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Riccati equation and Hamiltonian

Consider control algebraic Riccati equation

A∗X + XA− XBB∗X + C ∗C = 0 (∗)

on Hilbert space H. Associated Hamiltonian operator matrix:

T =

(
A −BB∗

−C ∗C −A∗

)
on H × H.

Correspondence

X solution if and only if graph

G (X ) =
{( x

Xx

) ∣∣∣ x ∈ D(X )
}

is T -invariant.

T

(
x

Xx

)
=

(
y

Xy

)
⇔

{
Ax − BB∗Xx = y

−C ∗Cx − A∗Xx = Xy
⇔ (∗)
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History

Connection between Riccati equation and Hamiltonian:

I Matrix case: extensive theory.

I Kuiper, Zwart 1995:
BB∗,C ∗C ∈ L(H), T Riesz-spectral.
 Existence and characterisation of bounded solutions.

I Langer, Ran, v.d. Rotten 2001:
BB∗,C ∗C ∈ L(H), T exponentially dichotomous.
 Existence of nonnegative and nonpositive solution.

I W. 2008, 2010:
BB∗,C ∗C : D ⊂ H → H unbounded, T has Riesz basis of
fin.-dim. spectral subspaces.
 Existence of unbounded, characterisation of bounded
solutions.
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Setting

Consider

I A normal with compact resolvent.

⇒ D(|A|s) = Hs ⊂ H ⊂ H−s ∼= (Hs)∗,

extensions A,A∗ : Hs → Hs−1.

I B ∈ L(U,H−s), C ∈ L(Hs ,Y ) for some s ∈ [0, 1].

⇒ B∗ ∈ L(Hs ,U), C ∗ ∈ L(Y ,H−s),

BB∗,C ∗C ∈ L(Hs ,H−s).

Hamiltonian T =

(
A −BB∗

−C ∗C −A∗

)
as operator?

For v ∈ Hs × Hs , Tv ∈ H−1 × H−1 well defined. Consider

T : D(T ) ⊂ H × H → H × H,

D(T ) = {v ∈ Hs × Hs |Tv ∈ H × H}.
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Riesz basis properties for T

Suppose T has compact resolvent.

R1: T has Riesz basis of generalised eigenvectors (ϕn)n∈N, i.e.,
exists isomorphism Φ ∈ L(H × H) s.t. (Φϕn)n ON basis of
H × H.

R2: T has Riesz basis of fin.-dim. spectral subspaces (Vn)n∈N,
i.e., exists iso Φ ∈ L(H × H) s.t. H × H =

⊕
n Φ(Vn) orthog.,

Vn fin.-dim., T -invariant, σ(T |Vn) disjoint.

Then

I R1 ⇒ R2

I R2 ⇒ Vn = span{ϕn1, . . . , ϕndn}, ϕnj gen. eigenvectors

I R2 ⇒ For σ ⊂ σ(T ),

Wσ = {ϕ |ϕ gen. eigenvec. corresp. to σ} is T -invariant.
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Existence of Riesz basis for T

Theorem

Let

I B ∈ L(U,H−s) with s < 1/2, C ∈ L(H,Y ),

I almost all eigenvalues λk of A lie on discs Dδ(e iθj rjl) along
finitely many rays in C−,

I
∑∞

k=0 |λk |−2(1−2s) <∞, liml→∞ rj ,l+1 − rjl =∞.

Then T has compact resolvent and a Riesz basis of fin.-dim.
spectral subspaces.
If almost all discs contain only one simple λk , then T has a Riesz
basis of generalised eigenvectors.

σ(A)

rj,l+1−rjl
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Krein space symmetry

General setting now:

I B ∈ L(U,H−s), C ∈ L(Hs ,Y ) with 0 ≤ s ≤ 1,

I T has compact resolvent and Riesz basis of fin.-dim. spectral
subspaces.

Indefinite inner product on H × H:

〈v |w〉 = (Jv |w), J =

(
0 −iI
iI 0

)
, (·|·) usual inner product

 (H × H, 〈·|·〉) Krein space.

Hamiltonian J-skew-selfadjoint, T = −T 〈∗〉.

⇒ σ(T ) symmetric w.r.t. iR.
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Existence of solutions X

Theorem

Let

I (A,B) approximately controllable,

I no non-observable eigenvalues of A on iR.

Then σ(T ) ∩ iR = ∅, and for σ ⊂ σ(T ) skew-conjugate we have
Wσ = G (X ) with X selfadjoint solution of

A∗X + X (A− BB∗X ) + C ∗C = 0

on dense subspace DX ⊂ H.

X± corresp. to σ = σ(T ) ∩C∓ is nonnegative/nonpositive.

σ ⊂ σ(T ) skew-conjugate if
σ(T ) = σ ] −σ∗.
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Idea of the proof

Existence of X :

I T = −T 〈∗〉, σ skew-conj. ⇒ Wσ = W
〈⊥〉
σ

I (A,B) approx. contr. ⇔ ker(A− λ) ∩ ker B∗ = {0} ∀λ ∈ C
I ⇒ Wσ = G (X )

I G (X ) = G (X )〈⊥〉 ⇒ X selfadjoint

X+ nonnegative:

I Consider [v |w ] = (J2v |w), J2 =

(
0 I
I 0

)
I Re[Tv |v ] ≤ 0

I ⇒ G (X+) is J2-nonnegative, i.e. [v |v ] ≥ 0 for v ∈ G (X+)

I ⇒ X+ nonnegative
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Bounded solutions

Theorem

Let

I (A,B) approximately controllable,

I no non-observable eigenvalues of A on iR,

I T has Riesz basis of gen. eigenvectors, whose part corresp. to
C− is quadratically close to an ON system of H × {0}.

If σ ⊂ σ(T ) skew-conj. and σ ∩C+ finite, then Wσ = G (X ) with
X bounded selfadjoint solution of

A∗X + XA− XBB∗X + C ∗C = 0 on DX .

For AX = A− BB∗X , D(AX ) = DX , we get σ(AX ) = σ.
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Existence of Riesz basis 2

Theorem

Let

I B ∈ L(U,H−s) with s < 1/2, C ∈ L(H,Y ),

I almost all eigenvalues λk of A are simple, lie on discs
Dδ(e iθj rjl) along finitely many rays in C−, each disc contains
only one λk ,

I
∑∞

l=0 r−2qjl <∞, r1−qj ,l+1 − r1−qjl ≥ β > 0 with 0 < q ≤ 1− 2s.

Then T admits a Riesz basis of gen. eigenvectors, whose part
corresp. to C− is quadratically close to an ON system of H × {0}.
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Example: heat equation with boundary control

Consider

H = L2([0, 1]),

Ax = x ′′, D(A) = {x ∈ H2([0, 1]) | x ′(0) = x(1) = 0},
B∗x = x(0),

any C ∈ L(H,Y ).

Then

I B ∈ L(C,H−s) for all s > 1/4,

I Previous theorem applies with 1/4 < s < 3/8, q = 1− 2s,

I (A,B) approx. contr., A has no imag. eigenvalues,

I Existence of (bounded) solutions.
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Open questions

I Existence of bounded solutions under weaker assumption of
Riesz basis of fin.-dim. spectral subspaces?

I Characterisation of solutions? E.g. if X solution, then
G (X ) = span{certain gen. eigenvectors} ?

I Non-selfadjoint solutions?

I A not normal?

Christian Wyss Hamiltonians and Riccati equations 13 / 14



References

I C. Wyss, B. Jacob, H. Zwart. Hamiltonians and Riccati
equations for linear systems with unbounded control and
observation operators. Submitted. Preprint 2011.

I C. Wyss. Hamiltonians with Riesz bases of generalised
eigenvectors and Riccati equations. Indiana Univ. Math. J., to
appear. Preprint 2010.

I C. Wyss. Perturbation theory for Hamiltonian operator matrices
and Riccati equations. PhD thesis, University of Bern, 2008.

Christian Wyss Hamiltonians and Riccati equations 14 / 14


