Hamiltonians and Riccati equations for unbounded control and observation operators

Christian Wyss

Department of Mathematics and Informatics University of Wuppertal, Germany

joint work with Birgit Jacob, Hans Zwart

CDPS 2011, Wuppertal

Riccati equation and Hamiltonian

Consider control algebraic Riccati equation

$$A^*X + XA - XBB^*X + C^*C = 0 \tag{(*)}$$

on Hilbert space *H*. Associated Hamiltonian operator matrix:

$$T = \begin{pmatrix} A & -BB^* \\ -C^*C & -A^* \end{pmatrix}$$
 on $H \times H$.

Correspondence

X solution if and only if graph

$$G(X) = \left\{ egin{pmatrix} x \ Xx \end{pmatrix} \ \Big| \ x \in \mathcal{D}(X)
ight\}$$
 is \mathcal{T} -invariant.

$$T\begin{pmatrix} x\\ Xx \end{pmatrix} = \begin{pmatrix} y\\ Xy \end{pmatrix} \Leftrightarrow \begin{cases} Ax - BB^*Xx = y\\ -C^*Cx - A^*Xx = Xy \end{cases} \Leftrightarrow (*)$$

History

Connection between Riccati equation and Hamiltonian:

- Matrix case: extensive theory.
- Kuiper, Zwart 1995:
 BB*, C*C ∈ L(H), T Riesz-spectral.
 → Existence and characterisation of bounded solutions.
- Langer, Ran, v.d. Rotten 2001: BB*, C*C ∈ L(H), T exponentially dichotomous.
 → Existence of nonnegative and nonpositive solution.
- ▶ W. 2008, 2010:

 $BB^*, C^*C : \mathcal{D} \subset H \rightarrow H$ unbounded, T has Riesz basis of fin.-dim. spectral subspaces.

 \rightsquigarrow Existence of unbounded, characterisation of bounded solutions.

Setting

Consider

Þ

► A normal with compact resolvent.

$$\begin{array}{ll} \Rightarrow & \mathcal{D}(|A|^s) = H_s \subset H \subset H_{-s} \cong (H_s)^*, \\ & \text{extensions } A, A^* : H_s \to H_{s-1}. \end{array} \\ \Rightarrow & B \in L(U, H_{-s}), \ C \in L(H_s, Y) \ \text{for some } s \in [0, 1]. \\ & \Rightarrow & B^* \in L(H_s, U), \ \ C^* \in L(Y, H_{-s}), \\ & BB^*, C^*C \in L(H_s, H_{-s}). \end{array}$$

Hamiltonian $T = \begin{pmatrix} A & -BB^* \\ -C^*C & -A^* \end{pmatrix}$ as operator?

For $v \in H_s \times H_s$, $Tv \in H_{-1} \times H_{-1}$ well defined. Consider

$$T: \mathcal{D}(T) \subset H \times H \to H \times H,$$

$$\mathcal{D}(T) = \{ v \in H_s \times H_s \mid Tv \in H \times H \}.$$

Riesz basis properties for T

Suppose T has compact resolvent.

- R1: *T* has Riesz basis of generalised eigenvectors $(\varphi_n)_{n \in \mathbb{N}}$, i.e., exists isomorphism $\Phi \in L(H \times H)$ s.t. $(\Phi \varphi_n)_n$ ON basis of $H \times H$.
- R2: *T* has Riesz basis of fin.-dim. spectral subspaces $(V_n)_{n \in \mathbb{N}}$, i.e., exists iso $\Phi \in L(H \times H)$ s.t. $H \times H = \bigoplus_n \Phi(V_n)$ orthog., V_n fin.-dim., *T*-invariant, $\sigma(T|_{V_n})$ disjoint.

Then

- ► R1 \Rightarrow R2
- R2 ⇒ V_n = span{φ_{n1},...,φ_{nd_n}}, φ_{nj} gen. eigenvectors
 R2 ⇒ For σ ⊂ σ(T),

 $W_{\sigma} = \overline{\{\varphi \mid \varphi \text{ gen. eigenvec. corresp. to } \sigma\}}$ is *T*-invariant.

Existence of Riesz basis for T

Theorem

Let

▶ $B \in L(U, H_{-s})$ with s < 1/2, $C \in L(H, Y)$,

almost all eigenvalues λ_k of A lie on discs D_δ(e^{iθ_j}r_{jl}) along finitely many rays in C₋,

$$\sum_{k=0}^{\infty} |\lambda_k|^{-2(1-2s)} < \infty, \quad \lim_{l \to \infty} r_{j,l+1} - r_{jl} = \infty.$$

Then T has compact resolvent and a Riesz basis of fin.-dim. spectral subspaces.

If almost all discs contain only one simple λ_k , then T has a Riesz basis of generalised eigenvectors.

General setting now:

- ► $B \in L(U, H_{-s})$, $C \in L(H_s, Y)$ with $0 \le s \le 1$,
- T has compact resolvent and Riesz basis of fin.-dim. spectral subspaces.

Indefinite inner product on $H \times H$:

$$\langle v|w
angle = (Jv|w), \quad J = \begin{pmatrix} 0 & -il \\ il & 0 \end{pmatrix}, \quad (\cdot|\cdot) \text{ usual inner product}$$

 $\rightsquigarrow (H \times H, \langle \cdot | \cdot \rangle)$ Krein space.

Hamiltonian *J*-skew-selfadjoint, $T = -T^{\langle * \rangle}$. $\Rightarrow \sigma(T)$ symmetric w.r.t. *i*R.

Existence of solutions X

Theorem l et (A, B) approximately controllable, no non-observable eigenvalues of A on $i\mathbb{R}$. Then $\sigma(T) \cap i\mathbb{R} = \emptyset$, and for $\sigma \subset \sigma(T)$ skew-conjugate we have $W_{\sigma} = G(X)$ with X selfadjoint solution of $A^{*}X + X(A - BB^{*}X) + C^{*}C = 0$ on dense subspace $\mathcal{D}_X \subset H$. X_{\pm} corresp. to $\sigma = \sigma(T) \cap \mathbb{C}_{\mp}$ is nonnegative/nonpositive. ••••••

$$\sigma \subset \sigma(T) \text{ skew-conjugate if} \\ \sigma(T) = \sigma \uplus -\sigma^*.$$

Existence of solutions X

Theorem l et (A, B) approximately controllable, no non-observable eigenvalues of A on $i\mathbb{R}$. Then $\sigma(T) \cap i\mathbb{R} = \emptyset$, and for $\sigma \subset \sigma(T)$ skew-conjugate we have $W_{\sigma} = G(X)$ with X selfadjoint solution of $A^*X + X(A - BB^*X) + C^*C = 0$ on dense subspace $\mathcal{D}_X \subset H$.

 X_{\pm} corresp. to $\sigma = \sigma(T) \cap \mathbb{C}_{\mp}$ is nonnegative/nonpositive.

$$\sigma \subset \sigma(T)$$
 skew-conjugate if $\sigma(T) = \sigma \uplus - \sigma^*$.

Idea of the proof

Existence of X:

- $T = -T^{\langle * \rangle}$, σ skew-conj. $\Rightarrow W_{\sigma} = W_{\sigma}^{\langle \perp \rangle}$
- ▶ (A, B) approx. contr. $\Leftrightarrow \ker(A \lambda) \cap \ker B^* = \{0\} \ \forall \lambda \in \mathbb{C}$

$$\blacktriangleright \Rightarrow W_{\sigma} = G(X)$$

$$\blacktriangleright \ {\sf G}(X)={\sf G}(X)^{\langle \perp \rangle} \Rightarrow X \ {\sf selfadjoint}$$

 X_+ nonnegative:

► Consider
$$[v|w] = (J_2v|w), J_2 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

- $\operatorname{Re}[Tv|v] \leq 0$
- $ightarrow \mathcal{G}(X_+)$ is J_2 -nonnegative, i.e. $[v|v] \geq 0$ for $v \in \mathcal{G}(X_+)$
- $\blacktriangleright \Rightarrow X_+$ nonnegative

Theorem

Let

F

- (A, B) approximately controllable,
- ▶ no non-observable eigenvalues of A on iℝ,
- T has Riesz basis of gen. eigenvectors, whose part corresp. to ℂ_− is quadratically close to an ON system of H × {0}.

If $\sigma \subset \sigma(T)$ skew-conj. and $\sigma \cap \mathbb{C}_+$ finite, then $W_{\sigma} = G(X)$ with X bounded selfadjoint solution of

$$A^*X + XA - XBB^*X + C^*C = 0$$
 on \mathcal{D}_X .
for $A_X = A - BB^*X$, $\mathcal{D}(A_X) = \mathcal{D}_X$, we get $\sigma(A_X) = \sigma$.

Theorem

Let

- ▶ $B \in L(U, H_{-s})$ with s < 1/2, $C \in L(H, Y)$,
- almost all eigenvalues λ_k of A are simple, lie on discs
 D_δ(e^{iθ_j}r_{jl}) along finitely many rays in C_−, each disc contains only one λ_k,

►
$$\sum_{l=0}^{\infty} r_{jl}^{-2q} < \infty$$
, $r_{j,l+1}^{1-q} - r_{jl}^{1-q} \ge \beta > 0$ with $0 < q \le 1 - 2s$.

Then T admits a Riesz basis of gen. eigenvectors, whose part corresp. to \mathbb{C}_{-} is quadratically close to an ON system of $H \times \{0\}$.

Consider

$$\begin{split} & H = L^2([0,1]), \\ & Ax = x'', \quad \mathcal{D}(A) = \{ x \in H^2([0,1]) \, | \, x'(0) = x(1) = 0 \}, \\ & B^*x = x(0), \\ & \text{any } C \in L(H,Y). \end{split}$$

Then

- $B \in L(\mathbb{C}, H_{-s})$ for all s > 1/4,
- Previous theorem applies with 1/4 < s < 3/8, q = 1 2s,
- (A, B) approx. contr., A has no imag. eigenvalues,
- Existence of (bounded) solutions.

- Existence of bounded solutions under weaker assumption of Riesz basis of fin.-dim. spectral subspaces?
- Characterisation of solutions? E.g. if X solution, then G(X) = span{certain gen. eigenvectors} ?
- Non-selfadjoint solutions?
- A not normal?

- C. Wyss, B. Jacob, H. Zwart. Hamiltonians and Riccati equations for linear systems with unbounded control and observation operators. Submitted. Preprint 2011.
- C. Wyss. Hamiltonians with Riesz bases of generalised eigenvectors and Riccati equations. Indiana Univ. Math. J., to appear. Preprint 2010.
- C. Wyss. Perturbation theory for Hamiltonian operator matrices and Riccati equations. PhD thesis, University of Bern, 2008.