Decay of Hankel singular values

with applications to model reduction
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Model reduction

Model Reduction

By mathematical means replace an elaborate model with a simpler
one that is close to the original.

°
x(t) = Ax(t) + BM(Z), X(O) =0, y(t) = CX(Z),
@ Simpler means: of the same form, but with smaller state space
dimension.

o Close means: input-output maps u — y close in the
L(L*(0,00;%),L*(0,00; %)) norm.
(or in the gap metric)
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Some reduction methods

@ Three standard numerical PDE methods

o Finite Element Method

e Eigenvector based method (Modal truncation)
e Chebyshev Collocation Method

@ Lyapunov balanced truncation



Petrov—Galerkin methods

Weak form:
(x(1),v) = (Ax(¢) + Bu(t),v)

@ Approximate solution: seek x : [0, 00) — # such that weak
form holds for all v € ¥'.

@ W trial space,

@ ¥ test space.



Finite Element Method

e Trial space # and test space ¥ piecewise polynomial functions.
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e Full order input-output map: D,

@ Reduced order input-output map: D,,.

Error estimate for heat equation example

SHRe)

ID = Dall £(22(0,005% ) 12 (0,005 )) <




Better known estimate for FEM

The well-known error bound
C
1P = Dall £z2(0.00) 2200002 < 5

is obtained for the more familiar interior-interior case (left).
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Eigenvector based method

@ Trial space # span of dominant eigenvectors of A,
@ Test space ¥ span of dominant eigenvectors of A*,
@ Notion of ‘dominant’” depends on B and C.

For the heat equation example
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Chebyshev Collocation Method

@ Trial space # consists of Chebyshev polynomials,
@ Test space 7 consists of Dirac delta’s at collocation points,
@ Apply boundary bordering to include boundary conditions.

Numerically

1D = Dull £(22(0,00:%),12(0,00:2)) = 5
n



Some reduction methods
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@ Lyapunov balanced truncation




Lyapunov balanced truncation

@ Lyapunov balanced truncation (Moore *81).
o (oy)2, singular values of the Hankel operator of the system.

@ The following error-bound holds

[e.9]
ID=Dull <2 ) o,
k=n+1

(Glover and Enns ’84, Glover—Curtain—Partington ’88,
Guiver-Opmeer "11).
e For any input-output map D, of a system with an n-dimensional

state space:
On+1 < ||D - DnH

@ Decay rate of oy gives information about the decay of the error.



Taken from an article by Antoulas:
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@ Any nonincreasing sequence of nonnegative numbers (o),
can be the sequence of singular values of a Hankel operator
(Ober, Treil *90).
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o Estimates for delay differential equations
(Glover-Lam—Partington *91): decay rate of k7 for (o4)2, can
occur for any p € Ny.
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@ Opmeer (SCL 2010): for analytic systems (e.g. parabolic PDEs)

forallp >0 >
> of < o0,
k=1

so that for all ¢ > 0 we have k70, — 0.
@ It follows that for » > 0O there exists a C, > 0 such that

%_‘

C
ID-Dl < .

e If A bounded (and exponentially stable), then exponential decay.



Analytic control systems

@ Analytic control systems:

e A generates an exponentially stable analytic Cp semigroup,
e B and C are jointly no more unbounded than A

© Be L(U,Z3),
o CEL(Zn,¥).
e f—a<l.
@ Analytic control systems with either % or ¢ finite-dimensional
have a S, Hankel operator (p > 0).
@ Proof uses

o Peller-Semmes characterization of Schatten class Hankel

operators in terms of their symbols belonging to the Besov space
By ('84),
o The generation theorem for analytic semigroups to show that the

transfer function is in the Besov space B,l,,ép .

@ Improves result of Curtain and Sasane 2001 who assumed both
% and % finite-dimensional and proved only the case p > 1 (by
very different methods).



Optimality of finite elements
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@ Peller—Semmes theorem: G € B[l,,/,p((CS“; Sp(%,%)).

o G(s) = (s —A)~! € S,(L*(0,1),L%(0,1)),

°op>1/2,
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Computation

@ The Lyapunov balanced truncation cannot be analytically
computed for a PDE.
@ What is done:
@ Apply a numerical method to the PDE — DY and aim to obtain a
Lyapunov balanced truncation DY of DV,
© Use numerical linear algebra to obtain an approximation of DY.
@ Under conditions valid for most numerical PDE methods
Y =L hy:
: N
Jm [, = Duf| =0,

(Singler ’09 for bounded B and C; Guiver and Opmeer ’11).



Thank you
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Besov spaces

@ Bergman kernel (for the right half-plane):

1

K(z,w) := e

o Weighted Bergman space A?"(C{; %) withp > 0 and r > —1:
f: (C(J)r — % analytic and

/ / If (x + iy) ||, K(x + iy, x + iy) " dydx < .

@ Besov space B,l,ép((Cg; B): f : Cf — 2 analytic and
(I’l) pvﬁ_l +.
f € A 2 ((CO ) %)7

for some integer n > [17 (equivalently: for all integers n > 11;).



