Quasi-hyperbolic semigroups

Yuri Tomilov (joint work with C. Batty (Oxford))

IM PAN, Warsaw and Nicholas Copernicus University, Toruń

Wuppertal, 18 July, 2011
Let T be a bounded operator on a Banach space X.
Let T be a bounded operator on a Banach space X.

The class of *contraction* (power bounded) operators T (or operator semigroups) on X:

$$\|T\| \leq 1 \quad \text{(sup}_{n \geq 0} \|T^n\| = c < \infty.)$$

is **comparatively** well-understood.
Let T be a bounded operator on a Banach space X.

The class of *contraction* (power bounded) operators T (or operator semigroups) on X:

$$
\|T\| \leq 1 \quad \left(\sup_{n \geq 0} \|T^n\| = c < \infty. \right)
$$

is comparatively well-understood.

Our aim is to try to understand an opposite class of *expansion* operators (operator semigroups) satisfying

$$
\|T^n x\| \geq c \|x\|
$$

at least in a certain sense to be made precise.
Hyperbolic operators

Definition A bounded linear operator T on a Banach space X is said to be \textit{hyperbolic} if

$$X = X_s \oplus X_u,$$

where X_s and X_u are closed T-inv. subspaces of X, $T \mid_{X_u}$ is invertible, and

$$\| (T \mid_{X_s})^n \| \leq \frac{1}{2}, \quad \| (T \mid_{X_u})^{-n} \| \leq \frac{1}{2} \quad \text{for some } n \in \mathbb{N}.$$
Hyperbolic operators

Definition A bounded linear operator T on a Banach space X is said to be *hyperbolic* if

$$X = X_s \oplus X_u,$$

where X_s and X_u are closed T-inv. subspaces of X, $T \upharpoonright_{X_u}$ is invertible, and

$$\| (T \upharpoonright_{X_s})^n \| \leq \frac{1}{2}, \quad \| (T \upharpoonright_{X_u})^{-n} \| \leq \frac{1}{2} \quad \text{for some } n \in \mathbb{N}.$$

In other words, for some $\alpha < 1$ and $\beta > 1$,

$$\| T^n x \| \leq C \alpha^n \| x \| \quad (x \in X_s, n \in \mathbb{N}), \quad \| T^n x \| \geq c \beta^n \| x \| \quad (x \in X_u, n \in \mathbb{N})$$

Note:

for non-zero $x \in X$ either $\| T^n x \| \geq c_x \beta^n$ or $\| T^n x \| \leq C_x \alpha^n, (n \in \mathbb{N})$.

[9x252] Hyperbolic operators

[11x235] Definition A bounded linear operator T on a Banach space X is said to be *hyperbolic* if

$$X = X_s \oplus X_u,$$

where X_s and X_u are closed T-inv. subspaces of X, $T \upharpoonright_{X_u}$ is invertible, and

$$\| (T \upharpoonright_{X_s})^n \| \leq \frac{1}{2}, \quad \| (T \upharpoonright_{X_u})^{-n} \| \leq \frac{1}{2} \quad \text{for some } n \in \mathbb{N}.$$

In other words, for some $\alpha < 1$ and $\beta > 1$,

$$\| T^n x \| \leq C \alpha^n \| x \| \quad (x \in X_s, n \in \mathbb{N}), \quad \| T^n x \| \geq c \beta^n \| x \| \quad (x \in X_u, n \in \mathbb{N})$$

Note:

for non-zero $x \in X$ either $\| T^n x \| \geq c_x \beta^n$ or $\| T^n x \| \leq C_x \alpha^n, (n \in \mathbb{N})$.
Hyperbolic operators

Definition A bounded linear operator T on a Banach space X is said to be hyperbolic if

$$X = X_s \oplus X_u,$$

where X_s and X_u are closed T-inv. subspaces of X, $T \upharpoonright X_u$ is invertible, and

$$\| (T \upharpoonright X_s)^n \| \leq \frac{1}{2}, \quad \| (T \upharpoonright X_u)^{-n} \| \leq \frac{1}{2} \quad \text{for some } n \in \mathbb{N}.$$

In other words, for some $\alpha < 1$ and $\beta > 1$,

$$\| T^n x \| \leq C \alpha^n \| x \| \quad (x \in X_s, n \in \mathbb{N}), \quad \| T^n x \| \geq c \beta^n \| x \| \quad (x \in X_u, n \in \mathbb{N})$$

Note:

for non-zero $x \in X$ either $\| T^n x \| \geq c_x \beta^n$ or $\| T^n x \| \leq C_x \alpha^n, (n \in \mathbb{N}).$

T is hyperbolic if and only if $\sigma(T) \cap \Gamma = \emptyset \quad (\Gamma \text{ is the unit circle}).$
One of motivations

Theorem [Krein] A difference equation

\[x_{n+1} = Tx_n + b_n, \quad n \in \mathbb{Z}, \]

admits a unique solution in \(l^\infty(\mathbb{Z}, X) \) for every \((b_n)_{n \in \mathbb{Z}} \in l^\infty(\mathbb{Z}, X)\) if and only if \(T \) is hyperbolic.

Here \(l^\infty(\mathbb{Z}, X) \) can be replaced by a variety of other spaces.
Observation If T is hyperbolic and Y is a closed T-invariant subspace of X, then $T \upharpoonright_Y$ may not be hyperbolic, but each non-zero orbit contracts exponentially or expands exponentially, with uniform exponent.
Observation: If T is hyperbolic and Y is a closed T-invariant subspace of X, then $T \mid_Y$ may not be hyperbolic, but each non-zero orbit contracts exponentially or expands exponentially, with uniform exponent.

Definition (Eisenberg, Hedlund (1970)): Assume T is invertible.

- T is *expansive* if for each x there exists $n_x \in \mathbb{Z}$ such that
 \[\| T^{n_x} x \| \geq 2 \| x \| ; \]

- T is *uniformly expansive* if there exists $n \in \mathbb{N}$ (independent of x) such that
 \[\max(\| T^{n} x \|, \| T^{-n} x \|) \geq 2 \| x \| \]
 for all x.

Hedlund (1971):

T is uniformly expansive \iff $\sigma_{ap}(T) \cap \Gamma = \emptyset$ \iff $\| (T - \lambda)^{n} x \| \geq c \| x \|$ ($x \in X, \lambda \in \Gamma$).
Observation If T is hyperbolic and Y is a closed T-invariant subspace of X, then $T \upharpoonright_Y$ may not be hyperbolic, but each non-zero orbit contracts exponentially or expands exponentially, with uniform exponent.

Definition (Eisenberg, Hedlund (1970)): Assume T is invertible.

1. T is **expansive** if for each x there exists $n_x \in \mathbb{Z}$ such that
 $$\|T^{n_x} x\| \geq 2\|x\|;$$

2. T is **uniformly expansive** if there exists $n \in \mathbb{N}$ (independent of x) such that
 $$\max(\|T^n x\|, \|T^{-n} x\|) \geq 2\|x\|$$
 for all x.

Hedlund (1971):

T is uniformly expansive $\iff \sigma_{ap}(T) \cap \Gamma = \emptyset$

$\iff \|(T - \lambda)x\| \geq c\|x\|$ (for $x \in X, \lambda \in \Gamma$)
Quasi-hyperbolic operators

T is not necessarily invertible

Definition T is *quasi-hyperbolic* if there exists $n \in \mathbb{N}$ (independent of x) such that

$$\max \left(\| T^{2n} x \|, \| x \| \right) \geq 2 \| T^n x \|$$

for all $x \in X$.

Elementary properties

T hyperbolic \Rightarrow T quasi-hyperbolic

T is uniformly expansive \iff T is quasi-hyperbolic and invertible

T quasi-hyperbolic \Rightarrow $T \upharpoonright Y$ quasi-hyperbolic

T quasi-hyperbolic \Rightarrow $\sigma_{ap}(T) \cap \Gamma = \emptyset$
Quasi-hyperbolic operators

T is not necessarily invertible

Definition T is *quasi-hyperbolic* if there exists $n \in \mathbb{N}$ (independent of x) such that

$$\max \left(\| T^{2n} x \|, \| x \| \right) \geq 2 \| T^n x \|$$

for all $x \in X$.

Elementary properties

- T hyperbolic \implies T quasi-hyperbolic
- T is uniformly expansive \iff T is quasi-hyperbolic and invertible
- T quasi-hyperbolic \implies $T \upharpoonright_Y$ quasi-hyperbolic
- T is quasi-hyperbolic \implies $\sigma_{ap}(T) \cap \Gamma = \emptyset$
Theorem (Read 1986, 88; Müller 1988) Let T be a bounded linear operator on X. There is a Banach space Y and a bounded operator S on Y such that X is isometrically embedded in Y, $S \restriction X = T$, $\|S\| = \|T\|$ and $\sigma(S) = \sigma_{ap}(T)$.

Corollary T is the restriction of a hyperbolic operator to a closed invariant subspace.

T is quasi-hyperbolic \iff T is quasi-hyperbolic \iff $\sigma_{ap}(T) \cap \Gamma = \emptyset$.
Theorem (Read 1986,88; Müller 1988) Let T be a bounded linear operator on X. There is a Banach space Y and a bounded operator S on Y such that X is isometrically embedded in Y, $S \upharpoonright X = T$, $\|S\| = \|T\|$ and $\sigma(S) = \sigma_{ap}(T)$.

Corollary
T is the restriction of a hyperbolic operator to a closed invariant subspace.
T is quasi-hyperbolic \iff
Theorem (Read 1986,88; Müller 1988) Let T be a bounded linear operator on X. There is a Banach space Y and a bounded operator S on Y such that X is isometrically embedded in Y, $S|_X = T$, $\|S\| = \|T\|$ and $\sigma(S) = \sigma_{ap}(T)$.

Corollary

T is the restriction of a hyperbolic operator to a closed invariant subspace.

T is quasi-hyperbolic \iff $\sigma_{ap}(T) \cap \Gamma = \emptyset$
Examples

1. Weighted shifts (Ridge, 1970)

\[X = l^2(\mathbb{Z}), \quad S_w(x) = (w_n x_{n-1})_{n \in \mathbb{Z}}, \quad x = (x_n)_{n \in \mathbb{Z}} \in X \]

The spectrum of \(S_w \) is an annulus centered at 0.

The approximate point spectrum is either equal to the spectrum, or it is the union of two annuli.
Examples
1. Weighted shifts (Ridge, 1970)

\[X = l^2(\mathbb{Z}), \quad S_w(x) = (w_n x_{n-1})_{n \in \mathbb{Z}}, \quad x = (x_n)_{n \in \mathbb{Z}} \in X \]

The spectrum of \(S_w \) is an annulus centered at 0.

The approximate point spectrum is either equal to the spectrum, or it is the union of two annuli.

If

\[w_n = \begin{cases} 2, & n \geq 0 \\ \frac{1}{2}, & n < 0 \end{cases} \]

then \(\sigma_{ap}(S_w) = \frac{1}{2}\Gamma \cup 2\Gamma \).
Examples

1. Weighted shifts (Ridge, 1970)

\[X = l^2(\mathbb{Z}), \quad S_w(x) = (w_nx_{n-1})_{n \in \mathbb{Z}}, \quad x = (x_n)_{n \in \mathbb{Z}} \in X \]

The spectrum of \(S_w \) is an annulus centered at 0.

The approximate point spectrum is either equal to the spectrum, or it is the union of two annuli.

If

\[w_n = \begin{cases} 2, & n \geq 0 \\ \frac{1}{2}, & n < 0 \end{cases} \]

then \(\sigma_{\text{ap}}(S_w) = \frac{1}{2}\Gamma \cup 2\Gamma \).

If

\[w_n = \begin{cases} \frac{1}{2}, & n \geq 0 \\ 2, & n < 0 \end{cases} \]

then \(\sigma_{\text{ap}}(S'_w) = \{ \lambda : \frac{1}{2} \leq |\lambda| \leq 2 \} \).
2. Wave equations (Cooper, Koch 1995)

The problem

\[
\Omega = \{(x, t) \in \mathbb{R}_+^2 : 0 < x < 1 + \frac{\sin(\pi t)}{2\pi}\}
\]

\[
u_{tt} - u_{xx} = 0 \text{ in } \Omega
\]

\[
u = 0 \text{ on } \partial \Omega
\]

\[
u(\cdot, 0) = f \in W_0^{1,2}(0, 1)
\]

\[
u_t(\cdot, 0) = g \in L^2(0, 1)
\]

is well-posed.
2. Wave equations (Cooper, Koch 1995)

The problem

\[\Omega = \{(x, t) \in \mathbb{R}_+^2 : 0 < x < 1 + \frac{\sin(\pi t)}{2\pi}\} \]

\[u_{tt} - u_{xx} = 0 \quad \text{in} \quad \Omega \]

\[u = 0 \quad \text{on} \quad \partial \Omega \]

\[u(\cdot, 0) = f \in W_0^{1,2}(0, 1) \]

\[u_t(\cdot, 0) = g \in L^2(0, 1) \]

is well-posed.

For the monodromy operator \(U(2, 0) : (f, g) \mapsto (u(\cdot, 2), u_t(\cdot, 2)) \) on \(X = W_0^{1,2} \times L^2 : \)

\[\sigma(U(2, 0)) = \{ \lambda : \frac{1}{\sqrt{3}} \leq |\lambda| \leq \sqrt{3} \}, \quad \sigma_{\text{ap}}(U(2, 0)) \cap \Gamma = \emptyset; \]
2. Wave equations (Cooper, Koch 1995)

The problem

\[
\begin{align*}
\Omega &= \{(x, t) \in \mathbb{R}_+^2 : 0 < x < 1 + \frac{\sin(\pi t)}{2\pi}\} \\
u_{tt} - u_{xx} &= 0 \text{ in } \Omega \\
u &= 0 \text{ on } \partial\Omega \\
u(\cdot, 0) &= f \in W_{0,2}^1(0, 1) \\
u_t(\cdot, 0) &= g \in L^2(0, 1)
\end{align*}
\]

is well-posed. For the monodromy operator \(U(2, 0) : (f, g) \mapsto (u(\cdot, 2), u_t(\cdot, 2))\) on \(X = W_{0,2}^1 \times L^2:\)

\[
\sigma(U(2, 0)) = \{\lambda : \frac{1}{\sqrt{3}} \leq |\lambda| \leq \sqrt{3}\}, \quad \sigma_{\text{ap}}(U(2, 0)) \cap \Gamma = \emptyset;
\]

\(U(2, 0)\) is quasi-hyperbolic and the energy \(\|U(t, 0)x\|^2, x \in X \setminus \{0\}\), grows exponentially in either forward or backward time.
3. Hyperbolic and quasi-hyperbolic operators appear naturally in the **smooth dynamics on manifolds** (operator-theoretical characterization of Anosov and quasi-Anosov maps; Mather-Maneñ theory)

Skip.
A question:

Is there a nice condition which characterises those operators T on X such that

- there exists a hyperbolic operator S on a Banach space Y
- X is continuously embedded in Y and
- $T = S|_X$?
Hyperbolic Semigroups

Definition A C_0-semigroup $\mathcal{T} = \{ T(t) : t \geq 0 \}$ (with generator A) is hyperbolic if there is a splitting

$$X = X_s \oplus X_u,$$

where X_s and X_u are closed \mathcal{T}-invariant subspaces of X, $T(t) \upharpoonright X_u$ is invertible for some (or all) $t > 0$, and

$$\| T(t) \upharpoonright X_s \| < \frac{1}{2}, \quad \| (T(t) \upharpoonright X_u)^{-1} \| < \frac{1}{2}$$

for some (or all) $t > 0$.

T is hyperbolic if and only if $T(1)$ is hyperbolic.

The problem: spectral mapping theorem $\sigma(T(t))\{0\} = e^{t\sigma(A)}$ does not in general hold for C_0-semigroups.

For Hilbert spaces, T is hyperbolic $\Leftrightarrow A - q$ is invertible for each $q \in \mathbb{R}$ and $\sup_{s \in \mathbb{R}} \| (A - q)^{-1} \| < \infty$ (Gearhart-Prüss).
Hyperbolic Semigroups

Definition A C_0-semigroup $\mathcal{T} = \{ T(t) : t \geq 0 \}$ (with generator A) is hyperbolic if there is a splitting

$$X = X_s \oplus X_u,$$

where X_s and X_u are closed \mathcal{T}-invariant subspaces of X, $T(t) \upharpoonright X_u$ is invertible for some (or all) $t > 0$, and

$$\| T(t) \upharpoonright X_s \| < \frac{1}{2}, \quad \| (T(t) \upharpoonright X_u)^{-1} \| < \frac{1}{2}$$

for some (or all) $t > 0$.

\mathcal{T} is hyperbolic if and only if $T(1)$ is hyperbolic.
Hyperbolic Semigroups

Definition A C_0-semigroup $\mathcal{T} = \{ T(t) : t \geq 0 \}$ (with generator A) is hyperbolic if there is a splitting

$$X = X_s \oplus X_u,$$

where X_s and X_u are closed \mathcal{T}-invariant subspaces of X, $T(t) |_{X_u}$ is invertible for some (or all) $t > 0$, and

$$\| T(t) |_{X_s} \| < \frac{1}{2}, \quad \| (T(t) |_{X_u})^{-1} \| < \frac{1}{2}$$

for some (or all) $t > 0$.

\mathcal{T} is hyperbolic if and only if $T(1)$ is hyperbolic.

The problem: spectral mapping theorem $\sigma(T(t)) \setminus \{ 0 \} = e^{t\sigma(A)}$ does not in general hold for C_0-semigroups.
Hyperbolic Semigroups

Definition A C_0-semigroup $\mathcal{T} = \{ T(t) : t \geq 0 \}$ (with generator A) is hyperbolic if there is a splitting

$$X = X_s \oplus X_u,$$

where X_s and X_u are closed \mathcal{T}-invariant subspaces of X, $T(t) \upharpoonright X_u$ is invertible for some (or all) $t > 0$, and

$$\| T(t) \upharpoonright X_s \| < \frac{1}{2}, \quad \| (T(t) \upharpoonright X_u)^{-1} \| < \frac{1}{2}$$

for some (or all) $t > 0$.

\mathcal{T} is hyperbolic if and only if $T(1)$ is hyperbolic.

The problem: spectral mapping theorem $\sigma(T(t)) \setminus \{0\} = e^{t\sigma(A)}$ does not in general hold for C_0-semigroups.

For Hilbert spaces, \mathcal{T} is hyperbolic $\iff A - is$ is invertible for each $s \in \mathbb{R}$ and $\sup_{s \in \mathbb{R}} \| (A - is)^{-1} \| < \infty$ (Gearhart-Prüss).
A motivation for hyperbolicity

Theorem [Krein, Daletskii, Latushkin, Pruess, Schnaubelt, Zhikov, ...] If A is the generator of a C_0-semigroup \mathcal{T} then

$$x'(t) = Ax(t) + f(t), \quad t \in \mathbb{R},$$

admits the unique bounded (mild) continuous solution on \mathbb{R} for every bounded continuous f if and only if \mathcal{T} is hyperbolic.
Definition A C_0-semigroup $\mathcal{T} = \{ T(t) : t \geq 0 \}$ is quasi-hyperbolic if there exists t (independent of x) such that

$$\max (\| T(2t)x \|, \| x \|) \geq 2 \| T(t)x \|$$

for all $x \in X$.

Properties:

- \mathcal{T} is quasi-hyperbolic \iff $\mathcal{T}(1)$ is quasi-hyperbolic \iff \mathcal{T} is a restriction of a hyperbolic semigroup \iff $\sigma_{ap}(\mathcal{T}(1)) \cap \Gamma = \emptyset = \implies \| A - is \| \geq c \| x \|, s \in \mathbb{R}$.

Basic examples: weighted shift semigroups on $L^p(\mathbb{R})$.

Yuri Tomilov (IM PAN, Warsaw and Nicholas Copernicus University, Toruń)

Quasi-hyperbolic semigroups

Wuppertal, 18 July, 2011
Quasi-hyperbolic Semigroups

Definition A C_0-semigroup $\mathcal{T} = \{T(t) : t \geq 0\}$ is quasi-hyperbolic if there exists t (independent of x) such that

$$\max (\|T(2t)x\|, \|x\|) \geq 2\|T(t)x\|$$

for all $x \in X$.

Properties:

\mathcal{T} is quasi-hyperbolic \iff $T(1)$ is quasi-hyperbolic

\iff \mathcal{T} is a restriction of a hyperbolic semigroup

\iff $\sigma_{ap}(T(1)) \cap \Gamma = \emptyset$

\implies $\|(A - is)x\| \geq c\|x\|$, $s \in \mathbb{R}$,

(A satisfies lower bounds on $i\mathbb{R}$)
Quasi-hyperbolic Semigroups

Definition A C_0-semigroup $\mathcal{T} = \{T(t) : t \geq 0\}$ is quasi-hyperbolic if there exists t (independent of x) such that

$$\max (\|T(2t)x\|, \|x\|) \geq 2\|T(t)x\|$$

for all $x \in X$.

Properties:

- \mathcal{T} is quasi-hyperbolic \iff $T(1)$ is quasi-hyperbolic
- \iff \mathcal{T} is a restriction of a hyperbolic semigroup
- \iff $\sigma_{\text{ap}}(T(1)) \cap \Gamma = \emptyset$
- \implies $\|(A - is)x\| \geq c\|x\|$, $s \in \mathbb{R}$
 - (A satisfies lower bounds on $i\mathbb{R}$)

Basic examples: weighted shift semigroups on $L^p(\mathbb{R})$
Remark There exist a semigroup $\mathcal{T} = (T(t))_{t \geq 0}$ such that \mathcal{T} is not quasi-hyperbolic, but A satisfies lower bounds

$$\|(A - is)x\| \geq c\|x\|, \quad (s \in \mathbb{R}, x \in D(A)),$$
Remark There exist a semigroup $T = (T(t))_{t \geq 0}$ such that T is not quasi-hyperbolic, but A satisfies lower bounds

$$\|(A - is)x\| \geq c\|x\|, \quad (s \in \mathbb{R}, x \in D(A)) :$$

Let $a > 2q/p, \quad 1 < p < 2 < q < \infty$

$$X := L_p(\mathbb{R}, e^{2x} \, dx) \cap L_q(\mathbb{R}, w(x) \, dx), \quad w(x) := \begin{cases} e^{ax} & (x \leq 0), \\ 1 & (x > 0), \end{cases}$$

$$\|f\|_X = \left\{ \int_{\mathbb{R}} |f(x)|^p e^{2x} \, dx \right\}^{1/p} + \left\{ \int_{\mathbb{R}} |f(x)|^q w(x) \, dx \right\}^{1/q}.$$
Remark There exist a semigroup $\mathcal{T} = (T(t))_{t \geq 0}$ such that \mathcal{T} is not quasi-hyperbolic, but A satisfies lower bounds

$$\|(A - is)x\| \geq c\|x\|, \quad (s \in \mathbb{R}, x \in D(A)) :$$

Let $a > 2q/p, \quad 1 < p < 2 < q < \infty$

$$X := L_p(\mathbb{R}, e^{2x} \, dx) \cap L_q(\mathbb{R}, w(x) \, dx), \quad w(x) := \begin{cases}
 e^{ax} & (x \leq 0), \\
 1 & (x > 0),
\end{cases}$$

$$\|f\|_X = \left\{ \int_{\mathbb{R}} |f(x)|^p e^{2x} \, dx \right\}^{1/p} + \left\{ \int_{\mathbb{R}} |f(x)|^q w(x) \, dx \right\}^{1/q}.$$

Let $$(T(t)f)(s) = f(s + t) \ (s, t \in \mathbb{R}).$$

Then $\sigma(A) \cap i\mathbb{R} = \emptyset, \quad \sup_{s \in \mathbb{R}} \|(is - A)^{-1}\| < \infty.$
Remark There exist a semigroup $\mathcal{T} = (T(t))_{t \geq 0}$ such that \mathcal{T} is not quasi-hyperbolic, but A satisfies lower bounds

$\| (A - is)x \| \geq c \| x \|, \quad (s \in \mathbb{R}, x \in D(A))$

Let $a > 2q/p$, $1 < p < 2 < q < \infty$

$X := L_p(\mathbb{R}, e^{2x}dx) \cap L_q(\mathbb{R}, w(x)dx), \quad w(x) := \begin{cases} e^{ax} & (x \leq 0), \\ 1 & (x > 0), \end{cases}$

$\| f \|_X = \left\{ \int_{\mathbb{R}} |f(x)|^p e^{2x} \, dx \right\}^{1/p} + \left\{ \int_{\mathbb{R}} |f(x)|^q w(x) \, dx \right\}^{1/q}$

Let $(T(t)f)(s) = f(s + t) \ (s, t \in \mathbb{R})$.
Then $\sigma(A) \cap i\mathbb{R} = \emptyset$, $\sup_{s \in \mathbb{R}} \| (is - A)^{-1} \| < \infty$. However,

$\forall t > 0 \ \exists f \in X, \| f \| = 1 : \quad \| T(-t)f \|_X < 2\| f \|_X, \quad \| T(t)f \|_X < 2\| f \|_X$.

Yuri Tomilov (IM PAN, Warsaw and Nichola)

Quasi-hyperbolic semigroups
Wuppertal, 18 July, 2011
Characterisations of quasi-hyperbolicity

Theorem
a) Let \mathcal{T} be a C_0-semigroup on a Hilbert space X with generator A. Then \mathcal{T} is quasi-hyperbolic if and only if A satisfies lower bounds

$$\|(A - is)x\| \geq c\|x\| \quad (s \in \mathbb{R}, x \in D(A))$$
Characterisations of quasi-hyperbolicity

Theorem a) Let \mathcal{T} be a C_0-semigroup on a Hilbert space X with generator A. Then \mathcal{T} is quasi-hyperbolic if and only if A satisfies lower bounds

$$\|(A - is)x\| \geq c\|x\| \quad (s \in \mathbb{R}, x \in D(A))$$

b) If X is a Banach space then \mathcal{T} is quasi-hyperbolic if and only if the multiplication operator

$$(M_{A-i}f)(s) = (A - is)f(s)$$

is a *lower Fourier multiplier* on $L^p(\mathbb{R}, X)$, $1 \leq p < \infty$, i.e.

$$\|\mathcal{F}^{-1}M_{A-i}\mathcal{F} f(s)\|_{L^p} \geq c\|f\|_{L^p}$$

for all Schwartz functions $f : \mathbb{R} \mapsto D(A)$, where \mathcal{F} is the Fourier transform on $L^1(\mathbb{R}, X)$.
What do lower bounds for A imply?

For simplicity of statement, assume that $(T(t))_{t \in \mathbb{R}}$ is a C_0-group, i.e., each $T(t)$ is invertible.

Theorem Let A be the generator of a C_0-group $(T(t))_{t \in \mathbb{R}}$ on a Banach space X, and assume that

$$\| (A - is)x \| \geq c \| x \| \quad (s \in \mathbb{R}, x \in D(A)).$$
What do lower bounds for A imply?

For simplicity of statement, assume that $(T(t))_{t \in \mathbb{R}}$ is a C_0-group, i.e., each $T(t)$ is invertible.

Theorem Let A be the generator of a C_0-group $(T(t))_{t \in \mathbb{R}}$ on a Banach space X, and assume that

$$
\|(A - is)x\| \geq c\|x\| \quad (s \in \mathbb{R}, x \in D(A)).
$$

Then for each non-zero x,

(i) $\|T(t)x\|$ grows faster than polynomially either as $t \to \infty$ or as $t \to -\infty$, and
What do lower bounds for A imply?

For simplicity of statement, assume that $(T(t))_{t \in \mathbb{R}}$ is a C_0-group, i.e., each $T(t)$ is invertible.

Theorem Let A be the generator of a C_0-group $(T(t))_{t \in \mathbb{R}}$ on a Banach space X, and assume that

$$\| (A - is)x \| \geq c \| x \| \quad (s \in \mathbb{R}, x \in D(A)).$$

Then for each non-zero x,

(i) $\| T(t)x \|$ grows faster than polynomially either as $t \to \infty$ or as $t \to -\infty$, and

(ii) There exists $\epsilon_x > 0$ such that

$$\int_{-\infty}^{\infty} \| T(t)x \| e^{-\epsilon_x |t|} \, dt = \infty.$$
Continuous embedding?

If A satisfies

$$\|(A - is)x\| \geq c\|x\| \quad (s \in \mathbb{R}, x \in D(A))$$

can X be continuously embedded in a space Y in such a way that there is a hyperbolic C_0-semigroup $\{S(t) : t \geq 0\}$ on Y such that $T(t) = S(t) \mid_X$?
Continuous embedding?

If A satisfies

$$
\| (A - is)x \| \geq c \| x \| \quad (s \in \mathbb{R}, x \in D(A))
$$

can X be continuously embedded in a space Y in such a way that there is a hyperbolic C_0-semigroup $\{S(t) : t \geq 0\}$ on Y such that $T(t) = S(t) \upharpoonright X$?

A necessary condition for this:
each orbit nontrivial orbit $T(t)x$ should grow exponentially in forward or backward time, with uniform exponent.
Continuous embedding?

If A satisfies

$$\| (A - is)x \| \geq c \| x \| \quad (s \in \mathbb{R}, x \in D(A))$$

can X be continuously embedded in a space Y in such a way that there is a hyperbolic C_0-semigroup \{ $S(t) : t \geq 0$ \} on Y such that $T(t) = S(t) \upharpoonright X$?

A necessary condition for this:
each orbit nontrivial orbit $T(t)x$ should grow exponentially in forward or backward time, with uniform exponent.

If $(T(t))_{t \geq 0}$ has growth bound 0 (the spectral radius of $T(t)$ is 1) and A satisfies the condition above, then T is not quasi-hyperbolic, but such growth does occur (in negative time).
THANK YOU FOR YOUR ATTENTION!
M compact Riemann manifold, with tangent bundle \(TM \), \(\varphi \) a diffeomorphism of \(M \).

Definition \(\varphi \) is Anosov if \(TM = TM_s \oplus TM_u \) where \(D\varphi \) contracts \(TM_s \) exponentially in positive time and contracts \(TM_u \) exponentially in negative time.

\(C(TM) \) Banach space of continuous sections of \(TM \) (with sup norm)

Define push-forward operator on \(C(TM) \) :

\[
(E_{\varphi}f)(\theta) = D\varphi(\varphi^{-1}\theta)f(\varphi^{-1}\theta) \quad (\theta \in M)
\]

Mather (1968): \(\varphi \) is Anosov if and only if \(E_{\varphi} \) is hyperbolic.
Definition \(\varphi \) is quasi-Anosov if, for all \(\theta \in M \) and all non-zero \(x \in TM_\theta \),

\[
\{ (D\varphi)^n(\theta)x : n \in \mathbb{Z} \}
\]

is unbounded.

Mané (1977): \(\varphi \) is quasi-Anosov if and only if \(M \) can be embedded in a manifold \(N \) on which \(\varphi \) can be extended to an Anosov diffeomorphism.

Moreover, \(\varphi \) is quasi-Anosov if and only if \(\sigma_{ap}(E\varphi) \cap \Gamma = \emptyset \), i.e.,

\(E\varphi \) is quasi-hyperbolic