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1 Introduction

The theory of interacting particle systems (= IPS) is a fast growing area in modern probability
and infinite dimensional analysis with various applications in, e.g., mathematical physics, theo-
retical biology, ecology, social sciences and economy. The aim is to describe the time evolution of
a huge collection of interacting entities. Such entities are called (microscopic) particles and are
considered, depending on the particular choice of model, as molecules, cells, plants or animals,
humans and agents of a market. The collection of all particles, which is typically of order at
least 10* — 1023, is called microscopic state. Each particle from this state can, in principle, be
described by a physical /ecological /biological mechanism. A detailed understanding of such me-
chanism yields the possibility to describe the time evolution of the microscopic state by solutions
to certain systems of equations. Nevertheless, the complex structure of each particle makes it
practically impossible to determine all parameters involved. Moreover, due to the huge number
of particles it is hopeless to solve or even provide reasonable simulations for such large systems
of equations. As a simplification each particle is therefore modelled as a random process. The
parameters of such processes should be chosen in such a way that they fit with the experimen-
tal data. Moreover, the huge number of particles is described by statistical properties such as
expectations, correlations and particle densities. A mathematical realization of this ideas leads,
in the simplest case, to the description of a microscopic state in terms of a Markov process.

In this lecture notes we restrict our attention to IPS where particles may die or create
new particles due to random influences. Models of this type are the so-called birth-and-death
processes. Classical birth-and-death dynamics are described by a system of ordinary differen-
tial equations, also known as Kolmogorov’s differential equations, and are usually studied by
semigroup methods on (weighted) spaces of summable real-valued sequences, cf. Feller, Kato
[Kat54, [Fel68, [Fel71l, HP74]. More recent attempts study such equations on the spaces (P for
p € [1,0), see Arlotti, Banasiak [BAOG] and others [BLMO0G6, [TV06]. All these models have in
common that they do not include the positions of the described particles. However, many mo-
dels from applications are intrinsically based on the positions of particles described (see e.g. the
BDLP-model [BP97, BP99, [DLO0, [DLO5| but also [NeuO1l BCEF 14, [KM66, SEW05, FFHT15]).

The simplest possibility to include spatial structure is to assign to each particle a fixed site
on a graph (e.g. from the lattice Z?). This are the so-called lattice models. For such models a
rigorous study by semigroup methods is adequate and a detailed presentation can be found in
the classical book of Liggett [Lig05] and references therein. Several models, such as the BDLP
model, require that the positions of the particles are not a priori fixed. This means that Z¢
should be replaced by a continuous location space, e.g. R%.

Birth-and-death processes in the continuum share several properties with their lattice analo-
gues, but also include numerous unexpected features and require essentially different techniques
for their mathematical treatment. Taking into account that they describe real-world particles
it leads to the natural assumption that all particles are indistinguishable and any two particles
cannot occupy the same position in the location space, say for simplicity R%. It is commonly
used to model such microscopic states v as linear combination of point-masses d,, where z € R?
is the position of a particle in the system. Hence we may write

v = Z(Smk.

k>1
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Here we encounter two different cases which have to be treated by different techniques.
e Finite population if y(R%) < o
e Infinite population if y(RY) = co.

The Markov dynamics corresponding to finite populations can be analysed by a measure-valued
generalization of Kolmogorov’s differential equations. This equations have been first analysed by
Feller [Fel40] and have been afterwards further investigated in the next 60 years, cf. [FMS14] and
many others. A summary with applications to interacting particle systems is provided in the book
of Chen [Che04]. More recent results in this direction can be found in [EW03| [Kol06, Bez15| [Fri16]
(see also the references therein).

In this lectures we focus on spatial birth-and-death processes for infinite populations. Our aim
is to provide a comprehensive introduction to the construction of the corresponding processes
and outline how particular properties can be studied. For this purpose we consider a particular
example of a spatial branching process where particles may die at constant rate and, moreover,
undergo a certain proliferation mechanism.

This lectures are organized as follows. A general description of spatial birth-and-death pro-
cesses is given in the second section. In order to realize the general approach we introduce in
section three the notion of correlation functions. Finally we apply this scheme in the last section.

2 Spatial birth-and-death processes

2.1 The configuration space

It will be convenient to identify a microscopic state v with a subset of R?, i.e. we consider the
microscopic state as a collection of positions 2 € RY. The state space (= configuration space) is,
by definition, the collection of all microscopic states . For technical reasons it is assumed to be
the space of all locally finite configurations

I={ycRY||ynK| <o forall compacts K  R%}.

Here and in the following we write |A| for the number of elements in A — R?. Note that each
~v € I' can be identified with the locally finite Radon measure ), _ d,. The configuration space
is equipped with the smallest topology such that

Fsy+— Z f(x)eR

ey

TEY

is continuous for any continuous functions f : R4 — R having compact support.
Theorem 2.1. (see [KK06]) The following assertions hold:
1. T is a Polish space.
2. T' is not locally compact.
Denote by B(I') the corresponding Borel-o-algebra. It is the smallest o-algebra such that
F'sy—|ynAleNy

is measurable for any compact A ¢ R%.



2.2 The birth-and-death rates

Particles, in the framework of spatial birth-and-death processes, may randomly disappear and
new particles may appear in the configuration . Death of a particle x € « is described by the
death rate d(z,~) > 0. Similarly, b(x,~) > 0 describes the birth rate and distribution of a new
particle 2 € R%\~y. The following are our guiding examples in this theory.

Example 2.2. Let m(xz) > 0 be bounded and ¢ > 0 be integrable. Define the relative energy of
the configuration v w.r.t. the point x by

Ey(z,7) = Y, elz —y).
yey

Note that E(x,v) is not necessarily finite for all vv. This is, e.g., the case if ¢ has compact
support. Particular examples for the death rate are:

(1) d(x,7y) = m(x) + Ep(x,7).

(ii) d(z, ) = eBo@)
Concerning the birth rates our main examples are:
(iii) b(z,~) = ze~Fe @) with z > 0.

(ZU) b(ﬂj‘,’}/) = E4p($,7)
New examples may be obtained by taking positive linear combinations of these rates.

These examples are closely related to infinite populations in the following sense. Consider
first (iii) with, for simplicity, ¢ = 0. The total birth rate is then

Jb(az,’y)dm = fzda: =, Vyel.
R4 Rd

Roughly speaking the birth mechanism creates infinitely many new particles in R? in any (ar-
bitrarily small) period of time [0, ], € > 0. These new particles would be distributed according
to a Poisson random measure with intensity measure zdz on R%.

Example (iv) has an even more sophisticated structure. Suppose that we have given only
finitely many particles at time zero, i.e. |y| < co. Then

j b, )z = Y Mas — y)de = ol 7] < o,

R4 Y Ra

i.e. only finitely many new particles may appear. As a consequence, the configuration of the birth-
and-death Markov process (see next section) will have the property |y| < oo for all moments
of time. However, if the initial particle configuration is infinite, then, by the same reasoning,
infinitely many particles will be created in any (arbitrarily small) period of time [0,¢], € > 0.
More generally, the following particular form of the birth-and-death rates is commonly used:



(A) For each n > 0 there exist measurable, symmetric functions D,,, B, : (R9)" — R

a0
A7) =Y, > Du(@iyi,....yn), (2.1)
n=0{y1,....yn}cy
o]
bz, y) =D, >, Bal@miyi,...un). (2.2)
n=0{y1,...yn}=y
Here Dy (x,y1,-..,yn) describes the interaction of a particle at position = and other particles at
positions yi,...,y,. The case n = 0 corresponds to constnat birth-and-death rates (no interac-

tions), whereas n = 1 describes the important case of pair interactions (see examples (i), (iii),
(iv)).

Exercise 1. Let g : R — R be a function. Prove that for all v € T', with |y| < o

Do) =110+ g()).

Ecy ze€ TeY

Exercise 2. Show that example (ii) satisfies condition (A) with the particular choice

(€<P(x_yk) _ 1) .

Likewise show that example (iii) satisfies condition (A) with the particular choice

fl(e-)

Note that d(x,~),b(x,~) defined in condition (A) are, in general, only well-defined for v € T’
with |y| < oo. If |y| = 00, then these sums do not need to be absolutely convergent.

s

Dn(%yb---ayn) =

x>
Il
—

Bpn(x;y1,.. ., yn) =

u:]:

Remark 2.3. One can show that

Z f (IDn(@3y1, - yn)| + | Bu(@sy, .- yn) ) Ay - .. dyn < 00, Vo e R?
(Rd)"

for some constant C > 0 implies that

j (d(z,7) + b, 7)) < o, Vo€ R
N

holds for sufficiently many probability measures p on IT'.

In order to prove this remark we will need some additional results introduced in section 3.
However, we do not want to go into details, all expressions given in the end of this section are
therefore only formal.



2.3 The Markov operator

Based on the birth-and-death rates d, b we want to study properties of a Markov process (7¢)¢>0
build by the following two elementary events:

e death of particles: v — y\x, where x € .
e birth of particles v — ~v U & where x ¢ ~.

This process should have (at least formally) the Markov generator given by the heuristic expres-
sion

ey

(LF)(7) = Y d(@\e)(F(N\z) = F(7)) + j b(z,)(F(yvwz)—F(y)de, yel. (2.3
R4

For simplicity of notation we write v\z, v U z instead of v U {x} and ~\{x}, respectively. In view
of assumption (A) this expression is well-defined for any v with |y| < oo and F' suitable chosen.
However, similarly to b and d, we cannot guarantee that such an expression is well-defined for
all v € I'. Additional restrictions on v and F' have to be made. Let us briefly describe to possible
classes of functions commonly used.

(a) Additive-type functions. Motivated by the formulas we consider functions F' of
the form
0
Fiyy=> >, G"(xy,...,20), (2.4)

n=0 {21, zn}

where G : (RH)™ — R is a sequence of compactly supported, bounded, symmetric and
measurable functions. In the case of n = 0 we identify G(?) € R with the constant function.

(b) Multiplicative type functions. Consider the particular case of functions
n
G (zy,... ) = H g(xk)
k=1

where g is continuous and has compact support. Then F' given by ([2.4) satisfies
0 n
F) =Y 2> Jlo@)=]]0+g@), (2.5)
n=0{z1,..,zn}cy k=1 zey

where we have used Exercise 1.

2.4 The Markov dynamics
Markov process and Martingale problem

The martingale problem is a mathematical formulation what is meant by saying that a stochastic
process (y¢)¢>0 on I' is a Markov process associated with the generator L. Here and below we
let D(L) be the collection of all functions either given by (2.4)) or by (12.5)), respectively.
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Definition 2.4. Let pg be a probability measure onT'. A stochastic process (y¢)t>0 on a stochastic
basis (Q, F, F,P) is said to be a solution to the martingale problem posed by L with initial
distribution ug if the following properties hold:

(i) vo has law py.
(i) For each F € D(L) the process

Fwa—Fww—f@me%,tZO (2.6)
0

is a (Ft)e>0 martingale.

The general theory on martingale problems can be found in [EK86]. Condition (ii) is equi-
valent to say that E(H) = 0 holds for

H o= | Fw) - F(r) — f (LF)(y)dr | b1 () -+ hn(,)

S

and all0 <ty,...,t, <s<t,n>1, hy,...,h, continuous and bounded. Hence it is a condition
on the finite dimensional distributions of the Markov process. Let us mention two cases where
a Markov process has been constructed.

Example 2.5. 1. Contact model, i.e. d(x,v) = m > 0 constant and

bz.y) =m+ Y at(z—y)
yey
was considered by Kondratiev, Skorokhod in [KS06]. Ezistence of a Markov process (7V¢)t>0
was shown. By construction it is localized in a proper subspace I" T, i.e. vy € I".

2. A pure probabilistic approach by stochastic differential equations has been developed by
Garcia, Kurtz [GK06]. Namely, for d(z,v) =1 and a birth intensity with

|b($‘,’}/ Y y) - b(ilj‘,’}/)| < a(xay)v T,y € ]Rd

such that a(x,y) satisfies some additional continuity condition, existence and uniqueness
has been established, and under additional conditions it was shown that this process is
ergodic. Again the construction uses deeply that the process can be localized in a proper
subspace T" < T.

Unfortunately several models from mathematical biology and ecology, see eg. [FEHT15,
KK16], are not covered by this results. Any reasonable extension of the techniques developed
in [KS06, [GKO06] is still absent. The main difficulty is related with the possibility to control the
number of particles in any bounded volume. It is worth to mention that any stochastic process
with cadlag paths, is necessarily contained in a proper subspace of I'. The general theory of
martingale problems requires that the state space is at least a locally compact Polish space.
Since it is not the case for I', one necessarily has to restrict I' onto a proper subspace. Such
sub-spaces may be obtained from proper Lyapunov functionals which, at least on the formal
level, exist for many particular models.



Fokker-Planck equation

One possible way to construct (and study) a Markov process is related to its transition proba-
bilities. Let us briefly describe how such transition probabilities can be obtained. Suppose that
we have given a solution (7;):>0 to the martingale problem with initial distribution po. Denote
by p: the law of ~, e.g. defined by the relation

B(F(v)) = [ FO)du(2), FeD(L), t=0,
I

Taking the expectations in (2.6 and using the martingale property we get

fF(v)dut(v) = f V)dpo(7y) + fJ(LF)(v)dus(v)ds, FeD(L), t=0. (2.7)
or

T r

This is the so-called Fokker-Planck equation. Any solution (u)i>0 to this equation may be
regarded as the one-dimensional distribution of a Markov process associated with L.

Remark 2.6. The transition probabilities pt(7y,-) of the Markov process (vi)i>o0 satisfy the
Fokker-Planck equation with initial distribution pig = 0.

In this lectures we will mainly focus on the Fokker-Planck equation. Due to some technical
reasons we also have also to study the (backward) Kolmogorov equation for functions

oF,
aTt — LF,, Fj|i— = Fp. (2.8)

Until now there does not exist any technique applicable for the study of this equation on spaces of
continuous functions. An alternative approach was described in [KKMO0§| and will be employed
for a particular model in the last section.

3 Harmonic analysis on the configuration space

3.1 The K-transform

In this section we want to exhibit formula (2.4). Let Ty = {n = R? | |n| < o} be the space of
finite configurations. It is equipped with the smallest o-algebra such that

F()S?]'—> |770A|€N0
is measurable for any compact A — R%.

Remark 3.1. Since I'g admits the decomposition Ty = | |;r_ OF(n) with F = {J} and F(n) =

{n € Ty | |n| = n} each function G can be identified with a sequence of symmetric functzons
G . (RN — R defined by
G{ar,. ...z}, ) =
GO (o, ) = 4 CUTL @) ozl =n (3.1)
0, else



Here we identify G with the constant function. Then

Gn) = G (zy,...,x), n={x1,...,an}.

Denote by Bys(I'g) the space of all bounded measurable functions G : I'g — R for which
there exists N € N and a compact A such that

G(n) =0, if|n]>NornnA®+# .
Using the identification G = (G(”))nzo we see that G € Bys(I'p) if and only if
e There exists N € N such that G = 0 for n > N.
e G™ is bounded, measurable and has compact support for all n > 0.
The next definition is motivated by .

Definition 3.2. The K-transform is for G € Bys(I'g) defined by
y) =2, Gn), veT. (32)
ney
Here € means that the sum runs over all finite subsets n of .

Exercise 3. Show that (KG)(v) is well-defined for any G € Bys(I'o) and any v € I'. Moreover,

prove that
(K™'F)(n) = Y (=1)"IF(¢)
£cn

satisfies K 'KG = G for any G € By,(I'g).

Hint: Use for this purpose the combinatorial relation

ZZH(Cvnan\g Z Z CTI, s ’I’]Ero.

gcndcE ¢enécn\¢

3.2 The correlation functions

Let us describe the space of probability measures on which the Fokker-Planck equation will be
solved. Additional details in this section can be found in [KK02] (see also the references therein).

Definition 3.3. The Lebesque-Poisson measure A is defined by the relation
OO 1
| cmaxm - G2 + e | otz s,
(R)n
for all G such that

Sl
Gl o oy == JIG M) 2 - f G, ) |dor ... dan < .
"= @i



Lemma 3.4. Let L'(Tg,d)\) be the Banach space of equivalence classes of functions integrable
w.r.t. \. Then Bys(T'g) = L'(Tg,d)) is dense w.r.t. || - Iz (ro,dn) -

Beweis. Take G € L'(I'g,d\) and let (G"),>0 be symmetric functions defined by (3.1). Then
1 (n) 1
EHG HLl((Rd)n) = ﬁ |G({l’1,,l’n})|d$1d$n
(Ré)™

e¢]
1
< |G Z 7’7 {.’L’l, ce ,.’L’n})‘dﬂfl .. d.ﬂ?n = HGHLl(Fo,d)\) < o0
"Ry

Hence G™ e L'((R%)") and we can find a sequence G(n) of bounded, symmetric functions with

compact support such that HG HL1 (Rayny < IG™)| 14 ((Rdyn) and
IG™ — G gayny — 0, K — o0 (3.3)
Define Gk S Bbs(ro) by

G,(Cn)(a:l,...,xn), n=Ax1,...,xn}, n<k
0, n=A{x1,...,2n}, n>k

Hence we obtain for N < k

k 0
1 n LA
16 = Guluwgan = 35 I = G quay + 2 a6l oy
n= n=k+1

k 0

n 1 n
16™ — G mam + 3 =16 G ey + D) G s gy

N
n=1 n= N+1 n=k+1
N

3‘?—‘

IN

I(cn)HLl((Rd) +2 Z *HG( I ((rayn
n= N+1

3‘»—!

Since the second series is convergent we can make it arbitrary small by taking N and hence &
sufficiently large. For each fixed N the first term tends by (3.3) to zero. O

The Lebesgue-Poisson measure satisfies the following important integration by parts formula.
Theorem 3.5. Let G :T'g x I'g x I'g —> R be measurable. Then
| ¥ cenemirnm = | [ oennoon©nn (3.4)
o £ I'o T

whenever one side of the equality is finite for |G|.



Beweis. Let G > 0, then using & = {x1,...,z,} and 7 = {Tp41,... Tntm} We get

jjkxamnugmxmwxazzfjfiji j j Gl it o)™

ToTo n=0m=0
0 1 n
SR ) f G (s L)t
n=0 m=0 (Ra)!
= G(&m\E,m)dA(n)-
Ty §cn

This shows the assertion in the case G > 0. For the general case, let G = G — G~ with G* > 0.
Then

| [e=Eennoonm = | ¥ 6*enenarm.

T'o To T £
In particular the left-hand side is finite if and only if the right-hand side is finite. (3.4]) can be
checked by using G = GT — G~ and above equality. O

Definition 3.6. Let p be a probability measure on I' with finite local moments, i.e.

f!v N A"dpu(y) <o, n=0

for all compacts A. The correlation function k, is defined by
J (KG)(y f G (), G e Bu(To). (3.5)
T

At this point it is worth to mention that not every probability measure p on I' has a correla-
tion function. However, it is possible to characterize the class of probability measures for which
the correlation function exists (see [KK02]).

Lemma 3.7. Let pn be with finite local moments and suppose that its correlation function k,
exists. Then

(a) k, is uniquely determined by relation (3.5]).
(b) ku(J) =1 and k, > 0.
(c) ku satisfies the integrability condition

fku({xl,...,a}n})dazl...dxn <o, Vn>1
A"

and all compacts A.
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Beweis. (a) Suppose that there exist two functions k,, h,, with property (3.5)). Then

JG(n)ku(n)d/\(n) _ fG<n>h#<n>dA<n>, VG € By (To).
| o

Since Bys(Ig) is dense in L'(Tg, d)\) this equality holds by approximation for all G € L*(Tg, d)\)
which proves the assertion.

(b) For each G € Bys(T'p) with G > 0 we have by (3.5)

0< [(KE)O)dut) = [ Gohumari)
r Lo
This equality extends by standard density arguments to all 0 < G € L'(I'g,d)). Taking G(n) =
01" gives with KG(y) = 1

(29 = | 07k (n)d () = w(T) = 1.

To
(c) We have
le N A["du(y) = f <Z JlA(ar)> du(y) = f DT Ta(wr) - La(en)du(y)
r o\zey I Tl Tn€Y
> J Z Ta(zy) - La(zp)du(y) = j Ia(zr) - La(xn)ku({z1, ... 2n})der .. doy
I {z1,...,zn}Cy (Rd)n
= f Eu({z, ..., zn})day ... doy.
An

O
Exercise 4. Let pu be a probability measure on I' such that its correlation k, exists and satisfies
ku(n) < ACM, e Ty (3.6)

for some constants A,C > 0. Prove that SF eaW‘A‘du(fy) is finite for any compact A and o € R.

Theorem 3.8. Let p be a probability measure with finite local moments and suppose that
its correlation function exists. Then K can be extended to a bounded linear operator K :
LY(Ty, kudX\) — LY (T, dp) with

IKG v r,an) < IKIG| 21 r,apy < 1GlLrrg,an)-
Moreover, (3.2)) holds pi-a.e. for any G € L*(To,d\) where the series is absolutely convergent.

This lemma can be used to prove the following.
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Exercise 5. Suppose that the birth-and-death rates d,b satisfy (A) and assume that there exists
C > 0 such that

2 f (1D (@591, - - - yn)| + |Bn(@s 91, - yn)) dyr - . . dyn < 0, € RY
(Rd)
Show that
| )+ b)) duta) < o, e RS
r
holds for all p such that its correlation function exists and satisfies (3.6)).
Let us describe below one example. Let p > 0 be a locally integrable function on R%. The
Poisson measure m, on I' is the unique probability measure such that

n

m (e [hraal=n)) = o | [ s@ids | e | - [ oo

A A

holds for all n > 0 and all compacts A = R%. At this point one should prove that such a measure
exists and is uniquely determined (see [AKRO8]). Moreover, one can show that

JH +g(x)) dmy(y _1+2 (J

TEY
J [To@ [Totwiir
xEN xEN

and hence the correlation function for 7, is given by kr,(n) = ] p(z).
TEN

Exercise 6. Show that for each compact A < R4

M7 el [ A Al>0) = 1-exp | - [ pla)da
A

Exercise 7. Suppose that p is not integrable. Prove that I'g € B(I') and show that m,(I'g) = 0.

4 Free cell-proliferation

In this section we describe a model for the proliferation of cells. It is assumed that each cell
has an exponential distributed lifetime with parameter m > 0. Moreover, each cell has another
exponential distributed time, the so-called proliferation time, with parameter A > 0. The cor-
responding elementary event is the splitting of a cell at position z € v into two new cells. The
position of the new cells is determined by the probability distribution

a(x — y1, T — y2)dy1dy:

12



and a > 0 is assumed to be symmetric in both variable and satisfies a(x1,z2) = a(xa,x1). The
Markov generator is assumed to be given by

=m ) (F(1\z) = F(3))

TEY

+A Z J J a(r —y1, v —y2) (F(\z U y1 U y2) — F(7))dy1dys

.Z‘E’YRd ]Rd

Note that due to the absence of interactions particles corresponding to this Markov dynamics
evolve independently of each other. Additional details on this model, but also more general
models, can be found in [FFHT15].

4.1 The backward Kolmogorov equation
Our aim is to study the backward Kolmogorov equation. For this purpose we follow the general
approach described in [KKMO0S8]. We seek for a solution to (2.8 of the form
Fy(v) = (KGy)( Z Gt(n
ncy

Differentiating this equation (formally) gives

gKGt LKG, = KK 'LKG,

and hence G should satisfy the Cauchy problem

dG, =~
Ef:LQ,Gﬁﬂ:Gm (4.1)

where L = K™'LK, i.e. LK = KL. In view of Theorem and Exercise [5] it is reasonable to
seek for solutions in the space of integrable functions.

Lemma 4.1. Let L := K~'LK be defined on Bys(Lg). Then L=1Ly+Lis given by

(Eo@)(n) = ~(m — NnlGn) +22 Y. j =) (CO\eUy) -Gy (42)
:ven
and
G0 =AY [ [ate -~ )60 oo o)y (43)
IEG’I]Rd Rd
Here b > 0 describes the effective proliferation and is given by b(x SRd a(z,y)dy.
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Beweis. Using the K —transform we obtain for x € v
(KG)(\a) = (KG)(7) = = ), Gnuz)
neEY\x
and therefore for the first part

m Y (KG)(\z) = (KG)(7)) = -m Y, >, Gnua)

TEY TEY 77C’Y\I

—m ), > Gn) = —mK(|-|G)(7),

n€y xen

where we have used the combinatorial relation

Z Z H(z,nuzx)= 2 ZH(aﬁ,n).

€Y nEvy\x n€y xzen
For the cell-division we first note that for z € v and y1,y1 ¢ v

(KG)(W\z vy vyr) — (KG)(v)

= > (Guy) +Guy) +Gnuy vye) —Glnu).
nEy\x

Therefore the birth-part is given by
D j f (@ — 41,2 — 12) (G U 1) + GNE U g2) + G\ U 1 © w2) — G(1)) dyady.
:):Ean Rd

In the first two terms of the second part the integration over y; and yo respectively can be
carried out, which gives together with the substitution y;,y2 — y

A [ [ ol = i = ) (G o) + Gl ) e

ZG’I]Rd Rd
=) f z —y)G(n\z L y)dy.
xEan
Altogether we obtain formulas and ( . O

Our aim is to prove that the Cauchy problem is well-posed in a suitable chosen Banach
space. The choice of the Banach space, in general, depends on the particular model one has in
mind. In our case it is reasonable to use the Banach space L of equivalence classes of functions
with finite norm

o0
1Gllze = J\G(n)\!n!!QC'ndk(n) =GO+ )] Cal f G (@1, )| dey . day,

n=1 (Rd)n
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Theorem 4.2. Suppose that m < X\ and

K:= sup fa(a:—yl,x—yg)d:z < 0. (4.4)

d
y1,Y2€R B

Then for any C' > 0 the operator (E,BbS(FO)) is closable on Lo and its closure (i,DC(f/))
satisfies the following assertions:

(i) (L,Dc(L)) is given by the same formulas as above with domain

De(L) = {G € La | |LoGllee < 0} (4.5)

(ii) (i, DC(IA/)) is the generator of a strongly continuous, positivity preserving semigroup fg(t)
such that

~ KA
ITe()Glee < €¥Glee, t=0. (4.6)

Beweis. First observe that f)v satisfies
(LoG)™ = LMWG™ | neN, G =(GM)~,.
where we have f/(()n) = A, + B, for ne N and
(AnG™)(z1, ... 20) = —(m — MnG™ (x1, ..., x,)

(B,G) ™ (1, ... xn) = 2A Z fb(xk ) (G(")(azl, Y x) — G (L ,acn)> dy.
k=1
R4

Here 2 means that integration over the variable zj, should be omitted.
Step 1. The operator L(()n) is bounded on L!'((R%)") and (e'*0 );>¢ is a positive semigroup with

7(n)
HetLU G HLl((Rd)n) < G(A_m)nHG(n) ”Ll((Rd)n), n>0, t>0. (4.7)
First, an easy computation shows that

| BuG™ | 11 (mayny < 420, [AnG™ |11 (mayny = nlm = MG 11 (ayn

and hence E(()n) is bounded on L'((R%)"). Since A, and B, commute ( A,B, = B,A, ) we

e tAn ,tB tBy ,tA

conclude eto” = ¢ "= e » where these exponentials are defined by their Taylor
series. By ef4n G = ¢~ (m=MntQ(n) this semigroup preserves positivity. The second semigroup
e!Br perserves positivity since it describes the transition probabilities of a Random walk in
continuous time on R?. Alternatively one could also consider another decomposition of B,

15



argue as for A, and prove the assertion directly. It remains to prove that etién) satisfies (4.7]).
Take G € LY(Ty, d)\) with G > 0. Then

%Hew"G(")HLl((M)n) =% j ePn G dgy f DpetPGMdz, . . da,
(R) (R
=(A—m)n J GMWdxy ... dxy, = () — m)nHG(n)HLI((Rd)n)
(RE)n

and hence holds with equality. In the general case decompose G(™ into its positive and
negative parts.

Step 2. Let ethoG .= (etiémG(”));’f:O be defined on L. Then (e“io)tzo is a strongly continuous,
positive semigroup of contractions on L. Moreover, its generator (io, Dc(io)) is given by

0
De(Lo) = {G eLe| Y YL G iy < oo}

n=1

with EOG = (IAL(()n)G("))%O:O. Finally Bps(I'g) is a core for this generator. The proof of this step is
not difficult, but long. It is left as an exercise for the reader.

Step 3. The operator El is bounded on L¢.

Take G € L, then we apply three times to deduce

LiGlee = | f oz — 1,7 — )G U 1 0 1) [CM(Jn) + 1) dadyr dysdA(n)

A KA
& emlns X % [ ale— e wdrCPlPaxm < 1.
To

Y1EN y2€n\y1 pa

Step 4. In this step we now prove the assertions. First using perturbation theory for bounded
operators (see [EN00]) we immediately see that L = Ly + Ly with domain is the generator
of a strongly continuous semigroup 7 c( ) on L¢ The Trotter-product formula gives

~

To(t)G = lim (eﬁioe%L)nG, t>0, Ge Lo

n—o0

and hence (4.6 holds. Since I1 preserves positivity, so does exL1 and hence also fc(t) preserves
positivity. It remains to show that Bys(Ig) is a core for the generator. This is left to the reader.
O

As a consequence, the general theory of strongly continuous semigroups (see [EN00]) shows

that i
PN
—— = LG, Gily=o = G
p” ts Gili=o 0

has for each Gy e DC(E) the unique classical solution f’c(t)Go in Lc.
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4.2 The evolution of correlation functions

In this section we want to study (2.7) in terms of correlation functions. Suppose that we have
given a solution (ut)¢>0 to (2.7) such that its associated sequence of correlation functions (k¢):>o
exists. By (2.7) together with the definition of L and the K-transform we get

JG Ver(n)dA(n fG Ve (n)dA(n +f (LG)( d\(n)ds
0

t
JG Ve (n)d(n +f G () (LA ks) (n)d(n)ds.
0

where the operator L? is adjoint to L defined by the relation
| Eeramrmare jG JEARY (), G € Byu(To)
1)

and k € Ko = (L¢o)*. The latter space can be identified with the Banach space with norm

|k(n)]
o [m|r2Cml

k| = ess sup

Above equation is a weak form of the Cauchy problem

dky
= L%k, k =k 4.
dt ty t’t 0 = hO- ( 8)

Its solutions describe the evolution of correlation functions and therefore determine a solution
to (2.7). It is an Markov analogue of the BBGKY-hierarchy known from physics.

Lemma 4.3. For k : Ty — R such that |k(n)| < |n|i2CM for some constant C' > 0 we have
LA = L@ + LIA, where L 18 given by the same expression as Lo and LA by

LAk =\ Z Z f a(z —y1,x — y2)k(n v \y1 \y2)dz. (4.9)

YIEN y2en\y1 pa
Beweis. The negative multiplication part will not change and for the second part we get

JZJ z —y)G(n\x L y)dyk(n)d\(n) = )\JJJ z —y)G(n U y)kn v z)dydzd(n)

o *TRd T'p R4 Rd

—)\JZJ z —y)k(n U z\y)dzG(n)dA(n).

I YER
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Finally

f(ilaxmk(nw(n)

o

= A f 2 J f a(z —y1, 7 — y2)G(N\x L y1 U y2)dy1dy2k(n)dA(n)

o “Rd Rd

- )‘f J f J a(x —y1, & — y2)G(n U y1 U y2)k(n U x)dxdy dy2d(n)
Fo R4 R4 R

X% ot wkr o o\ Gndrm)

Ty V1€ Y2€n\y1 ga
proves the assertion. O

The following is an immediate consequence of the general semigroup theory. A refined uni-
queness statement follows from the general results in [Lem10].

Corollary 4.4. Suppose that A < m and ( . ) holds. Then for each ko € K¢ there exists a
unique solution to the weak formulation of (4.8 . This solution is given by TC( )*ko.

However, it is possible to solve this equation component wise under less restrictive assump-
tions. First observe that the components of Ly = L5 are also bounded on L®((R%)") for
any n > 0. Let ko = (k(()n))nzo be non-negative and measurable such that k(()n) e LP((RH™),
then kgn) = el k() = eA—m)tngtBn(n) preserves again positivity. Moreover it is the unique
component-wise solution to

Ok

ot
Denote by C’nA the operator given by taking functions from n variables to functions with
n + 1 variables, i.e.

= Lgke, kili=o = ko.

n+1ln+1

(cs +1k( ))(:El,.. yTpt1) = )\Z Z J a(r — xp,x )k(")(xl,...,ik,ij,x,...,xnﬂ)d:v.

1
k=1 j#de

In view of e!L6 k(()n) = e(A=mIntetBnt:(n) the solution to (£.8) is given by

t
kgnﬂ) e~ (m=A)(nt1)t tB"“k(nH) + fe_(m_’\)(”H)(t_s)e(t_s)B"“Cﬁﬂkgn)ds. (4.10)
0

The next statement establishes asymptotic clustering for the evolution of correlation functions
constructed above.

Theorem 4.5. For each ky > 0 measurable, such that k:(()n) e LP((RH™), there exist a unique
solution ky > 0, given recursively by formula (4.10). Moreover, this solution has the following
properties:

18



(a) Suppose that k (given by (4.4)) is finite, then for each initial condition satisfying ko(n) <
]7)|!C’|’7| for some constant C' > 0, this solution obeys the bound

ku(n) < In|N(C + )11 + 6)Mg(t)le—(m=Nnlt
with O(t) = max{1, \, \e(™ =Mt}

(b) Suppose that there exists 6 > 0 such that a(x,y) > a > 0 for some o > 0 and all |x|, |y| < 4.
Then for each ko(n) = CI"l the solution k; satisfies for any n € Tg with

Ve,yen, #y: |x—y| <g
the estimate
k(1) > BMe=m=2mlt | ¢ > 1, (4.11)
loe”Oom) A>m

where 8 = min{C, |Bs|\at} with 7 = {1 A—m and |Bg| is the Lebesgue volu-
m

Y

me of the ball Bs of radius 9.

(c) Suppose the that a(z,y) > a > 0 for |z| < § and y € RY. Then for each ko(n) = CI the
solution satisfies (4.11)) for all n € T'y.

Beweis. For the bound from above we proceed by induction on the number of cells |n|. The first

correlation function is given by
kt(l) _ ef(m*)\)tetBlk(()l)

and hence by positivity of (e!P1);>o and !P1C = C
Y < om0 < (O + )1+ K)0()e MV

For n —> n+ 1 we get with |n| =n+1

t
kt(n-i-l) < ef(mf)\)(n+1)t(n + 1)|Cn+1 + fe(mA)(n+1)(ts)e(ts)Bn+1 Cr?Jrlkgn)dS
0

< ef(mf)\)(n+1)t(n+ 1)!Cn+1
t
+ (L4 r)"Hn+ 1)!)\nJe_(m_/\)("ﬂ)(t_s)(c + 5)"0(s) e (M= Nns g
0
< e—(m—)\)(n+1)t(n+ 1)!Cn+1

+ (n+ DL+ w)" T (O + )T — Ot e (mm )t
< (n+ DYC + )1 + k)L H e (MmNt
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Here we used the fact that for s < ¢ we have 6(s) < 6(t). For the second part let kén) = C", then
etBrky = C™ and therefore k,gl) = e~ (m=Ntcy > ﬂe_(m_)‘)t. For n - n+1 and t > 1 we obtain
t
B R (as ouss I |Bé‘)\aﬁnfe(m)\)(n+1)(ts)(n+ e~ m=Nnsp1 g

0
t

> = (m-N(n+ Dy f emN3ds . (n + 1)!|Bs| "

0
> 6—(m—)\)(n+1)tﬁn+1(n_’_ 1)|

where we have used for A > m
t

1 — g~ (A—m)t 1 — e~ (A—m)
Je s A—m —  A=-m =

0
and for A < m

t
Je(/\m)sds >t>1.
0

O]

Above estimates show that if the probability distribution a has no hard core, i.e. a(0) > 0 for
continuous distributions, then the system will consist of clusters. Appearance of such clusters is
caused by properties of the operator LlA. The part LlA contains information about asymptotic
behaviour, speed of propagation etc., whereas LlA contains information about correlations of
the system. Assume for simplicity that in the cell-division the position of the new cells are
independent of each other. Then we may write a(z,y) = ¢(x)c(y) for some symmetric function
0 < ce L'(R%) normalized to 1. If for example c is continuous and non-vanishing, then previous
assumptions are satisfied and we get the bound

Bnn!e—(m—/\)nt < k’gn) .

The same results have been shown in [KKPO0§| for the case a(x,y) = ¢(z)d(y), where each cell
creates a new cell and its location is described by the kernel c. In contrast to this model, the
old cell will not die. Clearly such models should have the same qualitative properties.

Open problem: Is it possible to use the ideas developed in [KKPO8] to prove that this process
has infinitely many invariant measures, characterized as the solutions to the stationary equation

L%y = 0, kiny(D) =1, kiny({z}) = peR.

Moreover, does ergodicity holds in the sense that

for all G € Bys(I'o)? If yes, can this technique be extended to more complicated models?
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