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Schrodinger Operators
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Consider

order elliptic n
operators Ay = — Z ak(akjaju) + VU,
kj=1
Bu = —Au+ Vu.

The associated quadratic forms

a(u,u) = Z/ akjakuau—l—/ V\u|2

kj=1

b(u,u) = /\Vu|2+/ Vul?,
RP Rn

u€ D(a) = D(b) = {u € WH2(R"); [gn V]u|* < co}.
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Assumptions
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akj = ajk € WI’W(R",R), 8jakj = O(‘X‘%) as|x\ — 00,

loc

Qe (H) nél? < X7 ey a(x)k < NEP - for all € € R7,

vith E.M

Ouhabaz)

V € LL _(R") such that V(x) > [x|%, «a>2.

loc
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Spectrum
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lim|y| 400 V(x) = +00 implies that A and B have compact
resolvents. Thus,

o(A) = {wi; i=0,1,...}
o(B) = {\; i=0,1,...}.

Let (¢i)i>0 and (gi)i>o the corresponding normalized
et eigenfunctions of A and B, respectively.



Gaussian estimates 1
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It is known that A and B have heat kernels k:(x, y) and
B pi(x,y) satisfying
Mathematics

Salerno,

o, _ 1 —‘X:y‘z k < C _n/2 _Clx—y\Z
pelioy) < gere © 0 keboy) S CEMRene
Ouhabaz)

for t > 0 and constants ¢, C > 0
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Gaussian estimates 2

ei’;:;'}j'nit"iin See [E.M. Ouhabaz: Proc. Amer. Math. Soc. 134, 2006].
estimates for

e
dT”P pe(x,y) < t,,C/zeA“elX"tyz {1+/\0t+ | —yq 2
f and
Mathematics )
ke(x,y) < tr$2 oot g5 [1 + pot + p2(>;y)] Cotso,
where
p(x.y) = sup{6(x) —dly): &€ C(RT),
n

Z aiOkp0jp < 1 a.e. on R"}.

kj=1



Intrinsic ultracontractivity for B
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E.B. Davies in 1984 showed

—b
pe(x,y) < Ce “po(x)o(y), (1)
x,y € R" 0 <t <1, where C, ¢ are constants and b > g—fg

Ouhabaz)

Using Lyapunov functions techniques Metafune and Spina [JEE
7, 2007] obtained (1) with b = 2£2.
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Intrinsic ultracontractivity for B
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Davies showed also

| ’Y
alx|Pe” 7 < po(x) < colx|Fe” (2)

for large [x|, B =4 + %51, v =1+ . By (1),

_ XYy
pe(x,y) < Ce (Ix|ly) P e (3)

Introduction for |arge |X|, ‘y|’ and 0 < t <1.



The main theorem
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Theorem 1. Assume (H) with A < 1. Then,

- XY
ke(x,y) < Cetote™ " (xlly]) "™
Ouhabaz) for large |x|, |y| and all t > 0. Here
C,c>0,b>22 3=2

=o+2dandy=1+%.
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Sketch of the proof
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a(u, v) := a(pu, pv), b(u, v) := b(pu, pv)

D(a) = D(b) = {u € LZ; pu € D(a) = D(b)}.

their associated kernels are

Fey) = Relbey) oy pey)
kt(X’y)_ap(X)go(yy Pelx.y) e(x)e(y)

Using ¢ = o, |Vp| = |Veo| and the Beurling-Deny criterion

for (90519_”3@0) on Lio we deduce
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Sketch of the proof
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a(u,v) = Z/ a0k udjvep dx—l—/ W,uve? d
Jj,k=1
“Jmm» 1‘»‘ where W, =V — Zjn,kzl 8jakj6k?¢ - Zj,k 1 kj N} Usmg
(H) and A < 1 we deduce

Wy(x) > —Aa.
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Sketch of the proof
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: Wa(1 A u)(u—1)Tp?dx
M ,Fh::‘ T R"
o [ AU 1) R

L f
< )

v

(Joint work
vith E.M

Ouhabaz)

Applying Beurling-Deny

le™ | gy < €™F, £ >0.
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Sketch of the proof
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Since b satisfies a log-Sobolev inequality (see E.B. Davies) and
by ellipticity, b(u, u) < max{%, 1} a(u, u), it follows that a
satisfies the same log-Sobolev inequality. Hence, with the

: L>-contractivity, we deduce that e *A is ultracontractive and
(Joint work
‘VMH'\ E.M k
Ouhabaz) ~ X —
kt(x,y):M <G, 0<t<l
p(x)e(y)
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Sketch of the proof
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operators ks+r(x7y) = / ks(X, Z)kr(y, Z) dZ, S, r> 07
el Rn
of :
Mathematics _(t_1
‘;\I,\wm‘ ‘:,L.‘f’ ke(x,x) = He ( Z)Ak% (- L2
< el iy (x,)
= 5 L2
< Me Htp?(x)
Heat kernel The result follows from

estimates

ke(x, ) < ke, X)V/ke(y,y), x,y €R".



Estimates for the eigenfunctions
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Corollary 2.
X
[45(x) < Clx| e

for large |x| a C>0Withﬁ:%+"%l,’y:1+%.
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of

: [i)le it = JemAyy(x)|
{\I 1le»n‘w m‘,; = ’ /Rn kt(X, )/)1/)/()/) dy|

S aly)
(Joint work

vith E.M

e 1/2
el . ( [ kt(x,y)zdy> Il
= (kae(x, x))M2.
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The general case
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If A > 1, we study first

H:=—-A+0|x|*
Saler

Salerno, ltal with 0 < € < 1. One proves that its ground state ¢ satisfies

vith E.M
Ouhabaz)

Po(x) = &(x),  [Vo(x)| = [V (x)],

_ e
where ¢(x) = |x| Pe” > Xl
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The general case
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Theorem 2. Assume (H) and > 0 s.t. A < 1. Then

_ V0 )
ke(x,y) < Ce e " (|x|ly[) P e 5 Me 5 I,

Ouhabaz) for large |x|, |y|. Here C, ¢ >0, b > g*g, =24 251 and
y=1+7.
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