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Model reduction

Model Reduction
By mathematical means replace an elaborate model with a simpler
one that is close to the original.

ẋ(t) = Ax(t) + Bu(t), x(0) = 0, y(t) = Cx(t),

Simpler means: of the same form, but with smaller state space
dimension.

Close means: input-output maps u 7→ y close in the
L(L2(0,∞; U ),L2(0,∞; Y )) norm.
(or in the gap metric)



Example: 1D heat equation

∂w
∂t

=
∂2w
∂x2 , t > 0, x ∈ (0, 1),

w(0, x) = 0, x ∈ (0, 1),

wx(t, 0) = u(t), t > 0,

w(t, 1) = 0, t > 0,

y(t) = −w(t, 0), t > 0.

G(s) =
tanh
√

s√
s

.



Some reduction methods

Three standard numerical PDE methods
Finite Element Method
Eigenvector based method (Modal truncation)
Chebyshev Collocation Method

Lyapunov balanced truncation



Petrov–Galerkin methods

Weak form:
〈ẋ(t), v〉 = 〈Ax(t) + Bu(t), v〉

Approximate solution: seek x : [0,∞)→ W such that weak
form holds for all v ∈ V .

W trial space,

V test space.



Finite Element Method

Trial space W and test space V piecewise polynomial functions.

Full order input-output map: D,

Reduced order input-output map: Dn.

Error estimate for heat equation example

‖D − Dn‖L(L2(0,∞;U ),L2(0,∞;Y )) ≤
C
n
.



Better known estimate for FEM

The well-known error bound

‖D − Dn‖L(L2(0,∞;U ),L2(0,∞;Y )) ≤
C
n2 .

is obtained for the more familiar interior-interior case (left).

∂w
∂t

=
∂2w
∂x2 + u(t, x),

w(0, x) = 0,

wx(t, 0) = 0,

w(t, 1) = 0,

y(t) = w(t, ·).

∂w
∂t

=
∂2w
∂x2 ,

w(0, x) = 0,

wx(t, 0) = u(t),

w(t, 1) = 0,

y(t) = w(t, 0).



Eigenvector based method
Trial space W span of dominant eigenvectors of A,
Test space V span of dominant eigenvectors of A∗,
Notion of ‘dominant’ depends on B and C.

For the heat equation example

‖D − Dn‖L(L2(0,∞;U ),L2(0,∞;Y )) =

∞∑
k=n+1

2
(π2 + kπ)2 .

So c
n
≤ ‖D −Dn‖L(L2(0,∞;U ),L2(0,∞;Y )) ≤

C
n
.



Chebyshev Collocation Method

Trial space W consists of Chebyshev polynomials,
Test space V consists of Dirac delta’s at collocation points,
Apply boundary bordering to include boundary conditions.

Numerically

‖D − Dn‖L(L2(0,∞;U ),L2(0,∞;Y )) ≈
C
n2 .
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Lyapunov balanced truncation

Lyapunov balanced truncation (Moore ’81).

(σk)
∞
k=1 singular values of the Hankel operator of the system.

The following error-bound holds

‖D − Dn‖ ≤ 2
∞∑

k=n+1

σk,

(Glover and Enns ’84, Glover–Curtain–Partington ’88,
Guiver–Opmeer ’11).

For any input-output map Dn of a system with an n-dimensional
state space:

σn+1 ≤ ‖D −Dn‖.

Decay rate of σk gives information about the decay of the error.



Taken from an article by Antoulas:



Decay rate

Any nonincreasing sequence of nonnegative numbers (σk)
∞
k=1

can be the sequence of singular values of a Hankel operator
(Ober, Treil ’90).
Estimates for delay differential equations
(Glover–Lam–Partington ’91): decay rate of k−p for (σk)

∞
k=1 can

occur for any p ∈ N0.
Opmeer (SCL 2010): for analytic systems (e.g. parabolic PDEs)
for all p > 0 ∞∑

k=1

σp
k <∞,

so that for all q > 0 we have kqσk → 0.
It follows that for r ≥ 0 there exists a Cr > 0 such that

‖D − Dn‖ ≤
Cr

nr .

If A bounded (and exponentially stable), then exponential decay.
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Analytic control systems

Analytic control systems:
A generates an exponentially stable analytic C0 semigroup,
B and C are jointly no more unbounded than A

B ∈ L(U ,Xβ),
C ∈ L(Xα,Y ),
β − α < 1.

Analytic control systems with either U or Y finite-dimensional
have a Sp Hankel operator (p > 0).
Proof uses

Peller–Semmes characterization of Schatten class Hankel
operators in terms of their symbols belonging to the Besov space
B1/p

pp (’84),
The generation theorem for analytic semigroups to show that the
transfer function is in the Besov space B1/p

pp .

Improves result of Curtain and Sasane 2001 who assumed both
U and Y finite-dimensional and proved only the case p ≥ 1 (by
very different methods).



Optimality of finite elements

∂w
∂t

=
∂2w
∂x2 + u(t, x),

w(0, x) = 0,

wx(t, 0) = 0,

w(t, 1) = 0,

y(t) = w(t, ·).

‖D−Dn‖L(L2(0,∞;U ),L2(0,∞;Y )) ≤
C
n2 .

Peller–Semmes theorem: G ∈ B1/p
pp (C+

0 ; Sp(U ,Y )).

G(s) = (sI − A)−1 ∈ Sp(L2(0, 1),L2(0, 1)),

p > 1/2,

σk ≈ 1
k2 .



Computation

The Lyapunov balanced truncation cannot be analytically
computed for a PDE.
What is done:

1 Apply a numerical method to the PDE→ DN and aim to obtain a
Lyapunov balanced truncation DN

n of DN .
2 Use numerical linear algebra to obtain an approximation of DN

n .

Under conditions valid for most numerical PDE methods
(hN →L1

h):
lim

N→∞
‖DN

n −Dn‖ = 0,

(Singler ’09 for bounded B and C; Guiver and Opmeer ’11).



Thank you



Besov spaces

Bergman kernel (for the right half-plane):

K(z,w) :=
1

(z + w̄)2 .

Weighted Bergman space Ap,r(C+
0 ; B) with p > 0 and r > −1

2 :
f : C+

0 → B analytic and∫ ∞
0

∫ ∞
−∞
‖f (x + iy)‖p

B K(x + iy, x + iy)−r dy dx <∞.

Besov space B1/p
pp (C+

0 ; B): f : C+
0 → B analytic and

f (n) ∈ Ap, np
2 −1(C+

0 ; B),

for some integer n > 1
p (equivalently: for all integers n > 1

p ).


