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Schrödinger Operators

Consider

Au = −
n∑

k,j=1

∂k(akj∂ju) + Vu,

Bu = −∆u + Vu.

The associated quadratic forms

a(u, u) :=
n∑

k,j=1

∫
Rn

akj∂ku∂ju +

∫
Rn

V |u|2

b(u, u) :=

∫
Rn

|∇u|2 +

∫
Rn

V |u|2,

u ∈ D(a) = D(b) = {u ∈W 1,2(Rn);
∫
Rn V |u|2 <∞}.
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Assumptions

(H)


akj = ajk ∈W 1,∞

loc (Rn,R), ∂jakj = o(|x |
α
2 ) as |x | → ∞,

η|ξ|2 ≤
∑n

j ,k=1 akj(x)ξkξj ≤ Λ|ξ|2 for all ξ ∈ Rn,

V ∈ L1loc(Rn) such that V (x) ≥ |x |α, α > 2.
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Spectrum

lim|x |→+∞ V (x) = +∞ implies that A and B have compact
resolvents. Thus,

σ(A) = {µi ; i = 0, 1, . . .}
σ(B) = {λi ; i = 0, 1, . . .}.

Let (ψi )i≥0 and (ϕi )i≥0 the corresponding normalized
eigenfunctions of A and B, respectively.



Kernel and
eigenfunction
estimates for
some second
order elliptic
operators

Abdelaziz
Rhandi

(Department
of

Mathematics,
University of
Salerno, Italy)
(Joint work
with E.M.
Ouhabaz)

Outline

Introduction

Heat kernel
estimates

Gaussian estimates 1

It is known that A and B have heat kernels kt(x , y) and
pt(x , y) satisfying

pt(x , y) ≤ 1

(4πt)n/2
e−
|x−y|2

4t , kt(x , y) ≤ Ct−n/2e−c
|x−y|2

t

for t > 0 and constants c , C > 0



Kernel and
eigenfunction
estimates for
some second
order elliptic
operators

Abdelaziz
Rhandi

(Department
of

Mathematics,
University of
Salerno, Italy)
(Joint work
with E.M.
Ouhabaz)

Outline

Introduction

Heat kernel
estimates

Gaussian estimates 2

See [E.M. Ouhabaz: Proc. Amer. Math. Soc. 134, 2006].

pt(x , y) ≤ C

tn/2
e−λ0te−

|x−y|2
4t

[
1 + λ0t +

|x − y |2

t

] n
2

and

kt(x , y) ≤ C

tn/2
e−µ0te−

ρ2(x,y)
4t

[
1 + µ0t +

ρ2(x , y)

t

] n
2

, t > 0,

where

ρ(x , y) := sup{φ(x)− φ(y) : φ ∈ C∞c (Rn),
n∑

k,j=1

akj∂kφ∂jφ ≤ 1 a.e. on Rn}.
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Intrinsic ultracontractivity for B

E.B. Davies in 1984 showed

pt(x , y) ≤ Cect
−b
ϕ0(x)ϕ0(y), (1)

x , y ∈ Rn, 0 < t ≤ 1, where C , c are constants and b > α+2
α−2 .

Using Lyapunov functions techniques Metafune and Spina [JEE
7, 2007] obtained (1) with b = α+2

α−2 .
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Intrinsic ultracontractivity for B

Davies showed also

c1|x |−βe−
|x|γ
γ ≤ ϕ0(x) ≤ c2|x |−βe−

|x|γ
γ (2)

for large |x |, β = α
4 + n−1

2 , γ = 1 + α
2 . By (1),

pt(x , y) ≤ Cect
−b

(|x ||y |)−βe−
|x|γ
γ e−

|y|γ
γ (3)

for large |x |, |y |, and 0 < t ≤ 1.
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The main theorem

Theorem 1. Assume (H) with Λ < 1. Then,

kt(x , y) ≤ Ce−µ0tect
−b

(|x ||y |)−β e−
|x|γ
γ
− |y|

γ

γ

for large |x |, |y | and all t > 0. Here
C , c > 0, b > α+2

α−2 , β = α
4 + n−1

2 and γ = 1 + α
2 .
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Sketch of the proof

On L2ϕ := L2(Rn, ϕ2dx) define

ã(u, v) := a(ϕu, ϕv), b̃(u, v) := b(ϕu, ϕv)

D(ã) = D(b̃) = {u ∈ L2ϕ; ϕu ∈ D(a) = D(b)}.

their associated kernels are

k̃t(x , y) =
kt(x , y)

ϕ(x)ϕ(y)
, p̃t(x , y) =

pt(x , y)

ϕ(x)ϕ(y)
.

Using ϕ ≈ ϕ0, |∇ϕ| ≈ |∇ϕ0| and the Beurling-Deny criterion
for (ϕ−10 e−tBϕ0) on L2ϕ0

we deduce

1 ∧ u ∈ D(ã), ∀0 ≤ u ∈ D(ã).
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Sketch of the proof

We have

ã(u, v) =
n∑

j ,k=1

∫
Rn

akj∂ku∂jvϕ
2 dx +

∫
Rn

Wauvϕ
2 dx ,

where Wa = V −
∑n

j ,k=1 ∂jakj
∂kϕ
ϕ −

∑n
j ,k=1 akj

∂k∂jϕ
ϕ . Using

(H) and Λ < 1 we deduce

Wa(x) ≥ −λa.
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Sketch of the proof

Thus,

ã(1 ∧ u, (u − 1)+) =

∫
Rn

Wa(1 ∧ u)(u − 1)+ϕ2dx

≥ −λa
∫
Rn

(1 ∧ u)(u − 1)+ϕ2dx .

Applying Beurling-Deny

‖e−tÃ‖L(L∞) ≤ eλat , t ≥ 0.
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Sketch of the proof

Since b̃ satisfies a log-Sobolev inequality (see E.B. Davies) and
by ellipticity, b̃(u, u) ≤ max{ 1η , 1} ã(u, u), it follows that ã
satisfies the same log-Sobolev inequality. Hence, with the

L∞-contractivity, we deduce that e−tÃ is ultracontractive and

k̃t(x , y) =
kt(x , y)

ϕ(x)ϕ(y)
≤ Cect

−b
, 0 < t ≤ 1.
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Sketch of the proof

For t ≥ 1, by

ks+r (x , y) =

∫
Rn

ks(x , z)kr (y , z) dz , s, r > 0,

kt(x , x) =
∥∥∥e−( t

2
− 1

2)Ak 1
2
(x , ·)

∥∥∥2
L2

≤ e−2µ0(
t
2
− 1

2)
∥∥∥k 1

2
(x , ·)

∥∥∥2
L2

≤ Me−µ0tϕ2(x).

The result follows from

kt(x , y) ≤
√
kt(x , x)

√
kt(y , y), x , y ∈ Rn.
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Estimates for the eigenfunctions

Corollary 2.

|ψj(x)| ≤ C |x |−βe−
|x|γ
γ

for large |x | a C > 0 with β = α
4 + n−1

2 , γ = 1 + α
2 .
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Proof

|ψj(x)|e−µj t = |e−tAψj(x)|

= |
∫
Rn

kt(x , y)ψj(y) dy |

≤
(∫

Rn

kt(x , y)2dy

)1/2

‖ψj‖2

= (k2t(x , x))1/2 .
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The general case

If Λ ≥ 1, we study first

H := −∆ + θ|x |α

with 0 < θ < 1. One proves that its ground state φ0 satisfies

φ0(x) ≈ φ(x), |∇φ0(x)| ≈ |∇φ(x)|,

where φ(x) = |x |−βe−
√
θ
γ
|x |γ for large |x |.
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The general case

Theorem 2. Assume (H) and θ > 0 s.t. θΛ < 1. Then,

kt(x , y) ≤ Ce−µ0tect
−b

(|x ||y |)−β e−
√
θ
γ
|x |γe−

√
θ
γ
|y |γ

, t > 0

for large |x |, |y |. Here C , c > 0, b > α+2
α−2 , β = α

4 + n−1
2 and

γ = 1 + α
2 .
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