Prof. K. Bongartz/
D. Skorodumov
BU Wuppertal
Fachbereich C - Mathematik

Tutorium zur Linearen Algebra I WS 08/09Blatt 7

Die folgenden Aufgaben werden in der Woche vom 08.12 bis 12.12 im Tutorium besprochen.

Aufgabe 1: In \mathbb{R}^2 betrachte Koordinatensysteme $\phi = (e_1, e_2)$, d.h. die kanonische Basis und $\phi' = \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \end{pmatrix}$. Sei $f : \mathbb{R}^2 \to \mathbb{R}^2$ mit $M_{\phi}(f) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ gegeben.

- a) Welche geometrische Bedeutung hat f?
- b) Bestimme die Transformationsmatrix von ϕ nach ϕ' und ihre Inverse.
- c) Bestimme $M_{\phi'}(f)$.

Aufgabe 2: Sei $A \in k^{m \times n}$, $T \in GL_m(k)$. Dann gilt:

- a) Z(TA) = Z(A).
- b) $S(TA) = f_T S(A) = TS(A)$; gib Isomorphismen zwischen S(TA) und S(A) an und folgere dim $S(TA) = \dim S(A)$.
- c) Zeige: $\dim Z(R) = \dim S(R) = r$ direkt für eine reduzierte Zeilenstufenmatrix R mit r Stufen.
- d) Folgere aus a),b),c) erneut: Zeilenrang von A=Spaltenrang von A.

Aufgabe 3: Sei $A \in k^{m \times n}$ und $f_A = A : k^n \to k^m$ zugehörige lineare Abbildung. Dann sind gleichwertig:

- a) f_A injektiv
- b) $\dim S(A) = n$
- c) Die Spalten von A sind linear unabhängig.
- d) $\exists B \in k^{n \times m} \text{ mit } BA = E_n.$