ ÞÝÑ
ÿ

xPγ

fpxq P R

is continuous for any continuous functions f : Rd ÝÑ R having compact support.

Theorem 2.1. (see [KK06]) The following assertions hold:

1. Γ is a Polish space.

2. Γ is not locally compact.

Denote by BpΓq the corresponding Borel-σ-algebra. It is the smallest σ-algebra such that

Γ Q γ ÞÝÑ |γ X Λ| P N0

is measurable for any compact Λ Ă Rd.
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2.2 The birth-and-death rates

Particles, in the framework of spatial birth-and-death processes, may randomly disappear and
new particles may appear in the configuration γ. Death of a particle x P γ is described by the
death rate dpx, γq ≥ 0. Similarly, bpx, γq ≥ 0 describes the birth rate and distribution of a new
particle x P Rdzγ. The following are our guiding examples in this theory.

Example 2.2. Let mpxq ≥ 0 be bounded and ϕ ≥ 0 be integrable. Define the relative energy of
the configuration γ w.r.t. the point x by

Eϕpx, γq “
ÿ

yPγ

ϕpx´ yq.

Note that Eϕpx, γq is not necessarily finite for all γ. This is, e.g., the case if ϕ has compact
support. Particular examples for the death rate are:

(i) dpx, γq “ mpxq ` Eϕpx, γq.

(ii) dpx, γq “ eEϕpx,γq

Concerning the birth rates our main examples are:

(iii) bpx, γq “ ze´Eϕpx,γq with z ≥ 0.

(iv) bpx, γq “ Eϕpx, γq.

New examples may be obtained by taking positive linear combinations of these rates.

These examples are closely related to infinite populations in the following sense. Consider
first (iii) with, for simplicity, ϕ “ 0. The total birth rate is then

ż

Rd

bpx, γqdx “

ż

Rd

zdx “ 8, @γ P Γ.

Roughly speaking the birth mechanism creates infinitely many new particles in Rd in any (ar-
bitrarily small) period of time r0, εs, ε ą 0. These new particles would be distributed according
to a Poisson random measure with intensity measure zdx on Rd.

Example (iv) has an even more sophisticated structure. Suppose that we have given only
finitely many particles at time zero, i.e. |γ| ă 8. Then

ż

Rd

bpx, γqdx “
ÿ

yPγ

ż

Rd

ϕpx´ yqdx “ }ϕ}L1 |γ| ă 8,

i.e. only finitely many new particles may appear. As a consequence, the configuration of the birth-
and-death Markov process (see next section) will have the property |γ| ă 8 for all moments
of time. However, if the initial particle configuration is infinite, then, by the same reasoning,
infinitely many particles will be created in any (arbitrarily small) period of time r0, εs, ε ą 0.

More generally, the following particular form of the birth-and-death rates is commonly used:
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(A) For each n ≥ 0 there exist measurable, symmetric functions Dn, Bn : pRdqn ÝÑ R

dpx, γq “
8
ÿ

n“0

ÿ

ty1,...,ynuĂγ

Dnpx; y1, . . . , ynq, (2.1)

bpx, γq “
8
ÿ

n“0

ÿ

ty1,...,ynuĂγ

Bnpx; y1, . . . , ynq. (2.2)

Here Dnpx, y1, . . . , ynq describes the interaction of a particle at position x and other particles at
positions y1, . . . , yn. The case n “ 0 corresponds to constnat birth-and-death rates (no interac-
tions), whereas n “ 1 describes the important case of pair interactions (see examples (i), (iii),
(iv)).

Exercise 1. Let g : Rd ÝÑ R be a function. Prove that for all γ P Γ, with |γ| ă 8

ÿ

ξĂγ

ź

xPξ

gpxq “
ź

xPγ

p1` gpxqq.

Exercise 2. Show that example (ii) satisfies condition (A) with the particular choice

Dnpx; y1, . . . , ynq “
n
ź

k“1

´

eϕpx´ykq ´ 1
¯

.

Likewise show that example (iii) satisfies condition (A) with the particular choice

Bnpx; y1, . . . , ynq “ z
n
ź

k“1

´

e´ϕpx´ykq ´ 1
¯

.

Note that dpx, γq, bpx, γq defined in condition (A) are, in general, only well-defined for γ P Γ
with |γ| ă 8. If |γ| “ 8, then these sums do not need to be absolutely convergent.

Remark 2.3. One can show that

8
ÿ

n“1

Cn

n!

ż

pRdqn

p|Dnpx; y1, . . . , ynq| ` |Bnpx; y1, . . . , ynq|q dy1 . . . dyn ă 8, @x P Rd

for some constant C ą 0 implies that
ż

Γ

pdpx, γq ` bpx, γqqdµpγq ă 8, @x P Rd

holds for sufficiently many probability measures µ on Γ.

In order to prove this remark we will need some additional results introduced in section 3.
However, we do not want to go into details, all expressions given in the end of this section are
therefore only formal.
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2.3 The Markov operator

Based on the birth-and-death rates d, b we want to study properties of a Markov process pγtqt≥0

build by the following two elementary events:

• death of particles: γ ÞÝÑ γzx, where x P γ.

• birth of particles γ ÞÝÑ γ Y x where x R γ.

This process should have (at least formally) the Markov generator given by the heuristic expres-
sion

pLF qpγq “
ÿ

xPγ

dpx, γzxqpF pγzxq ´ F pγqq `

ż

Rd

bpx, γqpF pγ Y xq ´ F pγqqdx, γ P Γ. (2.3)

For simplicity of notation we write γzx, γYx instead of γYtxu and γztxu, respectively. In view
of assumption (A) this expression is well-defined for any γ with |γ| ă 8 and F suitable chosen.
However, similarly to b and d, we cannot guarantee that such an expression is well-defined for
all γ P Γ. Additional restrictions on γ and F have to be made. Let us briefly describe to possible
classes of functions commonly used.

(a) Additive-type functions. Motivated by the formulas (2.1) we consider functions F of
the form

F pγq “
8
ÿ

n“0

ÿ

tx1,...,xnuĂγ

Gpnqpx1, . . . , xnq, (2.4)

where Gpnq : pRdqn ÝÑ R is a sequence of compactly supported, bounded, symmetric and
measurable functions. In the case of n “ 0 we identify Gp0q P R with the constant function.

(b) Multiplicative type functions. Consider the particular case of functions

Gpnqpx1, . . . , xnq “
n
ź

k“1

gpxkq

where g is continuous and has compact support. Then F given by (2.4) satisfies

F pγq “
8
ÿ

n“0

ÿ

tx1,...,xnuĂγ

n
ź

k“1

gpxkq “
ź

xPγ

p1` gpxqq , (2.5)

where we have used Exercise 1.

2.4 The Markov dynamics

Markov process and Martingale problem

The martingale problem is a mathematical formulation what is meant by saying that a stochastic
process pγtqt≥0 on Γ is a Markov process associated with the generator L. Here and below we
let DpLq be the collection of all functions either given by (2.4) or by (2.5), respectively.
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Definition 2.4. Let µ0 be a probability measure on Γ. A stochastic process pγtqt≥0 on a stochastic
basis pΩ,F ,Ft,Pq is said to be a solution to the martingale problem posed by L with initial
distribution µ0 if the following properties hold:

(i) γ0 has law µ0.

(ii) For each F P DpLq the process

F pγtq ´ F pγ0q ´

t
ż

0

pLF qpγsqds, t ≥ 0 (2.6)

is a pFtqt≥0 martingale.

The general theory on martingale problems can be found in [EK86]. Condition (ii) is equi-
valent to say that EpHq “ 0 holds for

H :“

¨

˝F pγtq ´ F pγsq ´

t
ż

s

pLF qpγrqdr

˛

‚h1pγt1q ¨ ¨ ¨hnpγtnq

and all 0 ≤ t1, . . . , tn ≤ s ă t, n ≥ 1, h1, . . . , hn continuous and bounded. Hence it is a condition
on the finite dimensional distributions of the Markov process. Let us mention two cases where
a Markov process has been constructed.

Example 2.5. 1. Contact model, i.e. dpx, γq “ m ą 0 constant and

bpx, γq “ m`
ÿ

yPγ

a`px´ yq

was considered by Kondratiev, Skorokhod in [KS06]. Existence of a Markov process pγtqt≥0

was shown. By construction it is localized in a proper subspace Γ1 Ă Γ, i.e. γt P Γ1.

2. A pure probabilistic approach by stochastic differential equations has been developed by
Garcia, Kurtz [GK06]. Namely, for dpx, γq “ 1 and a birth intensity with

|bpx, γ Y yq ´ bpx, γq| ≤ apx, yq, x, y P Rd

such that apx, yq satisfies some additional continuity condition, existence and uniqueness
has been established, and under additional conditions it was shown that this process is
ergodic. Again the construction uses deeply that the process can be localized in a proper
subspace Γ2 Ă Γ.

Unfortunately several models from mathematical biology and ecology, see eg. [FFH`15,
KK16], are not covered by this results. Any reasonable extension of the techniques developed
in [KS06, GK06] is still absent. The main difficulty is related with the possibility to control the
number of particles in any bounded volume. It is worth to mention that any stochastic process
with càdlàg paths, is necessarily contained in a proper subspace of Γ. The general theory of
martingale problems requires that the state space is at least a locally compact Polish space.
Since it is not the case for Γ, one necessarily has to restrict Γ onto a proper subspace. Such
sub-spaces may be obtained from proper Lyapunov functionals which, at least on the formal
level, exist for many particular models.
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Fokker-Planck equation

One possible way to construct (and study) a Markov process is related to its transition proba-
bilities. Let us briefly describe how such transition probabilities can be obtained. Suppose that
we have given a solution pγtqt≥0 to the martingale problem with initial distribution µ0. Denote
by µt the law of γt, e.g. defined by the relation

EpF pγtqq “
ż

Γ

F pγqdµtpγq, F P DpLq, t ≥ 0.

Taking the expectations in (2.6) and using the martingale property we get

ż

Γ

F pγqdµtpγq “

ż

Γ

F pγqdµ0pγq `

t
ż

0

ż

Γ

pLF qpγqdµspγqds, F P DpLq, t ≥ 0. (2.7)

This is the so-called Fokker-Planck equation. Any solution pµtqt≥0 to this equation may be
regarded as the one-dimensional distribution of a Markov process associated with L.

Remark 2.6. The transition probabilities ptpγ, ¨q of the Markov process pγtqt≥0 satisfy the
Fokker-Planck equation with initial distribution µ0 “ δγ.

In this lectures we will mainly focus on the Fokker-Planck equation. Due to some technical
reasons we also have also to study the (backward) Kolmogorov equation for functions

BFt
Bt

“ LFt, Ft|t“0 “ F0. (2.8)

Until now there does not exist any technique applicable for the study of this equation on spaces of
continuous functions. An alternative approach was described in [KKM08] and will be employed
for a particular model in the last section.

3 Harmonic analysis on the configuration space

3.1 The K-transform

In this section we want to exhibit formula (2.4). Let Γ0 “ tη Ă Rd | |η| ă 8u be the space of
finite configurations. It is equipped with the smallest σ-algebra such that

Γ0 Q η ÞÝÑ |η X Λ| P N0

is measurable for any compact Λ Ă Rd.

Remark 3.1. Since Γ0 admits the decomposition Γ0 “
Ů8
n“0 Γ

pnq
0 with Γ

p0q
0 “ tHu and Γ

pnq
0 “

tη P Γ0 | |η| “ nu each function G can be identified with a sequence of symmetric functions
Gpnq : pRdqn ÝÑ R defined by

Gpnqpx1, . . . , xnq “

#

Gptx1, . . . , xnuq, |tx1, . . . , xnu| “ n

0, else
. (3.1)
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Here we identify Gp0q with the constant function. Then

Gpηq “ Gpnqpx1, . . . , xnq, η “ tx1, . . . , xnu.

Denote by BbspΓ0q the space of all bounded measurable functions G : Γ0 ÝÑ R for which
there exists N P N and a compact Λ such that

Gpηq “ 0, if |η| ą N or η X Λc ‰ H.

Using the identification G “ pGpnqqn≥0 we see that G P BbspΓ0q if and only if

• There exists N P N such that Gpnq “ 0 for n ą N .

• Gpnq is bounded, measurable and has compact support for all n ≥ 0.

The next definition is motivated by (2.4).

Definition 3.2. The K-transform is for G P BbspΓ0q defined by

pKGqpγq “
ÿ

ηŤγ

Gpηq, γ P Γ. (3.2)

Here Ť means that the sum runs over all finite subsets η of γ.

Exercise 3. Show that pKGqpγq is well-defined for any G P BbspΓ0q and any γ P Γ. Moreover,
prove that

pK´1F qpηq “
ÿ

ξĂη

p´1q|ηzξ|F pξq

satisfies K´1KG “ G for any G P BbspΓ0q.
Hint: Use for this purpose the combinatorial relation

ÿ

ξĂη

ÿ

ζĂξ

Hpζ, η, ηzξq “
ÿ

ζĂη

ÿ

ξĂηzζ

Hpζ, η, ξq, η P Γ0.

3.2 The correlation functions

Let us describe the space of probability measures on which the Fokker-Planck equation will be
solved. Additional details in this section can be found in [KK02] (see also the references therein).

Definition 3.3. The Lebesgue-Poisson measure λ is defined by the relation

ż

Γ0

Gpηqdλpηq “ GpHq `
8
ÿ

n“1

1

n!

ż

pRdqn

Gptx1, . . . , xnuqdx1 . . . dxn

for all G such that

}G}L1pΓ0,dλq :“

ż

Γ0

|Gpηq|dλpηq “ |GpHq| `
8
ÿ

n“1

1

n!

ż

pRdqn

|Gptx1, . . . , xnuq|dx1 . . . dxn ă 8.
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Lemma 3.4. Let L1pΓ0, dλq be the Banach space of equivalence classes of functions integrable
w.r.t. λ. Then BbspΓ0q Ă L1pΓ0, dλq is dense w.r.t. } ¨ }L1pΓ0,dλq.

Beweis. Take G P L1pΓ0, dλq and let pGpnqqn≥0 be symmetric functions defined by (3.1). Then

1

n!
}Gpnq}L1ppRdqnq “

1

n!

ż

pRdqn

|Gptx1, . . . , xnuq|dx1 . . . dxn

≤ |GpHq| `
8
ÿ

n“1

1

n!

ż

pRdqn

|Gptx1, . . . , xnuq|dx1 . . . dxn “ }G}L1pΓ0,dλq ă 8

Hence Gpnq P L1ppRdqnq and we can find a sequence G
pnq
k of bounded, symmetric functions with

compact support such that }G
pnq
k }L1ppRdqnq ≤ }Gpnq}L1ppRdqnq and

}Gpnq ´G
pnq
k }L1ppRdqnq ÝÑ 0, k Ñ8. (3.3)

Define Gk P BbspΓ0q by

Gkpηq “

#

G
pnq
k px1, . . . , xnq, η “ tx1, . . . , xnu, n ≤ k

0, η “ tx1, . . . , xnu, n ą k
.

Hence we obtain for N ≤ k

}G´Gk}L1pΓ0,dλq “

k
ÿ

n“1

1

n!
}Gpnq ´G

pnq
k }L1ppRdqnq `

8
ÿ

n“k`1

1

n!
}Gpnq}L1ppRdqnq

“

N
ÿ

n“1

1

n!
}Gpnq ´G

pnq
k }L1ppRdqnq `

k
ÿ

n“N`1

1

n!
}Gpnq ´G

pnq
k }L1ppRdqnq `

8
ÿ

n“k`1

1

n!
}Gpnq}L1ppRdqnq

≤
N
ÿ

n“1

1

n!
}Gpnq ´G

pnq
k }L1ppRdqnq ` 2

8
ÿ

n“N`1

1

n!
}Gpnq}L1ppRdqnq.

Since the second series is convergent we can make it arbitrary small by taking N and hence k
sufficiently large. For each fixed N the first term tends by (3.3) to zero.

The Lebesgue-Poisson measure satisfies the following important integration by parts formula.

Theorem 3.5. Let G : Γ0 ˆ Γ0 ˆ Γ0 ÝÑ R be measurable. Then
ż

Γ0

ÿ

ξĂη

Gpξ, ηzξ, ηqdλpηq “

ż

Γ0

ż

Γ0

Gpξ, η, η Y ξqdλpξqdλpηq (3.4)

whenever one side of the equality is finite for |G|.
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Beweis. Let G ≥ 0, then using ξ “ tx1, . . . , xnu and η “ txn`1, . . . xn`mu we get

ż

Γ0

ż

Γ0

Gpξ, η, η Y ξqdλpηqdλpξq “
8
ÿ

n“0

8
ÿ

m“0

1

n!

1

m!

ż

pRdqn

ż

pRdqm

Gptxun1 , txu
n`m
n`1 , txu

n`m
1 qdxn`m1

“

8
ÿ

n“0

1

n!

n
ÿ

m“0

ˆ

n

m

˙
ż

pRdql

Gptxum1 , txu
n
m`1, txu

n
1 qdx

n
1

“

ż

Γ0

ÿ

ξĂη

Gpξ, ηzξ, ηqdλpηq.

This shows the assertion in the case G ≥ 0. For the general case, let G “ G`´G´ with G˘ ≥ 0.
Then

ż

Γ0

ż

Γ0

G˘pξ, η, η Y ξqdλpηq “

ż

Γ0

ÿ

ξĂη

G˘pξ, ηzξ, ηqdλpηq.

In particular the left-hand side is finite if and only if the right-hand side is finite. (3.4) can be
checked by using G “ G` ´G´ and above equality.

Definition 3.6. Let µ be a probability measure on Γ with finite local moments, i.e.

ż

Γ

|γ X Λ|ndµpγq ă 8, n ≥ 0

for all compacts Λ. The correlation function kµ is defined by

ż

Γ

pKGqpγqdµpγq “

ż

Γ0

Gpηqkµpηqdλpηq, G P BbspΓ0q. (3.5)

At this point it is worth to mention that not every probability measure µ on Γ has a correla-
tion function. However, it is possible to characterize the class of probability measures for which
the correlation function exists (see [KK02]).

Lemma 3.7. Let µ be with finite local moments and suppose that its correlation function kµ
exists. Then

(a) kµ is uniquely determined by relation (3.5).

(b) kµpHq “ 1 and kµ ≥ 0.

(c) kµ satisfies the integrability condition

ż

Λn

kµptx1, . . . , xnuqdx1 . . . dxn ă 8, @n ≥ 1

and all compacts Λ.
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Beweis. (a) Suppose that there exist two functions kµ, hµ with property (3.5). Then

ż

Γ0

Gpηqkµpηqdλpηq “

ż

Γ0

Gpηqhµpηqdλpηq, @G P BbspΓ0q.

Since BbspΓ0q is dense in L1pΓ0, dλq this equality holds by approximation for all G P L1pΓ0, dλq
which proves the assertion.
(b) For each G P BbspΓ0q with G ≥ 0 we have by (3.5)

0 ≤
ż

Γ

pKGqpγqdµpγq “

ż

Γ0

Gpηqkµpηqdλpηq.

This equality extends by standard density arguments to all 0 ≤ G P L1pΓ0, dλq. Taking Gpηq “
0|η| gives with KGpγq “ 1

kµpHq “

ż

Γ0

0|η|kµpηqdλpηq “ µpΓq “ 1.

(c) We have

ż

Γ

|γ X Λ|ndµpγq “

ż

Γ

˜

ÿ

xPγ

1Λpxq

¸n

dµpγq “

ż

Γ

ÿ

x1,...,xnPγ

1Λpx1q ¨ ¨ ¨1Λpxnqdµpγq

≥
ż

Γ

ÿ

tx1,...,xnuĂγ

1Λpx1q ¨ ¨ ¨1Λpxnqdµpγq “

ż

pRdqn

1Λpx1q ¨ ¨ ¨1Λpxnqkµptx1, . . . , xnuqdx1 . . . dxn

“

ż

Λn

kµptx1, . . . , xnuqdx1 . . . dxn.

Exercise 4. Let µ be a probability measure on Γ such that its correlation kµ exists and satisfies

kµpηq ≤ AC |η|, η P Γ0 (3.6)

for some constants A,C ą 0. Prove that
ş

Γ e
α|γXΛ|dµpγq is finite for any compact Λ and α P R.

Theorem 3.8. Let µ be a probability measure with finite local moments and suppose that
its correlation function exists. Then K can be extended to a bounded linear operator K :
L1pΓ0, kµdλq ÝÑ L1pΓ, dµq with

}KG}L1pΓ,dµq ≤ }K|G|}L1pΓ,dµq ≤ }G}L1pΓ0,dλq.

Moreover, (3.2) holds µ-a.e. for any G P L1pΓ0, dλq where the series is absolutely convergent.

This lemma can be used to prove the following.
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Exercise 5. Suppose that the birth-and-death rates d, b satisfy (A) and assume that there exists
C ą 0 such that

8
ÿ

n“1

Cn

n!

ż

pRdqn

p|Dnpx; y1, . . . , ynq| ` |Bnpx; y1, . . . , ynq|q dy1 . . . dyn ă 8, x P Rd.

Show that
ż

Γ

pdpx, γq ` bpx, γqq dµpγq ă 8, x P Rd

holds for all µ such that its correlation function exists and satisfies (3.6).

Let us describe below one example. Let ρ ≥ 0 be a locally integrable function on Rd. The
Poisson measure πρ on Γ is the unique probability measure such that

πρ ptγ P Γ | |γ X Λ| “ nuq “
1

n!

¨

˝

ż

Λ

ρpxqdx

˛

‚

n

exp

¨

˝´

ż

Λ

ρpxqdx

˛

‚

holds for all n ≥ 0 and all compacts Λ Ă Rd. At this point one should prove that such a measure
exists and is uniquely determined (see [AKR98]). Moreover, one can show that

ż

Γ

ź

xPγ

p1` gpxqq dπρpγq “ 1`
8
ÿ

n“1

1

n!

¨

˝

ż

Rd

gpxqρpxqdx

˛

‚

n

“

ż

Γ0

ź

xPη

gpxq
ź

xPη

ρpxqdλpηq

and hence the correlation function for πρ is given by kπρpηq “
ś

xPη
ρpxq.

Exercise 6. Show that for each compact Λ Ă Rd

πρptγ P Γ | |γ X Λ| ą 0uq “ 1´ exp

¨

˝´

ż

Λ

ρpxqdx

˛

‚.

Exercise 7. Suppose that ρ is not integrable. Prove that Γ0 P BpΓq and show that πρpΓ0q “ 0.

4 Free cell-proliferation

In this section we describe a model for the proliferation of cells. It is assumed that each cell
has an exponential distributed lifetime with parameter m ą 0. Moreover, each cell has another
exponential distributed time, the so-called proliferation time, with parameter λ ą 0. The cor-
responding elementary event is the splitting of a cell at position x P γ into two new cells. The
position of the new cells is determined by the probability distribution

apx´ y1, x´ y2qdy1dy2

12



and a ≥ 0 is assumed to be symmetric in both variable and satisfies apx1, x2q “ apx2, x1q. The
Markov generator is assumed to be given by

pLF qpγq “ m
ÿ

xPγ

pF pγzxq ´ F pγqq

` λ
ÿ

xPγ

ż

Rd

ż

Rd

apx´ y1, x´ y2qpF pγzxY y1 Y y2q ´ F pγqqdy1dy2

Note that due to the absence of interactions particles corresponding to this Markov dynamics
evolve independently of each other. Additional details on this model, but also more general
models, can be found in [FFH`15].

4.1 The backward Kolmogorov equation

Our aim is to study the backward Kolmogorov equation. For this purpose we follow the general
approach described in [KKM08]. We seek for a solution to (2.8) of the form

Ftpγq “ pKGtqpγq “
ÿ

ηŤγ

Gtpηq.

Differentiating this equation (formally) gives

d

dt
KGt “ LKGt “ KK´1LKGt

and hence Gt should satisfy the Cauchy problem

dGt
dt

“ pLGt, Gt|t“0 “ G0, (4.1)

where pL “ K´1LK, i.e. LK “ KpL. In view of Theorem 3.8 and Exercise 5 it is reasonable to
seek for solutions in the space of integrable functions.

Lemma 4.1. Let pL :“ K´1LK be defined on BbspΓ0q. Then pL “ pL0 ` pL1 is given by

ppL0Gqpηq “ ´pm´ λq|η|Gpηq ` 2λ
ÿ

xPη

ż

Rd

bpx´ yq pGpηzxY yq ´Gpηqq dy (4.2)

and

ppL1Gqpηq “ λ
ÿ

xPη

ż

Rd

ż

Rd

apx´ y1, x´ y2qGpηzxY y1 Y y2qdy1dy2. (4.3)

Here b ≥ 0 describes the effective proliferation and is given by bpxq “
ş

Rd apx, yqdy.

13



Beweis. Using the K´transform we obtain for x P γ

pKGqpγzxq ´ pKGqpγq “ ´
ÿ

ηŤγzx

Gpη Y xq

and therefore for the first part

m
ÿ

xPγ

ppKGqpγzxq ´ pKGqpγqq “ ´m
ÿ

xPγ

ÿ

ηŤγzx

Gpη Y xq

“ ´m
ÿ

ηŤγ

ÿ

xPη

Gpηq “ ´mKp| ¨ |Gqpγq,

where we have used the combinatorial relation

ÿ

xPγ

ÿ

ηŤγzx

Hpx, η Y xq “
ÿ

ηŤγ

ÿ

xPη

Hpx, ηq.

For the cell-division we first note that for x P γ and y1, y1 R γ

pKGqpγzxY y1 Y y1q ´ pKGqpγq

“
ÿ

ηŤγzx

pGpη Y y1q `Gpη Y y2q `Gpη Y y1 Y y2q ´Gpη Y xqq .

Therefore the birth-part is given by

ÿ

xPη

ż

Rd

ż

Rd

apx´ y1, x´ y2q pGpηzxY y1q `GpηzxY y2q `GpηzxY y1 Y y2q ´Gpηqq dy1dy2.

In the first two terms of the second part the integration over y1 and y2 respectively can be
carried out, which gives together with the substitution y1, y2 Ñ y

λ
ÿ

xPη

ż

Rd

ż

Rd

apx´ y1, x´ y2q pGpηzxY y1q `GpηzxY y2qq dy1dy2

“ λ
ÿ

xPη

ż

Rd

bpx´ yqGpηzxY yqdy.

Altogether we obtain formulas (4.2) and (4.3).

Our aim is to prove that the Cauchy problem (4.1) is well-posed in a suitable chosen Banach
space. The choice of the Banach space, in general, depends on the particular model one has in
mind. In our case it is reasonable to use the Banach space LC of equivalence classes of functions
with finite norm

}G}LC “

ż

Γ0

|Gpηq||η|!2C |η|dλpηq “ |Gp0q| `
8
ÿ

n“1

Cnn!

ż

pRdqn

|Gpnqpx1, . . . , xnq|dx1 . . . dxn.
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Theorem 4.2. Suppose that m ≤ λ and

κ :“ sup
y1,y2PRd

ż

Rd

apx´ y1, x´ y2qdx ă 8. (4.4)

Then for any C ą 0 the operator ppL,BbspΓ0qq is closable on LC and its closure ppL,DCppLqq
satisfies the following assertions:

(i) ppL,DCppLqq is given by the same formulas as above with domain

DCppLq “ tG P Lα | }pL0G}LC ă 8u. (4.5)

(ii) ppL,DCppLqq is the generator of a strongly continuous, positivity preserving semigroup pTCptq
such that

} pTCptqG}LC ≤ e
κλ
C
t}G}LC , t ≥ 0. (4.6)

Beweis. First observe that pLV satisfies

ppL0Gq
pnq “ pL

pnq
0 Gpnq, n P N, G “ pGpnqq8n“0.

where we have pL
pnq
0 “ An `Bn for n P N and

pAnG
pnqqpx1, . . . , xnq “ ´pm´ λqnG

pnqpx1, . . . , xnq

pBnGq
pnqpx1, . . . , xnq “ 2λ

n
ÿ

k“1

ż

Rd

bpxk ´ yq
´

Gpnqpx1, . . . , x̂k, y, . . . , xnq ´G
pnqpx1, . . . , xnq

¯

dy.

Here x̂k means that integration over the variable xk should be omitted.

Step 1. The operator pL
pnq
0 is bounded on L1ppRdqnq and pet

pL
pnq
0 qt≥0 is a positive semigroup with

}et
pL
pnq
0 Gpnq}L1ppRdqnq ≤ epλ´mqn}Gpnq}L1ppRdqnq, n ≥ 0, t ≥ 0. (4.7)

First, an easy computation shows that

}BnG
pnq}L1ppRdqnq ≤ 4λn, }AnG

pnq}L1ppRdqnq “ n|m´ λ|}Gpnq}L1ppRdqnq

and hence pL
pnq
0 is bounded on L1ppRdqnq. Since An and Bn commute ( AnBn “ BnAn ) we

conclude et
pL
pnq
0 “ etAnetBn “ etBnetAn where these exponentials are defined by their Taylor

series. By etAnGpnq “ e´pm´λqntGpnq this semigroup preserves positivity. The second semigroup
etBn perserves positivity since it describes the transition probabilities of a Random walk in
continuous time on Rd. Alternatively one could also consider another decomposition of Bn,
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argue as for An and prove the assertion directly. It remains to prove that et
pL
pnq
0 satisfies (4.7).

Take G P L1pΓ0, dλq with G ≥ 0. Then

d

dt
}etDnGpnq}L1ppRdqnq “

d

dt

ż

pRdq

etDnGpnqdx1 . . . dxn “

ż

pRdqn

Dne
tDnGpnqdx1 . . . dxn

“ pλ´mqn

ż

pRdqn

Gpnqdx1 . . . dxn “ pλ´mqn}G
pnq}L1ppRdqnq

and hence (4.7) holds with equality. In the general case decompose Gpnq into its positive and
negative parts.

Step 2. Let et
pL0G :“ pet

pL
pnq
0 Gpnqq8n“0 be defined on LC . Then pet

pL0qt≥0 is a strongly continuous,

positive semigroup of contractions on LC . Moreover, its generator ppL0, DCppL0qq is given by

DCppL0q “

#

G P LC |
8
ÿ

n“1

Cnn!}pL
pnq
0 Gpnq}L1ppRdqnq ă 8

+

with pL0G “ ppL
pnq
0 Gpnqq8n“0. Finally BbspΓ0q is a core for this generator. The proof of this step is

not difficult, but long. It is left as an exercise for the reader.
Step 3. The operator pL1 is bounded on LC .
Take G P LC , then we apply (3.4) three times to deduce

}pL1G}LC “ Cλ

ż

Γ0

ż

pRdq3

apx´ y1, x´ y2q|Gpη Y y1 Y y1q|C
|η|p|η| ` 1q!2dxdy1dy2dλpηq

“
λ

C

ż

Γ0

|Gpηq|
1

|η|2

ÿ

y1Pη

ÿ

y2Pηzy1

ż

Rd

apx´ y1, x´ y2qdxC
|η||η|!2dλpηq ≤ κλ

C
}G}LC .

Step 4. In this step we now prove the assertions. First using perturbation theory for bounded
operators (see [EN00]) we immediately see that pL “ pL0` pL1 with domain (4.5) is the generator
of a strongly continuous semigroup pTCptq on LC The Trotter-product formula gives

pTCptqG “ lim
nÑ8

´

e
t
n
pL0e

t
n
pL1

¯n
G, t ≥ 0, G P LC

and hence (4.6) holds. Since pL1 preserves positivity, so does e
t
n
pL1 and hence also pTCptq preserves

positivity. It remains to show that BbspΓ0q is a core for the generator. This is left to the reader.

As a consequence, the general theory of strongly continuous semigroups (see [EN00]) shows
that

dGt
dt

“ pLGt, Gt|t“0 “ G0

has for each G0 P DCppLq the unique classical solution pTCptqG0 in LC .
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4.2 The evolution of correlation functions

In this section we want to study (2.7) in terms of correlation functions. Suppose that we have
given a solution pµtqt≥0 to (2.7) such that its associated sequence of correlation functions pktqt≥0

exists. By (2.7) together with the definition of pL and the K-transform we get

ż

Γ0

Gpηqktpηqdλpηq “

ż

Γ0

Gpηqktpηqdλpηq `

t
ż

0

ż

Γ0

ppLGqpηqkspηqdλpηqds

“

ż

Γ0

Gpηqktpηqdλpηq `

t
ż

0

ż

Γ0

GpηqpL∆ksqpηqdλpηqds.

where the operator L∆ is adjoint to pL defined by the relation

ż

Γ0

ppLGqpηqkpηqdλpηq “

ż

Γ0

GpηqpL∆kqpηqdλpηq, G P BbspΓ0q

and k P KC “ pLCq˚. The latter space can be identified with the Banach space with norm

}k}KC “ ess sup
ηPΓ0

|kpηq|

|η|!2C |η|
.

Above equation is a weak form of the Cauchy problem

dkt
dt
“ L∆kt, kt|t“0 “ k0. (4.8)

Its solutions describe the evolution of correlation functions and therefore determine a solution
to (2.7). It is an Markov analogue of the BBGKY-hierarchy known from physics.

Lemma 4.3. For k : Γ0 ÝÑ R such that |kpηq| ≤ |η|!2C |η| for some constant C ą 0 we have
L∆ “ L∆

0 ` L
∆
1 , where L∆

0 is given by the same expression as pL0 and L∆
1 by

pL∆
1 kqpηq “ λ

ÿ

y1Pη

ÿ

y2Pηzy1

ż

Rd

apx´ y1, x´ y2qkpη Y xzy1zy2qdx. (4.9)

Beweis. The negative multiplication part will not change and for the second part we get

λ

ż

Γ0

ÿ

xPη

ż

Rd

bpx´ yqGpηzxY yqdykpηqdλpηq “ λ

ż

Γ0

ż

Rd

ż

Rd

bpx´ yqGpη Y yqkpη Y xqdydxdλpηq

“ λ

ż

Γ0

ÿ

yPη

ż

Rd

bpx´ yqkpη Y xzyqdxGpηqdλpηq.
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Finally
ż

Γ0

ppL1Gqpηqkpηqdλpηq

“ λ

ż

Γ0

ÿ

xPη

ż

Rd

ż

Rd

apx´ y1, x´ y2qGpηzxY y1 Y y2qdy1dy2kpηqdλpηq

“ λ

ż

Γ0

ż

Rd

ż

Rd

ż

Rd

apx´ y1, x´ y2qGpη Y y1 Y y2qkpη Y xqdxdy1dy2dλpηq

“ λ

ż

Γ0

ÿ

y1Pη

ÿ

y2Pηzy1

ż

Rd

apx´ y1, x´ y2qkpη Y xzy1zy2qdxGpηqdλpηq

proves the assertion.

The following is an immediate consequence of the general semigroup theory. A refined uni-
queness statement follows from the general results in [Lem10].

Corollary 4.4. Suppose that λ ≤ m and (4.4) holds. Then for each k0 P KC there exists a
unique solution to the weak formulation of (4.8). This solution is given by pTCptq

˚k0.

However, it is possible to solve this equation component-wise under less restrictive assump-
tions. First observe that the components of pL0 “ L∆

0 are also bounded on L8ppRdqnq for

any n ≥ 0. Let k0 “ pk
pnq
0 q8n“0 be non-negative and measurable such that k

pnq
0 P L8ppRdqnq,

then k
pnq
t :“ etL

∆
0 kpnq “ epλ´mqtnetBnkpnq preserves again positivity. Moreover it is the unique

component-wise solution to
Bkt
Bt
“ L∆

0 kt, kt|t“0 “ k0.

Denote by C∆
n the operator given by (4.9) taking functions from n variables to functions with

n` 1 variables, i.e.

pC∆
n`1k

pnqqpx1, . . . , xn`1q “ λ
n`1
ÿ

k“1

n`1
ÿ

j“1
j‰k

ż

Rd

apx´ xk, x´ xjqk
pnqpx1, . . . , x̂k, x̂j , x, . . . , xn`1qdx.

In view of etL
∆
0 k
pnq
0 “ epλ´mqntetBntkpnq the solution to (4.8) is given by

k
pn`1q
t “ e´pm´λqpn`1qtetBn`1k

pn`1q
0 `

t
ż

0

e´pm´λqpn`1qpt´sqept´sqBn`1C∆
n`1k

pnq
s ds. (4.10)

The next statement establishes asymptotic clustering for the evolution of correlation functions
constructed above.

Theorem 4.5. For each k0 ≥ 0 measurable, such that k
pnq
0 P L8ppRdqnq, there exist a unique

solution kt ≥ 0, given recursively by formula (4.10). Moreover, this solution has the following
properties:
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(a) Suppose that κ (given by (4.4)) is finite, then for each initial condition satisfying k0pηq ≤
|η|!C |η| for some constant C ą 0, this solution obeys the bound

ktpηq ≤ |η|!pC ` tq|η|p1` θq|η|θptq|η|e´pm´λq|η|t

with θptq “ maxt1, λ, λepm´λqtu.

(b) Suppose that there exists δ ą 0 such that apx, yq ≥ α ą 0 for some α ą 0 and all |x|, |y| ≤ δ.
Then for each k0pηq “ C |η| the solution kt satisfies for any η P Γ0 with

@x, y P η, x ‰ y : |x´ y| ă
δ

2

the estimate

ktpηq ≥ β|η|e´pm´λq|η|t|η|! t ≥ 1, (4.11)

where β “ mintC, |Bδ|λατu with τ “

#

1´e´pλ´mq

λ´m , λ ą m

1 , λ ≤ m
and |Bδ| is the Lebesgue volu-

me of the ball Bδ of radius δ.

(c) Suppose the that apx, yq ≥ α ą 0 for |x| ≤ δ and y P Rd. Then for each k0pηq “ C |η| the
solution satisfies (4.11) for all η P Γ0.

Beweis. For the bound from above we proceed by induction on the number of cells |η|. The first
correlation function is given by

k
p1q
t “ e´pm´λqtetB1k

p1q
0

and hence by positivity of petB1qt≥0 and etB1C “ C

k
p1q
t ≤ e´pm´λqtC ≤ pC ` tqp1` κqθptqe´pm´λqt.

For nÑ n` 1 we get with |η| “ n` 1

k
pn`1q
t ≤ e´pm´λqpn`1qtpn` 1q!Cn`1 `

t
ż

0

e´pm´λqpn`1qpt´sqept´sqBn`1C∆
n`1k

pnq
s ds

≤ e´pm´λqpn`1qtpn` 1q!Cn`1

` p1` κqn`1pn` 1q!λn

t
ż

0

e´pm´λqpn`1qpt´sqpC ` sqnθpsqne´pm´λqnsds

≤ e´pm´λqpn`1qtpn` 1q!Cn`1

` pn` 1q!θptqn`1p1` κqn`1
`

pC ` tqn`1 ´ Cn`1
˘

e´pm´λqpn`1qt

≤ pn` 1q!pC ` tqn`1p1` κqn`1θptqn`1e´pm´λqpn`1qt.
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Here we used the fact that for s ≤ t we have θpsq ≤ θptq. For the second part let k
pnq
0 “ Cn, then

etBnk0 “ Cn and therefore k
p1q
t “ e´pm´λqtC ≥ βe´pm´λqt. For nÑ n` 1 and t ≥ 1 we obtain

k
pn`1q
t ≥ e´pm´λqpn`1qtCn`1 ` |Bδ|λαβ

n

t
ż

0

e´pm´λqpn`1qpt´sqpn` 1qne´pm´λqnsn!ds

≥ e´pm´λqpn`1qt

t
ż

0

epm´λqsds ¨ pn` 1q!|Bδ|λαβ
n

≥ e´pm´λqpn`1qtβn`1pn` 1q!

where we have used for λ ą m
t
ż

0

e´pλ´mqsds “
1´ e´pλ´mqt

λ´m
≥ 1´ e´pλ´mq

λ´m
, t ≥ 1

and for λ ≤ m
t
ż

0

e´pλ´mqsds ≥ t ≥ 1.

Above estimates show that if the probability distribution a has no hard core, i.e. ap0q ą 0 for
continuous distributions, then the system will consist of clusters. Appearance of such clusters is
caused by properties of the operator L∆

1 . The part L∆
1 contains information about asymptotic

behaviour, speed of propagation etc., whereas L∆
1 contains information about correlations of

the system. Assume for simplicity that in the cell-division the position of the new cells are
independent of each other. Then we may write apx, yq “ cpxqcpyq for some symmetric function
0 ≤ c P L1pRdq normalized to 1. If for example c is continuous and non-vanishing, then previous
assumptions are satisfied and we get the bound

βnn!e´pm´λqnt ≤ kpnqt .

The same results have been shown in [KKP08] for the case apx, yq “ cpxqδpyq, where each cell
creates a new cell and its location is described by the kernel c. In contrast to this model, the
old cell will not die. Clearly such models should have the same qualitative properties.

Open problem: Is it possible to use the ideas developed in [KKP08] to prove that this process
has infinitely many invariant measures, characterized as the solutions to the stationary equation

L∆kinv “ 0, kinvpHq “ 1, kinvptxuq “ ρ P R.

Moreover, does ergodicity holds in the sense that
ż

Γ0

Gpηqktpηqdλpηq ÝÑ

ż

Γ0

Gpηqkinvpηqdλpηq, tÑ8

for all G P BbspΓ0q? If yes, can this technique be extended to more complicated models?
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models of tumour development and related mesoscopic equations. Inter. Stud. Comp. Sys., 7:5–85,
2015.

21



[FMS14] E. A. Feinberg, M. Mandava, and A. N. Shiryaev. On solutions of Kolmogorov’s equations for nonho-
mogeneous jump Markov processes. J. Math. Anal. Appl., 411(1):261–270, 2014.

[Fri16] M. Friesen. Non-autonomous interacting particle systems in continuum. Methods of functional analysis
and topology, 22(3):1–36, 2016.

[GK06] N. L. Garcia and T. G. Kurtz. Spatial birth and death processes as solutions of stochastic equations.
ALEA Lat. Am. J. Probab. Math. Stat., 1:281–303, 2006.

[HP74] E. Hille and R. S. Phillips. Functional analysis and semi-groups. American Mathematical Society,
Providence, R. I., 1974. Third printing of the revised edition of 1957, American Mathematical Society
Colloquium Publications, Vol. XXXI.

[Kat54] T. Kato. On the semi-groups generated by Kolmogoroff’s differential equations. J. Math. Soc. Japan,
6:1–15, 1954.

[KK02] Y. Kondratiev and T. Kuna. Harmonic analysis on configuration space. I. General theory. Infin.
Dimens. Anal. Quantum Probab. Relat. Top., 5(2):201–233, 2002.

[KK06] Y. Kondratiev and O. Kutoviy. On the metrical properties of the configuration space. Math. Nachr.,
279(7):774–783, 2006.

[KK16] Y. Kondratiev and Y. Kozitsky. The evolution of states in a spatial population model. J. Dyn. Diff.
Equat., 28(1):1–39, 2016.

[KKM08] Y. Kondratiev, O. Kutoviy, and R. Minlos. On non-equilibrium stochastic dynamics for interacting
particle systems in continuum. J. Funct. Anal., 255(1):200–227, 2008.

[KKP08] Y. Kondratiev, O. Kutoviy, and S. Pirogov. Correlation functions and invariant measures in continuous
contact model. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 11(2):231–258, 2008.

[KM66] M. Kimura and T. Maruyama. The mutational load with epistatic gene interaction. Genetics, 54:1337–
1351, 1966.

[Kol06] V. N. Kolokoltsov. Kinetic equations for the pure jump models of k-nary interacting particle systems.
Markov Process. Related Fields, 12(1):95–138, 2006.

[KS06] Y. Kondratiev and A. Skorokhod. On contact processes in continuum. Infin. Dimens. Anal. Quantum
Probab. Relat. Top., 9(2):187–198, 2006.

[Lem10] L. Lemle. Existence and uniqueness for C0-semigroups on the dual of a Banach space. Carpathian J.
Math., 26(1):67–76, 2010.

[Lig05] T. M. Liggett. Interacting particle systems. Classics in Mathematics. Springer-Verlag, Berlin, 2005.
Reprint of the 1985 original.

[Neu01] C. Neuhauser. Mathematical challenges in spatial ecology. Notices Amer. Math. Soc., 48(11):1304–
1314, 2001.

[SEW05] D. Steinsaltz, S. N. Evans, and K. W. Wachter. A generalized model of mutation-selection balance
with applications to aging. Adv. in Appl. Math., 35(1):16–33, 2005.

[TV06] H. R. Thieme and J. Voigt. Stochastic semigroups: their construction by perturbation and appro-
ximation. In Positivity IV—theory and applications, pages 135–146. Tech. Univ. Dresden, Dresden,
2006.

22


	Introduction
	Spatial birth-and-death processes
	The configuration space
	The birth-and-death rates
	The Markov operator
	The Markov dynamics

	Harmonic analysis on the configuration space
	The K-transform
	The correlation functions

	Free cell-proliferation
	The backward Kolmogorov equation
	The evolution of correlation functions


