Decay of Hankel singular values with applications to model reduction

Mark Opmeer

Model Reduction

By mathematical means replace an elaborate model with a simpler one that is close to the original.

$$
\dot{x}(t)=A x(t)+B u(t), \quad x(0)=0, \quad y(t)=C x(t),
$$

- Simpler means: of the same form, but with smaller state space dimension.
- Close means: input-output maps $u \mapsto y$ close in the $\mathcal{L}\left(L^{2}(0, \infty ; \mathscr{U}), L^{2}(0, \infty ; \mathscr{Y})\right)$ norm. (or in the gap metric)

$$
\begin{array}{ll}
\frac{\partial w}{\partial t}=\frac{\partial^{2} w}{\partial x^{2}}, & t>0, \\
w(0, x)=0, & \\
w_{x}(t, 0)=u(t), & t>0, \\
w(t, 1)=0, & t>0, \\
y(t)=-w(t, 0), & t>0 . \\
& \mathrm{G}(s)=\frac{\tanh \sqrt{s}}{\sqrt{s}} .
\end{array}
$$

Some reduction methods

- Three standard numerical PDE methods
- Finite Element Method
- Eigenvector based method (Modal truncation)
- Chebyshev Collocation Method
- Lyapunov balanced truncation

Petrov-Galerkin methods

Weak form:

$$
\langle\dot{x}(t), v\rangle=\langle A x(t)+B u(t), v\rangle
$$

- Approximate solution: seek $x:[0, \infty) \rightarrow \mathscr{W}$ such that weak form holds for all $v \in \mathscr{V}$.
- \mathscr{W} trial space,
- \mathscr{V} test space.
- Trial space \mathscr{W} and test space \mathscr{V} piecewise polynomial functions.

- Full order input-output map: \mathcal{D},
- Reduced order input-output map: \mathcal{D}_{n}.

Error estimate for heat equation example

$$
\left\|\mathcal{D}-\mathcal{D}_{n}\right\|_{\mathcal{L}\left(L^{2}(0, \infty ; \mathscr{U}), L^{2}(0, \infty ; \mathscr{Y})\right)} \leq \frac{C}{n}
$$

Better known estimate for FEM

The well-known error bound

$$
\left\|\mathcal{D}-\mathcal{D}_{n}\right\|_{\mathcal{L}\left(L^{2}(0, \infty ; \mathscr{U}), L^{2}(0, \infty ; \mathscr{Y})\right)} \leq \frac{C}{n^{2}}
$$

is obtained for the more familiar interior-interior case (left).

$$
\begin{aligned}
& \frac{\partial w}{\partial t}=\frac{\partial^{2} w}{\partial x^{2}}+u(t, x) \\
& w(0, x)=0 \\
& w_{x}(t, 0)=0 \\
& w(t, 1)=0 \\
& y(t)=w(t, \cdot)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial w}{\partial t}=\frac{\partial^{2} w}{\partial x^{2}} \\
& w(0, x)=0 \\
& w_{x}(t, 0)=u(t) \\
& w(t, 1)=0 \\
& y(t)=w(t, 0)
\end{aligned}
$$

Eigenvector based method

- Trial space \mathscr{W} span of dominant eigenvectors of A,
- Test space \mathscr{V} span of dominant eigenvectors of A^{*},
- Notion of 'dominant' depends on B and C.

For the heat equation example

$$
\left\|\mathcal{D}-\mathcal{D}_{n}\right\|_{\mathcal{L}\left(L^{2}(0, \infty ; \mathscr{U}), L^{2}(0, \infty ; \mathscr{Y})\right)}=\sum_{k=n+1}^{\infty} \frac{2}{\left(\frac{\pi}{2}+k \pi\right)^{2}}
$$

So

$$
\frac{c}{n} \leq\left\|\mathcal{D}-\mathcal{D}_{n}\right\|_{\mathcal{L}\left(L^{2}(0, \infty ; \mathscr{U}), L^{2}(0, \infty ; \mathscr{Y})\right)} \leq \frac{C}{n} .
$$

Chebyshev Collocation Method

- Trial space \mathscr{W} consists of Chebyshev polynomials,
- Test space \mathscr{V} consists of Dirac delta's at collocation points,
- Apply boundary bordering to include boundary conditions.

Numerically

$$
\left\|\mathcal{D}-\mathcal{D}_{n}\right\|_{\mathcal{L}\left(L^{2}(0, \infty ; \mathscr{U}), L^{2}(0, \infty ; \mathscr{Y})\right)} \approx \frac{C}{n^{2}}
$$

Some reduction methods

- Three standard numerical PDE methods
- Finite Element Method
- Eigenvector based method
- Chebyshev Collocation Method
- Lyapunov balanced truncation

Lyapunov balanced truncation

- Lyapunov balanced truncation (Moore '81).
- $\left(\sigma_{k}\right)_{k=1}^{\infty}$ singular values of the Hankel operator of the system.
- The following error-bound holds

$$
\left\|\mathcal{D}-\mathcal{D}_{n}\right\| \leq 2 \sum_{k=n+1}^{\infty} \sigma_{k}
$$

(Glover and Enns '84, Glover-Curtain-Partington '88, Guiver-Opmeer '11).

- For any input-output map \mathcal{D}_{n} of a system with an n-dimensional state space:

$$
\sigma_{n+1} \leq\left\|\mathcal{D}-\mathcal{D}_{n}\right\| .
$$

- Decay rate of σ_{k} gives information about the decay of the error.

Taken from an article by Antoulas:

Decay rate

- Any nonincreasing sequence of nonnegative numbers $\left(\sigma_{k}\right)_{k=1}^{\infty}$ can be the sequence of singular values of a Hankel operator (Ober, Treil '90).
- Estimates for delay differential equations (Glover-Lam-Partington '91): decay rate of k^{-p} for $\left(\sigma_{k}\right)_{k=1}^{\infty}$ can occur for any $p \in \mathbb{N}_{0}$.
- Opmeer (SCL 2010): for analytic systems (e.g. parabolic PDEs) for all $p>0$

so that for all $q>0$ we have $k^{q} \sigma_{k} \rightarrow 0$.
- It follows that for $r \geq 0$ there exists a

- If A bounded (and exponentially stable), then exponential decay.

Decay rate

- Any nonincreasing sequence of nonnegative numbers $\left(\sigma_{k}\right)_{k=1}^{\infty}$ can be the sequence of singular values of a Hankel operator (Ober, Treil '90).
- Estimates for delay differential equations (Glover-Lam-Partington '91): decay rate of k^{-p} for $\left(\sigma_{k}\right)_{k=1}^{\infty}$ can occur for any $p \in \mathbb{N}_{0}$.
- Opmeer (SCL 2010): for analytic systems (e.g. parabolic PDEs) for all $p>0$

so that for all $q>0$ we have $k^{q} \sigma_{k} \rightarrow 0$.
- It follows that for $r \geq 0$ there exists a

- Any nonincreasing sequence of nonnegative numbers $\left(\sigma_{k}\right)_{k=1}^{\infty}$ can be the sequence of singular values of a Hankel operator (Ober, Treil '90).
- Estimates for delay differential equations (Glover-Lam-Partington '91): decay rate of k^{-p} for $\left(\sigma_{k}\right)_{k=1}^{\infty}$ can occur for any $p \in \mathbb{N}_{0}$.
- Opmeer (SCL 2010): for analytic systems (e.g. parabolic PDEs) for all $p>0$

$$
\sum_{k=1}^{\infty} \sigma_{k}^{p}<\infty
$$

so that for all $q>0$ we have $k^{q} \sigma_{k} \rightarrow 0$.

- It follows that for $r \geq 0$ there exists a $C_{r}>0$ such that

$$
\left\|\mathcal{D}-\mathcal{D}_{n}\right\| \leq \frac{C_{r}}{n^{r}}
$$

- If A bounded (and exponentially stable), then exponential decay.

Analytic control systems

- Analytic control systems:
- A generates an exponentially stable analytic C_{0} semigroup,
- B and C are jointly no more unbounded than A
- $B \in \mathcal{L}\left(\mathscr{U}, \mathscr{X}_{\beta}\right)$,
- $C \in \mathcal{L}\left(\mathscr{X}_{\alpha}, \mathscr{Y}\right)$,
- $\beta-\alpha<1$.
- Analytic control systems with either \mathscr{U} or \mathscr{Y} finite-dimensional have a S_{p} Hankel operator $(p>0)$.
- Proof uses
- Peller-Semmes characterization of Schatten class Hankel operators in terms of their symbols belonging to the Besov space $B_{p p}^{1 / p}$ ('84),
- The generation theorem for analytic semigroups to show that the transfer function is in the Besov space $B_{p p}^{1 / p}$.
- Improves result of Curtain and Sasane 2001 who assumed both \mathscr{U} and \mathscr{Y} finite-dimensional and proved only the case $p \geq 1$ (by very different methods).

Optimality of finite elements

$$
\begin{aligned}
& \frac{\partial w}{\partial t}=\frac{\partial^{2} w}{\partial x^{2}}+u(t, x), \\
& w(0, x)=0, \\
& w_{x}(t, 0)=0, \\
& w(t, 1)=0 \\
& y(t)=w(t, \cdot) .
\end{aligned}
$$

- Peller-Semmes theorem: $\mathrm{G} \in B_{p p}^{1 / p}\left(\mathbb{C}_{0}^{+} ; S_{p}(\mathscr{U}, \mathscr{Y})\right)$.
- $\mathrm{G}(s)=(s I-A)^{-1} \in S_{p}\left(L^{2}(0,1), L^{2}(0,1)\right)$,
- $p>1 / 2$,
- $\sigma_{k} \approx \frac{1}{k^{2}}$.

Computation

- The Lyapunov balanced truncation cannot be analytically computed for a PDE.
- What is done:
(1) Apply a numerical method to the PDE $\rightarrow \mathcal{D}^{N}$ and aim to obtain a Lyapunov balanced truncation \mathcal{D}_{n}^{N} of \mathcal{D}^{N}.
(2) Use numerical linear algebra to obtain an approximation of \mathcal{D}_{n}^{N}.
- Under conditions valid for most numerical PDE methods $\left(h^{N} \rightarrow{ }^{L^{1}} h\right.$):

$$
\lim _{N \rightarrow \infty}\left\|\mathcal{D}_{n}^{N}-\mathcal{D}_{n}\right\|=0
$$

(Singler ' 09 for bounded B and C; Guiver and Opmeer '11).

Thank you

Besov spaces

- Bergman kernel (for the right half-plane):

$$
K(z, w):=\frac{1}{(z+\bar{w})^{2}}
$$

- Weighted Bergman space $A^{p, r}\left(\mathbb{C}_{0}^{+} ; \mathscr{B}\right)$ with $p>0$ and $r>-\frac{1}{2}$: $f: \mathbb{C}_{0}^{+} \rightarrow \mathscr{B}$ analytic and

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty}\|f(x+i y)\|_{\mathscr{B}}^{p} K(x+i y, x+i y)^{-r} d y d x<\infty
$$

- Besov space $B_{p p}^{1 / p}\left(\mathbb{C}_{0}^{+} ; \mathscr{B}\right): f: \mathbb{C}_{0}^{+} \rightarrow \mathscr{B}$ analytic and

$$
f^{(n)} \in A^{p, \frac{p p}{2}-1}\left(\mathbb{C}_{0}^{+} ; \mathscr{B}\right),
$$

for some integer $n>\frac{1}{p}$ (equivalently: for all integers $n>\frac{1}{p}$).

