Maß und Integrationstheorie

Probeklausur II

Aufgabe 1 (1 + 1 + 3 Punkte)

Sei Ω eine nicht leere Menge.

- (a) Geben Sie die Definition von einem Dynkin System über Ω .
- (b) Geben Sie die Definition von einem Ring über Ω .
- (c) Sei \mathcal{D} ein Dynkin System über Ω mit

$$A, B \in \mathcal{D} \Longrightarrow A \cap B \in \mathcal{D}$$

Zeigen Sie, dass \mathcal{D} eine σ -Algebra ist.

Aufgabe 2 (2 + 3 + 2 Punkte)

(a) Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum, (Ω', \mathcal{A}') ein messbarer Raum und $\varphi : \Omega \longrightarrow \Omega'$ sei \mathcal{A}/\mathcal{A}' -messbar. Zeigen Sie dass

$$(\varphi_*\mu)(A') = \mu(\varphi^{-1}(A')), \quad A' \in \mathcal{A}'$$

ein Maß auf (Ω, \mathcal{A}') definiert.

(b) Zeigen Sie, dass für jede \mathcal{A}' -messbare Funktion $f:\Omega'\longrightarrow\mathbb{R}$ gilt

$$\int_{\Omega'} f(\omega')(\varphi_*\mu)(d\omega) = \int_{\Omega} f(\varphi(\omega))\mu(d\omega).$$

(c) Sei $n \ge 1, p \in (0, 1)$ sowie

$$\mu = \sum_{m=0}^{n} \binom{n}{m} p^m (1-p)^{n-m} \delta_m.$$

Berechnen Sie $\mu(\mathbb{N} \cup \{0\})$ sowie $\int_{\mathbb{N} \cup \{0\}} k \mu(dk)$.

Aufgabe 3 (2 + 2 + 3 + 2 Punkte)

(a) Definieren Sie eine Nullmenge. Definieren Sie den Begriff eines vollständigen Maßraumes.

(b) Sei m_2 des Lebesgue Maß auf \mathbb{R}^2 . Zeigen Sie

$$m_2(\{(x,y) \in \mathbb{R}^2 \mid y=0, \ x \in [2018,\infty)\}) = 0.$$

(c) Sei (Ω, \mathcal{A}) ein messbarer Raum und $f: \Omega \longrightarrow [0, \infty]$ messbar. Zeigen Sie

$$\int_{\Omega} f(\omega)\mu(d\omega) = 0 \iff f = 0 \quad \mu \text{ fast "uberall }.$$

(d) Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und sei f integrierbar bezüglich μ . Zeigen Sie, dass f μ -fast überall endlich ist.

Aufgabe 4 (2 + 2 + 2 + 2 Punkte)

- (a) Formulieren Sie das Lemma von Fatou.
- (b) Formulieren Sie den Satz der monotonen Konvergenz.
- (c) Geben Sie ein Beispiel für eine Folge von Funktionen auf [0,1] welche zwar in $L^1([0,1],\mathcal{B}([0,1]),m(dx))$ konvergiert, jedoch nicht m-fast überall.
- (d) Zeigen Sie, dass für alle stetig differenzierbaren Funktionen $f:(0,1)\longrightarrow \mathbb{R}$ gilt

$$\lim_{n \to \infty} \int_{[0,1]} f(x) \sin(nx) m(dx) = 0.$$

Aufgabe 5 (3 + 3 Punkte)

(a) Sei $(a_{n,m})_{n,m\in\mathbb{N}}\subset\mathbb{R}$ mit

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} |a_{n,m}| < \infty.$$

Zeigen Sie mittels dem Satz von Fubini, dass gilt

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n,m} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{n,m}.$$

(b) Berechnen Sie mittels dem Satz von Fubini das Integral

$$\int_{\mathbb{R}^2} xy e^{-(x^2+y^2)} m(dx, dy).$$

Aufgabe 6 (2 + 2 + 2 Punkte)

(a) Formulieren Sie den Transformatjonssatz.

(b) Sei $A = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$. Berechnen Sie das Integral

$$\int\limits_{A} \sin(\sqrt{x^2 + y^2}) m(dx, dy)$$

indem Sie Polarkoordinaten verwenden.

(c) Sei $A = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 > 1\}$. Berechnen Sie das Integral

$$\int\limits_A (x^2 + y^2)^{\alpha} m(dx, dy)$$

in Abhängigkeit von $\alpha \in \mathbb{R}.$ Verwenden Sie hierbei die Polarkoordinaten.