

Automaten, Sprachen, Berechenbarkeit

Sommersemester 2018

Zugabe zum 12. Übungsblatt

Aufgabe 1 (Turingmaschine)

Geben Sie eine Turingmaschine an, die folgende Funktion f_T berechnet:

$$f_T: \{0,1\}^+ \to \{0,1\}^+$$
 $f_T(w) = \begin{cases} w & \text{falls } w = \text{bin}(n) \text{ für ein } n \in \mathbb{N} \\ \bot & \text{sonst.} \end{cases}$

Hierbei beschreibt bin(n) die Dualdarstellung einer Zahl n, die für x > 0 stets mit der Ziffer 1 beginnt.

Lösung: T hält verwerfend an, falls $w = \varepsilon$ (nur \square auf dem Band) oder falls (mindestens) eine führende 0 auf dem Band steht. Ansonsten hält T in der Finalkonfiguration über dem ersten Zeichen: $T = (\{q_0, q_1\}, \{0, 1\}, \{0, 1, \square\}, \delta, q_0, \square, \{q_1\})$ mit

$$\delta(q_0, 1) = (q_1, 1, N)$$

Eine Variante der obigen Turingmaschine für $n \in \mathbb{N}_0$, die also auch w = bin(0) = 0 akzeptiert: $T = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, \square\}, \delta, q_0, \square, \{q_2\})$ mit

$$\delta(q_0,0)=(q_1,0,R)$$

$$\delta(q_0,1) = (q_2,1,N)$$

$$\delta(q_1,\Box)=(q_2,\Box,L)$$

Aufgabe 2 (Turingmaschine)

Konstruieren Sie eine Turingmaschine, die folgende Funktion f_T berechnet:

$$f_T: \{0,1\}^* \to \{0,1,\#\}^*, \qquad f_T(w) = w\#w.$$

Lösung:

- a) Schreibe zunächst ein # ans Ende des Wortes: $01010101010 \rightarrow 0101010101010$ #
- b) Ersetze nacheinander die Zahlen des ursprünglichen Worts durch Buchstaben und schreibe diese ans Ende des erweiterten Wortes, also auf das erste □:

$$01010101010#\Box \rightarrow A1010101010#0 \rightarrow AB010101010#01 \rightarrow \dots$$

c) Sind alle Zahlen im ursprünglichen Wort durch A und B ersetzt, so ist der Kopiervorgang abgeschlossen und die As und Bs können wieder durch 0 und 1 ersetzt werden.

$$\delta(q_0,e)=(q_0,e,R),\ e\in\{0,1\}$$

$$\delta(q_0,\Box)=(q_1,\#,L)$$
 Füge $\#$ am Ende ein
$$\delta(q_1,e)=(q_1,e,L),\ e\in\{0,1\}$$
 Gehe zum Anfang des Wortes
$$\delta(q_2,0)=(q_3,A,R)$$
 Gehe zum Anfang des Wortes
$$\delta(q_2,0)=(q_3,A,R)$$
 Ersetze erste $0/1$
$$\delta(q_3,e)=(q_0,e,R),\ e\in\{0,1,\#\}$$
 Schreibe 0 ans Ende
$$\delta(q_4,e)=(q_0,e,R),\ e\in\{0,1,\#\}$$
 Schreibe 1 ans Ende
$$\delta(q_4,e)=(q_0,e,R),\ e\in\{0,1,\#\}$$
 Schreibe 1 ans Ende
$$\delta(q_5,e)=(q_5,e,L),\ e\in\{0,1,\#\}$$
 Suche 1 . noch nicht ersetztes Zeichen
$$\delta(q_2,\#)=(q_6,\#,L)$$
 Alle Zeichen vom ursprünglichen w ersetzt
$$\delta(q_6,A)=(q_6,0,L)$$
 Ersetze A/B durch $0/1$ $\delta(q_6,\Box)=(q_E,\Box,R)$

Aufgabe 3 (Turingmaschine)

Eine Zahl $n \in \mathbb{N}$ heißt unär kodiert, wenn $n = \sum_{j=1}^{n} i_j 1^j$ mit $i_j = 1 \ \forall j$, oder kurz $n = 1^n$. Geben Sie eine Turingmaschine T an, die für zwei natürliche, unär kodierte Zahlen n und m, die durch ein # getrennt sind, die unär kodierte Summe n+m berechnet.

Lösung:

a) Erste 1 mit □ überschreiben

$$\delta(q_0,1)=(q_1,\square,R)$$

b) # mit 1 überschreiben

$$\delta(q_1, 1) = (q_1, 1, R)$$

 $\delta(q_1, \#) = (q_2, 1, L)$

c) Zum Anfang zurückkehren

$$\delta(q_2,1) = (q_2,1,L)$$

 $\delta(q_2,\square) = (q_3,\square,R)$

Aufgabe 4 (LBA)

Konstruieren Sie einen linear beschränkten Automaten T_n mit $L(T_n) = \{a^i b^i c^i, i \in \mathbb{N}\}.$

Lösung: Es sei $\Sigma = \{a, b, c\}, \Gamma = \Sigma \cup \{\$, \#, x, \square\}$. Wir gehen wie folgt vor:

- a) Überprüfe, ob das Wort der Form $a^i b^j c^k$ genügt.
- b) Überprüfe ob i = j = k ist.

Zu a): Überprüfe ob $w = a^i b^j c^k$

$$\delta(q_0,a) = (q_1,a,R)$$
 $\delta(q_2,b) = (q_2,b,R)$ $\delta(q_3,c) = (q_3,c,R)$ $\delta(q_1,a) = (q_1,a,R)$ $\delta(q_2,c) = (q_3,c,R)$ $\delta(q_3,c) = (q_4,e,L)$ $\delta(q_1,b) = (q_2,b,R),$

und kehre zum Anfang des Wortes zurück:

$$\delta(q_4, a) = (q_4, a, L)$$
 $\delta(q_4, b) = (q_4, b, L)$ $\delta(q_4, c) = (q_4, c, L)$ $\delta(q_4, c) = (q_4, c, L)$

Zu b): Um zu überprüfen ob i = j = k, überschreiben wir abwechselnd das erste a, dann das erste b und dann das erste c mit x und kehren zum ersten a zurück. Wiederholt man diese Prozedur und ist i = j = k, so stehen am Ende nur noch x auf dem Band. In diesem Fall wechseln wir in den einzigen Akzeptanzzustand q_E .

Überschreibe das erste a mit x (und stelle fest, ob nur noch x auf dem Band stehen):

$$\delta(q_5, x) = (q_5, x, R)$$
 $\delta(q_5, a) = (q_6, x, R)$ $\delta(q_5, \#) = (q_E, \#, N).$

Überschreibe das erste *b* mit *x*:

$$\delta(q_6, a) = (q_6, a, R)$$
 $\delta(q_6, x) = (q_6, x, R)$ $\delta(q_6, b) = (q_7, x, R).$

Überschreibe das erste *c* mit *x*:

$$\delta(q_7,b) = (q_7,b,R)$$
 $\delta(q_7,x) = (q_7,x,R)$ $\delta(q_7,c) = (q_8,x,L).$

Kehre anschließend zum ersten a zurück:

$$\delta(q_8,x) = (q_8,x,L)$$
 $\delta(q_8,b) = (q_8,b,L)$ $\delta(q_8,a) = (q_8,a,L)$ $\delta(q_8,s) = (q_5,s,R).$