Model Development, Uncertainty Quantification, and Control Design for Nonlinear Smart Material Systems

Ralph C. Smith
Department of Mathematics
North Carolina State University

Zhengzheng Hu, John Crews, Jerry McMahan (NCSU)
Michael Hays, Billy Oates (Florida State University)

Research Support: Air Force grant AFOSR FA9550-08-1-0348
Applications

Ferroelectric (e.g., PZT)
- High Speed Nano-positioning
- Membrane mirrors/antennas

Ferromagnetic (e.g., Terfenol-D)
- High Speed Milling
- Catheters for Laser Ablation
- SMA Hinges for Solar Arrays
- Chevrons for Noise Reduction

Ferroelastic (e.g., Shape Memory Alloy)
Ferroelectric Model Development -- Mesoscopic Level

Helmholtz Energy Density: \(\alpha = \pm 180, 90 \)

\[\psi_{\alpha}(P, \varepsilon) = \frac{1}{2} \eta_{\alpha}(P - P_{R}^{\alpha})^2 + \frac{1}{2} c_{\alpha}^P (\varepsilon - \varepsilon_{R}^{\alpha})^2 + h_{\alpha}(P - P_{R}^{\alpha})(\varepsilon - \varepsilon_{R}^{\alpha}) \]

Gibbs Energy Density:

\[G_{\alpha}(E, \sigma; P, \varepsilon) = \psi_{\alpha}(P, \varepsilon) - EP - \sigma \varepsilon \]

Thermodynamic Equilibria: \(\frac{\partial G}{\partial P} = 0, \frac{\partial G}{\partial \varepsilon} = 0 \)

\[P^{\alpha} = P_{R}^{\alpha} + \chi_{\alpha}^E E + d_{\alpha} \sigma \]

\[\varepsilon^{\alpha} = \varepsilon_{R}^{\alpha} + d_{\alpha} E + s_{\alpha}^E \sigma \]

Note:
- Linear in each well
- Hysteresis, nonlinearities due to switching between wells
Model Development -- Mesoscopic Level

Thermodynamic Behavior:

\[P^\alpha = P^\alpha_R + \chi^\sigma_\alpha E + d_\alpha \sigma \]

\[\varepsilon^\alpha = \varepsilon^\alpha_R + d_\alpha E + s^E_\alpha \sigma \]
Model Development -- Mesoscopic Level

Problem: Kinetics produce creep

Solution: Theory of thermally activated processes. E.g., minimize

$$G = \phi(p) - K(T) - TS - Ep$$

$$= \phi(p) - K(T) - Tk \ln \frac{N_-}{\prod_{p \in S_-} N_p} - Ep$$

Dipole Fractions:

$$\dot{x}_- = -p_{-90}x_- + p_{90-}x_{90}$$

$$\dot{x}_{90} = p_{-90}x_- - (p_{90-} + p_{90+})x_{90} + p_{+90}x_+$$

$$\dot{x}_+ = p_{90+}x_{90} - p_{+90}x_+$$

Transition Likelihoods:

$$p_{\alpha\beta} = \frac{1}{\tau} e^{-\Delta G_{\alpha\beta} V/kT}$$

Polarization and Strain Kernels:

$$\overline{P} = \sum_{\alpha = \pm, 90} x_\alpha P^\alpha \quad \overline{\varepsilon} = \sum_{\alpha = \pm, 90} x_\alpha \varepsilon^\alpha$$
Model Development -- Macroscopic Level

Ferroelectric Materials:
• Incorporate grains, polycrystallinity, variable interaction fields

Homogenized Energy Model (HEM):
\[\varepsilon(E(t), \sigma(t); x_+) = \int_0^\infty \int_{-\infty}^\infty \bar{\varepsilon}(E(t) + E_I; F_c) \nu_I(E_I) \nu_c(F_c) dE_I dF_c \]

Note:
\[\bar{\varepsilon} = \sum_{\alpha = \pm, 90} x_{\alpha}(E, \sigma) \left[E + d_{\alpha} E + s^E \sigma \right] \]
\[= S^E \sigma + \bar{d}(E, \sigma) E + \bar{\varepsilon}_{irr}(E, \sigma) \]

Constitutive Relation:
\[\varepsilon(E, \sigma) = S^E \sigma + \bar{d}(E, \sigma_0) E + \varepsilon_{irr}(E, \sigma_0) \]
\[\Rightarrow \sigma(E, \varepsilon) = c^E \varepsilon - e(E, \sigma_0) E - c^E \varepsilon_{irr}(E, \sigma_0) \]

Examples:
• Beams, shells, structural-acoustic systems
Model Development -- Macroscopic Level

Ferroelectric Materials:
• Incorporate grains, polycrystallinity, variable interaction fields

Homogenized Energy Model (HEM):
\[\varepsilon(E(t), \sigma(t); x_+) = \int_0^{\infty} \int_{-\infty}^{\infty} \varepsilon(E(t) + E_I; F_c) \nu_I(E_I)\nu_c(F_c) dE_I dF_c \]

Interaction, coercive field densities

Density Representations:
\[\nu_I(E_I) = c_2 \sum_{j=1}^{N_\beta} \beta_j \phi_j(E_I), \quad \nu_c(E_c) = c_1 \sum_{i=1}^{N_\alpha} \alpha_i \varphi_i(E_c) \]

Basis Choices:
\[\phi_j(E_I) = \frac{1}{\sigma_I^j \sqrt{2\pi}} e^{-E_I^2/2(\sigma_I^j)^2} \]
\[\varphi_i(E_c) = \frac{1}{\sigma_c^i E_c \sqrt{2\pi}} e^{-[\ln(E_c) - \mu_c^i]^2/2(\sigma_c^i)^2} \]
Homogenized Energy Model: Experimental Validation

PZT Data: York 2008

[Graphs showing polarization vs. time, strain vs. time, and electric field vs. polarization and strain.]
Structural Model: Macro-Fiber Composites (MFC)

Experimental Structure:

Beam Model:

\[\rho \frac{\partial^2 w}{\partial t^2} - \frac{\partial^2 M}{\partial x^2} = f \]

Constitutive Relation: (Kelvin-Voigt damping)

\[\sigma(E, \varepsilon) = c^E \varepsilon + c_D \dot{\varepsilon} - \epsilon(E, \sigma_0) E - c^E \varepsilon_{irr}(E, \sigma_0) \]

Here

\[\varepsilon = \kappa z = -\frac{\partial^2 w}{\partial x^2} z \]

Moment:

\[M = \int_{\text{thickness}} \sigma z dz \]

\[\Rightarrow M = -c^E I \frac{\partial^2 w}{\partial x^2} - c_D I \frac{\partial^3 w}{\partial x^2 \partial t} - [k_1 \epsilon(E, \sigma_0) E + k_2 \varepsilon_{irr}(E, \sigma_0)] \chi_{MFC}(x) \]
Uncertainty Quantification and Parameter Estimation

Sources of Uncertainty:
- Model
- Sensor measurements
- Initial/boundary conditions

Initial Strategy:
- Quantify uncertainty in parameters
- Propagate uncertainty through model

Parameters: $q = (q_{\text{beam}}, q_{\text{hys}})$
 - Beam: $q_{\text{beam}} = (\rho, c^E I, C_D I, k_1, k_2)$
 - HEM: $q_{\text{hys}} = (\varepsilon_R, \eta, \tau, \gamma, \sigma_c, \mu_c, \sigma_I, \alpha_i, \beta_j)$

Data-Driven Techniques:
- Used to obtain initial parameter estimates

Observation Process: Consider

$$w_j = w(t_j, \bar{x}; q) + \varepsilon_j$$

 IID Random Variable
$$E(\varepsilon_j) = 0$$
$$\text{var}(\varepsilon_j) = \sigma_0^2$$

Strategy: Treat q as random variable and determine covariance matrix or densities
Nonlinear Ordinary Least Squares

Parameter Values:

\[\hat{q} = \arg \min_{q \in Q} \sum_{j=1}^{N} [w_j - w(t_j, \bar{x}; q)]^2 \]

Covariance Estimate:

\[\text{cov}(\hat{q}) = \hat{s}^2 \left[\chi^T(\hat{q})\chi(\hat{q}) \right]^{-1} \]

Variance
Fisher Information
Matrix

\[\chi_{jk}(\hat{q}) = \frac{\partial w(t_j, \bar{x}; \hat{q})}{\partial q_k} \]

Sensitivity
Matrix

Problem:

- Fisher information matrix ill-conditioned
- Redundant information

One Solution:

- Bootstrapping (resampling) techniques

<table>
<thead>
<tr>
<th>Field (MV/m)</th>
<th>Displacement (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.74 \times 10^8</td>
<td>0.86</td>
</tr>
<tr>
<td>0.20 \times 10^{-4}</td>
<td>1.91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field (MV/m)</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field (MV/m)</th>
<th>Displacement (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Residual Bootstrapping to Construct Parameter Densities

Algorithm:

1. Compute
 \[\hat{q} = \arg \min_{q \in Q} \sum_{j=1}^{N} [w_j - w(t_j, \bar{x}; q)]^2 \]

2. Compute residuals
 \[r_j = w_j - w(t_j, \bar{x}; \hat{q}), \quad j = 1 \cdots N \]

3. Compute bootstrapped data values
 \[\hat{w}_j^k = w(t_j, \bar{x}; \hat{q}) + r_j v_j \]
 where \(v_j \) satisfies \(E(v_j) = 0, E(v_j^2) = E(v_j^3) = 1 \)

4. Compute
 \[\hat{q} = \arg \min_{q \in Q} \sum_{j=1}^{N} [\hat{w}_j^k - w(t_j, \bar{x}; q)]^2 \]

5. This yields \(K \) estimates of \(q \)
Simplistic Strategy:

Employ gains from linearized system

\[
\frac{dy}{dt} = Ay(t) + Bu(t) + G(t)
\]

in nonlinear system

\[
\frac{dy}{dt} = Ay(t) + [B(u, y)](t) + G(t)
\]
Simplistic Strategy:

Employ gains from linearized system

\[\frac{dy}{dt} = Ay(t) + Bu(t) + G(t) \]

in nonlinear system

\[\frac{dy}{dt} = Ay(t) + [B(u, y)](t) + G(t) \]

Deployment, Control and Vibration Attenuation for Radar Masts Using Shape Memory Polymers
Nonlinear Model-Based Control Designs

Nonlinear Inverse Filter/Linear Control:

- Employed by a number of researchers

Nonlinear Control:

- Synthesis between theory and experiments required for real-time implementation
Nonlinear Optimal Control

Function to be Minimized:

\[J(u) = \frac{1}{2} y^T(t_f) \Pi_f y(t_f) + \frac{1}{2} \int_0^{t_f} [y^T Qy + u^T Ru] \, dt \]

Strategy: Form the Hamiltonian

\[H(y, \lambda, u) = \frac{1}{2} [y^T Qy + u^T Ru] + \lambda^T [Ay + B(u) + G] \]

Unconstrained optimization yields the necessary conditions

\[\dot{\lambda} = -\nabla_y H \quad \Rightarrow \quad \dot{\lambda}(t) = -A^T \lambda(t) - Qy(t) \]

\[0 = \nabla_u H \quad \Rightarrow \quad Ru^*(t) + [B_u^T(u^*)](t) \lambda(t) = 0 \]

Optimality System:

\[
\begin{bmatrix}
y(t) \\
\lambda(t)
\end{bmatrix} =
\begin{bmatrix}
Ay(t) + [B(u)](t) + G(t) \\
-A^T \lambda(t) - Qy(t)
\end{bmatrix}, \quad y(0) = y_0
\]

\[
\begin{bmatrix}
\lambda(t_f) = \Pi_f y(t_f)
\end{bmatrix}
\]

with \[u^*(t) = -R^{-1}[B_u^T(u^*)](t) \lambda(t) \]
Numerical Method for Two-Point BVP

Optimality System: For \(z = [y, \lambda]^T \), pose as

\[
\dot{z}(t) = F(t, z) \\
E_0 z(0) = [y_0, 0]^T, \quad E_T z(t_f) = [0, \Pi_f y(t_f)]^T
\]

Solution Technique:

Discretize with forward difference and solve

\[
\mathcal{F}(z_h) = 0
\]

using the quasi-Newton iteration

\[
z_h^{m+1} = z_h^m + \xi_h^m \quad \text{where} \quad \mathcal{F}'(z_h^m) \xi_h^m = -\mathcal{F}(z_h^m)
\]

Note:

- Employ analytic LU decomposition
- 2-D examples: have run over 500,000 unknowns
- Open loop computation for later experimental example: \(~7\) seconds
Nonlinear Control -- Open Loop
Problem: Open loop control not robust; e.g., 0.03 second delay
Problem: Open loop control not robust; e.g., 0.03 second delay

Strategy: Feedback around optimal trajectory \((u^*(t), y^*(t))\)

\[
y^*(0) + \delta y(0) \\
y^*(0) \\
y^*(t) \\
y^*(t) + \delta y(t)
\]

PI Perturbation Control:
\[
\delta u(t) = -k_I e(t) - k_I \int_0^t e(s) ds
\]

Narrowband Optimal Control:
Experimental Implementation --- Tracking at 300 Hz

Observation: PI starts to break down at 300 Hz
Experimental Implementation --- Tracking at 1000 Hz

PI Control

- Commanded Displacement
- Reference Signal

Hysteretic Behavior

Observation:
- Model fit at 300 Hz and 500 Hz
 --- it is predicting at 1000 Hz

Perturbation Control

- Commanded Displacement
- Reference Signal
Narrowband Perturbation Feedback

Recall: Hysteresis nonlinearity can produce higher harmonics

Filter Equations:

\[
\frac{dx_f}{dt} = A_f x_f(t) + BC x(t)
\]

\[
A_{fi} = \begin{bmatrix}
-2\xi_i \omega_i & -\omega_i^2 \\
1 & 0
\end{bmatrix}
\]

Note: \(\omega_i\) is a frequency being targeted
\(\xi_i\) is an associated damping coefficient

Control Law:

\[
u(t) = u^*(t) + u_{NB}(t) + u_I(t)
\]

Optimal Control

Narrowband Feedback

\[
u_{NB} = -[K_f \ K][x_f ; e]
\]
Narrowband Perturbation Feedback --- Experimental Results

Recall: Hysteresis nonlinearity can produce higher harmonics

Filter Equations:

\[
\frac{dx_f}{dt} = A_f x_f(t) + BCx(t)
\]

\[
A_f = \begin{bmatrix}
-2\xi_i \omega_i & -\omega_i^2 \\
1 & 0
\end{bmatrix}
\]

Note: \(\omega_i\) is a frequency being targeted

\(\xi_i\) is an associated damping coefficient

Control Law:

\[
u(t) = u^*(t) + u_{NB}(t) + u_I(t)
\]

Optimal Control

Narrowband Feedback

Integral Feedback

\[
u_{NB} = -[K_f \ K][x_f \ ; \ e]
\]

Note: 450 \(\mu\)m Max Displacements
Concluding Remarks

Material Properties:
- Hysteresis and constitutive nonlinear inherent to high performance smart materials.
- Hysteresis and nonlinearities can be advantageous

Nonlinear Model Development:
- Physics-based models suitably accurate and efficient for design and control applications.

Uncertainty Quantification:
- Bootstrapping permits characterization of non-Gaussian parameter densities.
- Monte Carlo/bootstrapping methods used to construct confidence bounds for model since not limited by number of parameters.

Control Design:
- Perturbation designs permit real-time implementation.