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1 Introduction

In this talk we study the implications of the existence of a bo unded and

boundedly invertible solution, X , to the Sylvester equation

〈A1z1, Xz2〉 + 〈z1, XA2z2〉 = 0, (1)

where z1 ∈ D(A1), z2 ∈ D(A2). A1 and A2 are closed, densely

defined linear operators on Z with Z a Hilbert space.
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1 Introduction

In this talk we study the implications of the existence of a bo unded and

boundedly invertible solution, X , to the Sylvester equation

〈A1z1, Xz2〉 + 〈z1, XA2z2〉 = 0, (1)

where z1 ∈ D(A1), z2 ∈ D(A2). A1 and A2 are closed, densely

defined linear operators on Z with Z a Hilbert space.

Roughly looking, the equation seems to be the same as

A∗
1
X = −XA2. (2)

We show that this does not hold in general.
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1 Introduction

In this talk we study the implications of the existence of a bo unded and

boundedly invertible solution, X , to the Sylvester equation

〈A1z1, Xz2〉 + 〈z1, XA2z2〉 = 0, (1)

where z1 ∈ D(A1), z2 ∈ D(A2). A1 and A2 are closed, densely

defined linear operators on Z with Z a Hilbert space.

Roughly looking, the equation seems to be the same as

A∗
1
X = −XA2. (2)

We show that this does not hold in general. We begin by derivin g an

equivalent condition to (1) when A1 and A2 are both infinitesimal

generators.
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Lemma

Let A1, A2 be the infinitesimal generators of the C0-semigroups

(T1(t))t≥0
and (T2(t))t≥0

, respectively. Then X ∈ L(Z) satisfies

the Sylvester equation

〈A1z1, Xz2〉 + 〈z1, XA2z2〉 = 0, z1 ∈ D(A1), z2 ∈ D(A2)

if and only if

T ∗
1
(t)XT2(t) = X, for all t ≥ 0.
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Lemma

Let A1, A2 be the infinitesimal generators of the C0-semigroups

(T1(t))t≥0
and (T2(t))t≥0

, respectively. Then X ∈ L(Z) satisfies

the Sylvester equation

〈A1z1, Xz2〉 + 〈z1, XA2z2〉 = 0, z1 ∈ D(A1), z2 ∈ D(A2)

if and only if

T ∗
1
(t)XT2(t) = X, for all t ≥ 0.

If X is (boundedly) invertible, then

X−1T ∗
1
(t)XT2(t) = I, for all t ≥ 0.

Thus
(

X−1T ∗
1
(t)X

)

t≥0
is the left-inverse of (T2(t))t≥0

. �
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Proof : Easy by differentiating (one direction) or (other implica tion)

substituting z1 = T1(t)z10 and z2 = T2(t)z20, with z10 ∈ D(A1),

z20 ∈ D(A2). �
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2 Left-Invertibility

We begin with the definition of a left-invertible semigroup.

Definition

The C0-semigroup (T (t))
t≥0

is left-invertible if there exists a function

t 7→ m(t) such that m(t) > 0 and for all z0 ∈ Z there holds

m(t)‖z0‖ ≤ ‖T (t)z0‖, t ≥ 0. (3)

�
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2 Left-Invertibility

We begin with the definition of a left-invertible semigroup.

Definition

The C0-semigroup (T (t))
t≥0

is left-invertible if there exists a function

t 7→ m(t) such that m(t) > 0 and for all z0 ∈ Z there holds

m(t)‖z0‖ ≤ ‖T (t)z0‖, t ≥ 0. (3)

�

Louis and Wexler, 1983, showed the following equivalence.
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Theorem

Let (T (t))
t≥0

be a C0-semigroup on the Hilbert space Z . Then the

following are equivalent:

1. (T (t))
t≥0

is left-invertible;

2. There exists a C0-semigroup (S(t))
t≥0

such that S(t)T (t) = I

for all t ≥ 0.

�
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Theorem

Let (T (t))
t≥0

be a C0-semigroup on the Hilbert space Z . Then the

following are equivalent:

1. (T (t))
t≥0

is left-invertible;

2. There exists a C0-semigroup (S(t))
t≥0

such that S(t)T (t) = I

for all t ≥ 0.

�

Hence if left-invertible, then the left-inverse can be chos en as a

semigroup.

– 6-a –



Control of Distributed Parameter Systems–2011 Left-Invertibility

Theorem

Let (T (t))
t≥0

be a C0-semigroup on the Hilbert space Z . Then the

following are equivalent:

1. (T (t))
t≥0

is left-invertible;

2. There exists a C0-semigroup (S(t))
t≥0

such that S(t)T (t) = I

for all t ≥ 0.

�

Hence if left-invertible, then the left-inverse can be chos en as a

semigroup. The proof of Louis and Wexler uses optimal contro l. We

present a new/adjusted proof using an invertible solution o f a Lyapunov

equation.
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Proof:

2. ⇒ 1. is trivial. So we concentrate on the other implication.

Let A be the infinitesimal generator of (T (t))
t≥0

. Choose ω ∈ R such

that A − ωI is exponentially stable.

Now for z ∈ Z

m0‖z‖2 =

∫ ∞

0

m(t)2e−2ωt‖z‖2dt

≤

∫ ∞

0

e−2ωt‖T (t)z‖2dt ≤ M‖z‖2

Define 〈z, Xz〉 =
∫ ∞

0
e−2ωt‖T (t)z‖2. Then
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• m0I ≤ X ≤ MI

• X is the solution to the Lyapunov equation

〈(A − ωI)z1, Xz2〉 + 〈z1, X(A − ωI)z2〉 = −〈z1, z2〉,

for z1, z2 ∈ D(A).
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• m0I ≤ X ≤ MI

• X is the solution to the Lyapunov equation

〈(A − ωI)z1, Xz2〉 + 〈z1, X(A − ωI)z2〉 = −〈z1, z2〉,

for z1, z2 ∈ D(A).

We rewrite this Lyapunov equation to the Sylvester equation

〈(A − ωI + X−1)z1, Xz2〉 + 〈z1, X(A − ωI)z2〉 = 0.
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The Sylvester equation

〈(A − ωI + X−1)z1, Xz2〉 + 〈z1, X(A − ωI)z2〉 = 0.

is a special case of our general Sylvester equation. Thus by t he previous

lemma we know that the semigroup generated by A − ωI is left

invertible, and

X−1T1(t)
∗XT (t)e−ωt = I

where (T1(t))t≥0
is the semigroup generated by A − ωI + X−1.

Thus S(t) := X−1T1(t)
∗Xe−ωt is the left-inverse of T (t). �
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Looking at the proof, the following is an easy consequence.

Corollary

If C ∈ L(Z, Y ) is exactly observable, i.e. there exists an m0 > 0 and

t1 > 0 such that

∫

t1

0

‖CT (t)z‖2dt ≥ m0‖z‖2

then (T (t))
t≥0

is left-invertible.
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Looking at the proof, the following is an easy consequence.

Corollary

If C ∈ L(Z, Y ) is exactly observable, i.e. there exists an m0 > 0 and

t1 > 0 such that

∫

t1

0

‖CT (t)z‖2dt ≥ m0‖z‖2

then (T (t))
t≥0

is left-invertible.

The left-inverse semigroup is “generated” by A − ωI + X−1C∗C . �
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The result does not extend to the class of admissible output o perators.
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The result does not extend to the class of admissible output o perators.

Example

Consider the left-shift semigroup on L2(0, 1), i.e.

(T (t)f) (η) =







f(η + t) η + t ∈ [0, 1]

0 η + t ≥ 1

with the observation at η = 0, i.e.,

Cf = f(0).

Then (T (t))
t≥0

not left-invertible, but it is exactly observable

∫ 1

0

|CT (t)f |2dt = ‖f‖2.

�

– 11-a –



Control of Distributed Parameter Systems–2011 Left-Invertibility

Remark

One could understand the difficulty as follows:

Is the operator A + X−1C∗C an infinitesimal generator?
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We return to our left-invertible semigroups.
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We return to our left-invertible semigroups.

Theorem

Let (T (t))
t≥0

be a C0-semigroup on the Hilbert space Z with generator

A. Then the following are equivalent:

1. (T (t))
t≥0

is left-invertible;

2. There exists a bounded operator Q and an equivalent inner product

such that A + Q generates an isometric semigroup in the new norm.

�
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We return to our left-invertible semigroups.

Theorem

Let (T (t))
t≥0

be a C0-semigroup on the Hilbert space Z with generator

A. Then the following are equivalent:

1. (T (t))
t≥0

is left-invertible;

2. There exists a bounded operator Q and an equivalent inner product

such that A + Q generates an isometric semigroup in the new norm.

�

Markus Haase has proved a similar result for generators of gr oups.
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Proof : 1. ⇒ 2.

By our previous proof we have the existence of a X ∈ L(Z),

boundedly invertible, such that

〈(A − ωI)z1, Xz2〉 + 〈z1, X(A − ωI)z2〉 = −〈z1, z2〉,

for z1, z2 ∈ D(A). Now we write it as

〈(A−ωI+
1

2
X−1)z1, Xz2〉+〈z1, X(A−ωI+

1

2
X−1)z2〉 = 0.

By defining Q = −ωI + 1

2
X−1, and taking as new inner product

〈z1, z2〉new = 〈z1, Xz2〉, we obtain the desired result. �
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X = −XA2?

3 When do we have that A∗
1X = −XA2?

We return to our general Sylvester equation, see (1),

〈A1z1, Xz2〉 + 〈z1, XA2z2〉 = 0,

and wonder when A∗
1
X = −XA2.

We have the following result:
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1
X = −XA2?

Theorem

Assume that X ∈ L(Z) is boundedly invertible and satisfies the

Sylvester equation

〈A1z1, Xz2〉 + 〈z1, XA2z2〉 = 0.

If A1, A2 satisfy

• The intersection of ρ(A2) with the complement of the point

spectrum of −A∗
1

is non-empty, or

• XD(A2) = D(A∗
1
),

then

A∗
1

= −XA2X
−1

– 16 –



Control of Distributed Parameter Systems–2011 When do we have that A∗

1
X = −XA2?

Hence if A1, A2 generate a C0-semigroup, then they generate a group

and

T ∗
1
(t) = XT2(−t)X−1.

�
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4 Riccati equations

It is clear that if X is an invertible, self-adjoint solution to the Lyapunov

equation

〈Az1, Xz2〉 + 〈z1, XAz2〉 = −〈z1, z2〉,

then X−1 satisfies the Riccati equation

〈AX−1z1, z2〉 + 〈z1, AX−1z2〉 + 〈X−1z1, X−1z2〉 = 0.

However, there are other relations.
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The ARE

A∗X + XA − XBB∗X + C∗C = 0

can be written as (weak form)

−〈Cz1, Cz2〉 = 〈Az1, Xz2〉 + 〈z1, X(A − BB∗X)z2〉

=
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The ARE

A∗X + XA − XBB∗X + C∗C = 0

can be written as (weak form)

−〈Cz1, Cz2〉 = 〈Az1, Xz2〉 + 〈z1, X(A − BB∗X)z2〉

= 〈Az1, Xz2〉 + 〈z1, XAoptz2〉.
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The ARE

A∗X + XA − XBB∗X + C∗C = 0

can be written as (weak form)

−〈Cz1, Cz2〉 = 〈Az1, Xz2〉 + 〈z1, X(A − BB∗X)z2〉

= 〈Az1, Xz2〉 + 〈z1, XAoptz2〉.

This last (Lyapunov) equation also holds when B is unbounded.
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Theorem

Assume C ∈ L(Z, Y ) and let X be a self-adjoint, invertible solution of

〈Az1, Xz2〉 + 〈z1, XAoptz2〉 = −〈Cz1, Cz2〉,

and assume further that ρ(−A∗ − X−1C∗C) ∩ ρ(Aopt) 6= ∅. Then

1. D(Aopt) = X−1D(A∗)

2. Aopt and A + X−1C∗C generate a C0-group, (Topt(t))t≥0
, and

(TX−1C∗C(t))
t≥0

, respectively, and

Topt(t) = X−1TX−1C∗C(−t)∗X.
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