Hamiltonians and Riccati equations for unbounded control and observation operators

Christian Wyss

Department of Mathematics and Informatics
University of Wuppertal, Germany
joint work with Birgit Jacob, Hans Zwart
CDPS 2011, Wuppertal

Riccati equation and Hamiltonian

Consider control algebraic Riccati equation

$$
\begin{equation*}
A^{*} X+X A-X B B^{*} X+C^{*} C=0 \tag{*}
\end{equation*}
$$ on Hilbert space H. Associated Hamiltonian operator matrix:

$$
T=\left(\begin{array}{cc}
A & -B B^{*} \\
-C^{*} C & -A^{*}
\end{array}\right) \quad \text { on } \quad H \times H
$$

Correspondence

X solution if and only if graph

$$
\begin{gathered}
G(X)=\left\{\left.\binom{x}{X x} \right\rvert\, x \in \mathcal{D}(X)\right\} \quad \text { is } T \text {-invariant. } \\
T\binom{x}{X x}=\binom{y}{X y} \Leftrightarrow\left\{\begin{array}{c}
A x-B B^{*} X x=y \\
-C^{*} C x-A^{*} X x=X y
\end{array} \Leftrightarrow(*)\right.
\end{gathered}
$$

History

Connection between Riccati equation and Hamiltonian:

- Matrix case: extensive theory.
- Kuiper, Zwart 1995:
$B B^{*}, C^{*} C \in L(H), T$ Riesz-spectral.
\rightsquigarrow Existence and characterisation of bounded solutions.
- Langer, Ran, v.d. Rotten 2001:
$B B^{*}, C^{*} C \in L(H), T$ exponentially dichotomous.
\rightsquigarrow Existence of nonnegative and nonpositive solution.
- W. 2008, 2010:
$B B^{*}, C^{*} C: \mathcal{D} \subset H \rightarrow H$ unbounded, T has Riesz basis of fin.-dim. spectral subspaces.
\rightsquigarrow Existence of unbounded, characterisation of bounded solutions.

Setting

Consider

- A normal with compact resolvent.

$$
\begin{aligned}
\Rightarrow & \mathcal{D}\left(|A|^{s}\right)=H_{s} \subset H \subset H_{-s} \cong\left(H_{s}\right)^{*}, \\
& \text { extensions } A, A^{*}: H_{s} \rightarrow H_{s-1} .
\end{aligned}
$$

- $B \in L\left(U, H_{-s}\right), C \in L\left(H_{s}, Y\right)$ for some $s \in[0,1]$.

$$
\begin{aligned}
\Rightarrow & B^{*} \in L\left(H_{s}, U\right), \quad C^{*} \in L\left(Y, H_{-s}\right), \\
& B B^{*}, C^{*} C \in L\left(H_{s}, H_{-s}\right) .
\end{aligned}
$$

Hamiltonian $T=\left(\begin{array}{cc}A & -B B^{*} \\ -C^{*} C & -A^{*}\end{array}\right)$ as operator?
For $v \in H_{s} \times H_{s}, T v \in H_{-1} \times H_{-1}$ well defined. Consider

$$
\begin{aligned}
& T: \mathcal{D}(T) \subset H \times H \rightarrow H \times H \\
& \mathcal{D}(T)=\left\{v \in H_{s} \times H_{s} \mid T v \in H \times H\right\}
\end{aligned}
$$

Riesz basis properties for T

Suppose T has compact resolvent.
R1: T has Riesz basis of generalised eigenvectors $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$, i.e., exists isomorphism $\Phi \in L(H \times H)$ s.t. $\left(\Phi \varphi_{n}\right)_{n}$ ON basis of $H \times H$.
R2: T has Riesz basis of fin.-dim. spectral subspaces $\left(V_{n}\right)_{n \in \mathbb{N}}$, i.e., exists iso $\Phi \in L(H \times H)$ s.t. $H \times H=\bigoplus_{n} \Phi\left(V_{n}\right)$ orthog., V_{n} fin.-dim., T-invariant, $\sigma\left(\left.T\right|_{V_{n}}\right)$ disjoint.
Then

- $\mathrm{R} 1 \Rightarrow \mathrm{R} 2$
- $\mathrm{R} 2 \Rightarrow V_{n}=\operatorname{span}\left\{\varphi_{n 1}, \ldots, \varphi_{n d_{n}}\right\}, \varphi_{n j}$ gen. eigenvectors
- $\mathrm{R} 2 \Rightarrow$ For $\sigma \subset \sigma(T)$,

$$
W_{\sigma}=\overline{\{\varphi \mid \varphi \text { gen. eigenvec. corresp. to } \sigma\}} \text { is } T \text {-invariant. }
$$

Existence of Riesz basis for T

Theorem

Let

- $B \in L\left(U, H_{-s}\right)$ with $s<1 / 2, \quad C \in L(H, Y)$,
- almost all eigenvalues λ_{k} of A lie on discs $D_{\delta}\left(e^{i \theta_{j}} r_{j l}\right)$ along finitely many rays in \mathbb{C}_{-},
$\triangleright \sum_{k=0}^{\infty}\left|\lambda_{k}\right|^{-2(1-2 s)}<\infty, \quad \lim _{l \rightarrow \infty} r_{j, I+1}-r_{j l}=\infty$.
Then T has compact resolvent and a Riesz basis of fin.-dim. spectral subspaces.
If almost all discs contain only one simple λ_{k}, then T has a Riesz basis of generalised eigenvectors.

Krein space symmetry

General setting now:

- $B \in L\left(U, H_{-s}\right), C \in L\left(H_{s}, Y\right)$ with $0 \leq s \leq 1$,
- T has compact resolvent and Riesz basis of fin.-dim. spectral subspaces.

Indefinite inner product on $H \times H$:

$$
\langle v \mid w\rangle=(J v \mid w), \quad J=\left(\begin{array}{cc}
0 & -i l \\
i l & 0
\end{array}\right), \quad(\cdot \mid \cdot) \text { usual inner product }
$$

$\rightsquigarrow(H \times H,\langle\cdot \mid \cdot\rangle)$ Krein space.
Hamiltonian J-skew-selfadjoint, $T=-T^{\langle *\rangle}$.
$\Rightarrow \sigma(T)$ symmetric w.r.t. $i \mathbb{R}$.

Existence of solutions X

Theorem

Let

- (A, B) approximately controllable,
- no non-observable eigenvalues of A on $i \mathbb{R}$.

Then $\sigma(T) \cap i \mathbb{R}=\varnothing$, and for $\sigma \subset \sigma(T)$ skew-conjugate we have $W_{\sigma}=G(X)$ with X selfadjoint solution of

$$
A^{*} X+X\left(A-B B^{*} X\right)+C^{*} C=0
$$

on dense subspace $\mathcal{D}_{X} \subset H$.
$X_{ \pm}$corresp. to $\sigma=\sigma(T) \cap \mathbb{C}_{\mp}$ is nonnegative/nonpositive.

$$
\begin{aligned}
& \sigma \subset \sigma(T) \text { skew-conjugate if } \\
& \sigma(T)=\sigma \uplus-\sigma^{*} .
\end{aligned}
$$

Existence of solutions X

Theorem

Let

- (A, B) approximately controllable,
- no non-observable eigenvalues of A on $i \mathbb{R}$.

Then $\sigma(T) \cap i \mathbb{R}=\varnothing$, and for $\sigma \subset \sigma(T)$ skew-conjugate we have $W_{\sigma}=G(X)$ with X selfadjoint solution of

$$
A^{*} X+X\left(A-B B^{*} X\right)+C^{*} C=0
$$

on dense subspace $\mathcal{D}_{X} \subset H$.
$X_{ \pm}$corresp. to $\sigma=\sigma(T) \cap \mathbb{C}_{\mp}$ is nonnegative/nonpositive.

$$
\begin{aligned}
& \sigma \subset \sigma(T) \text { skew-conjugate if } \\
& \sigma(T)=\sigma \uplus-\sigma^{*} .
\end{aligned}
$$

Idea of the proof

Existence of X :

- $T=-T^{\langle *\rangle}, \sigma$ skew-conj. $\Rightarrow W_{\sigma}=W_{\sigma}^{\langle\perp\rangle}$
- (A, B) approx. contr. $\Leftrightarrow \operatorname{ker}(A-\lambda) \cap \operatorname{ker} B^{*}=\{0\} \forall \lambda \in \mathbb{C}$
- $\Rightarrow W_{\sigma}=G(X)$
- $G(X)=G(X)^{\langle\perp\rangle} \Rightarrow X$ selfadjoint
X_{+}nonnegative:
- Consider $[v \mid w]=\left(J_{2} v \mid w\right), J_{2}=\left(\begin{array}{ll}0 & I \\ l & 0\end{array}\right)$
- $\operatorname{Re}[T v \mid v] \leq 0$
$\triangleright \Rightarrow G\left(X_{+}\right)$is J_{2}-nonnegative, i.e. $[v \mid v] \geq 0$ for $v \in G\left(X_{+}\right)$
$\Rightarrow \Rightarrow X_{+}$nonnegative

Bounded solutions

Theorem

Let

- (A, B) approximately controllable,
- no non-observable eigenvalues of A on $i \mathbb{R}$,
- T has Riesz basis of gen. eigenvectors, whose part corresp. to \mathbb{C}_{-}is quadratically close to an ON system of $H \times\{0\}$.
If $\sigma \subset \sigma(T)$ skew-conj. and $\sigma \cap \mathbb{C}_{+}$finite, then $W_{\sigma}=G(X)$ with X bounded selfadjoint solution of

$$
A^{*} X+X A-X B B^{*} X+C^{*} C=0 \quad \text { on } \quad \mathcal{D}_{X}
$$

For $A_{X}=A-B B^{*} X, \mathcal{D}\left(A_{X}\right)=\mathcal{D}_{X}$, we get $\sigma\left(A_{X}\right)=\sigma$.

Existence of Riesz basis 2

Theorem

Let

- $B \in L\left(U, H_{-s}\right)$ with $s<1 / 2, \quad C \in L(H, Y)$,
- almost all eigenvalues λ_{k} of A are simple, lie on discs $D_{\delta}\left(e^{i \theta_{j}} r_{j l}\right)$ along finitely many rays in \mathbb{C}_{-}, each disc contains only one λ_{k},
$\vee \sum_{l=0}^{\infty} r_{j l}^{-2 q}<\infty, r_{j, l+1}^{1-q}-r_{j l}^{1-q} \geq \beta>0$ with $0<q \leq 1-2 s$.
Then T admits a Riesz basis of gen. eigenvectors, whose part corresp. to \mathbb{C}_{-}is quadratically close to an ON system of $H \times\{0\}$.

Example: heat equation with boundary control

Consider

$$
\begin{aligned}
& H=L^{2}([0,1]) \\
& A x=x^{\prime \prime}, \quad \mathcal{D}(A)=\left\{x \in H^{2}([0,1]) \mid x^{\prime}(0)=x(1)=0\right\} \\
& B^{*} x=x(0) \\
& \text { any } C \in L(H, Y)
\end{aligned}
$$

Then

- $B \in L\left(\mathbb{C}, H_{-s}\right)$ for all $s>1 / 4$,
- Previous theorem applies with $1 / 4<s<3 / 8, q=1-2 s$,
- (A, B) approx. contr., A has no imag. eigenvalues,
- Existence of (bounded) solutions.

Open questions

- Existence of bounded solutions under weaker assumption of Riesz basis of fin.-dim. spectral subspaces?
- Characterisation of solutions? E.g. if X solution, then $G(X)=\overline{\operatorname{span}\{\text { certain gen. eigenvectors }\}}$?
- Non-selfadjoint solutions?
- A not normal?

References

- C. Wyss, B. Jacob, H. Zwart. Hamiltonians and Riccati equations for linear systems with unbounded control and observation operators. Submitted. Preprint 2011.
- C. Wyss. Hamiltonians with Riesz bases of generalised eigenvectors and Riccati equations. Indiana Univ. Math. J., to appear. Preprint 2010.
- C. Wyss. Perturbation theory for Hamiltonian operator matrices and Riccati equations. PhD thesis, University of Bern, 2008.

