PDE motion planning for finite–time multi–agent deployment

Thomas Meurer

Automation and Control Institute (ACIN)
Complex Dynamical Systems Group
Vienna University of Technology, Austria

(joint work with M.Krstic)
PDE motion planning for finite–time multi–agent deployment

- Source localization by mobile sensor network ⇒ **PDEs for diffusive field**

- Mobile agent network ⇒ **PDEs for agent position / velocity**

Graph–Laplacian control ⇒ consensus, see e.g. [1]

\[
\partial_t x(n_i, t) = \alpha(x(n_{i+1}, t) - 2x(n_i, t) + x(n_{i-1}, t)), \quad \forall n_i \in S_f
\]

\[
x(n_j, t) = u(n_j, t), \quad \forall n_j \in S_l
\]
PDE motion planning for finite–time multi–agent deployment

- Source localization by mobile sensor network ⇒ PDEs for diffusive field

- Mobile agent network ⇒ PDEs for agent position / velocity

Graph–Laplacian control ⇒ consensus, see e.g. [1]
\[
\frac{\partial}{\partial t} x(n_i, t) = \alpha (x(n_{i+1}, t) - 2x(n_i, t) + x(n_{i-1}, t)), \quad \forall n_i \in S_f
\]
\[
x(n_i, t) = u(n_j, t), \quad \forall n_j \in S_i
\]

Heat equation ⇒ exp. stable [2]
\[
\frac{\partial}{\partial t} x'(z, t) = \frac{\partial^2}{\partial z^2} x'(z, t), \quad z \in (0, 1)
\]
\[
x'(0, t) = u^a_i(t), \quad x'(1, t) = u^l_i(t)
\]
PDE motion planning for finite–time multi–agent deployment

- Mobile agent network ⇒ PDEs for agent position / velocity

\[\text{Graph–Laplacian control} \Rightarrow \text{consensus, see e.g. [1]} \]
\[\partial_t x(n_i, t) = \alpha (x(n_{i+1}, t) - 2x(n_i, t) + x(n_{i-1}, t)), \quad \forall n_i \in S_f \]
\[x(n_i, t) = u(n_i, t), \quad \forall n_j \in S_l \]

Heat equation ⇒ exp. stable [2]
\[\partial_t x^i(z, t) = \partial^2_z x^i(z, t), \quad z \in (0, 1) \]
\[x^i(0, t) = u^i_a(t), \quad x^i(1, t) = u^i_l(t) \]

- Outline
 - Flatness–based motion planning for leader–enabled deployment
 - Convergence analysis and summability
 - Feedforward formation tracking control
 - Simulation results
Nonlinear time-varying Burgers–type flow model for mobile agent continuum [3, 4]

Finite time deployment into steady state formation profiles for $c^i(t) = c^i = \text{const.}$
Flatness–based motion planning

- Flatness–based trajectory planning
 \[x^i(z, t) \rightarrow \hat{x}^i(z, t) = \sum_{n=0}^{\infty} \hat{x}_n^i(t) \frac{(z-1/2)^n}{n!} \]

PDE \[\Rightarrow \hat{x}_n^i(t) = \frac{1}{a_i} \left[b^i \sum_{i=0}^{n-2} \binom{n-2}{i} \hat{x}_{n-2-i}^i(t) \hat{x}_{i+1}^i(t) - c^i(t) \hat{x}_{n-2}^i(t) + \partial_t \hat{x}_{n-2}^i(t) \right], \quad n \geq 2 \]

Impose \[\hat{x}_0^i(t) = \hat{x}^i(1/2, t) = y_1^i(t), \quad \hat{x}_1^i(t) = \partial_z \hat{x}^i(1/2, t) = y_2^i(t) \quad \Rightarrow \hat{x}_n^i(t) = \psi_n(y_1^i(t), y_2^i(t)) \]

- Formal state and input parametrization in terms of basic output \((y_1^i(t), y_2^i(t))\)
 \[x^i(z, t) = \sum_{n=0}^{\infty} \psi_n(y_1^i(t), y_2^i(t)) \frac{(z-1/2)^n}{(n!)}, \quad u_a^i(t) = x^i(0, t), \quad u_b^i(t) = x^i(1, t) \]

- Uniform convergence if \(y_1^i(t), y_2^i(t), c^i(t)\) are Gevrey of order \(\alpha \in (1, 2]\), i.e.
 \[\sup_{t \in \mathbb{R}^+} |\partial_t^n f(t)| \leq D_f^{n+1}(n!)^\alpha, \quad f(t) \in \{y_1^i(t), y_2^i(t), c^i(t)\} \]

with finite radius of convergence \(\rho = 1/(DA_i(D))\), \(D = \max\{D_y, D_c\}\) in \(|z - 1/2|\), where

\[A_i(D) = \max \left\{ 1, \sqrt{\frac{2 + b^i}{2a_i}}, \sqrt[3]{\frac{b^i}{6a_i} \left(1 + \frac{3}{2D}\right) + \sqrt{\left(\frac{b^i}{6a_i} \left(1 + \frac{3}{2D}\right)\right)^2 + 2/ Da_i}} \right\} \]
Convergence analysis and summability

- Proof of convergence (sketch), see [4]

(i) \(|\partial_t^l \hat{x}_n(t)| \leq D^{l+n}((1 + n - 1)!)^\alpha F_n^i, \quad n \geq 2\)

with \(F_n^i = \begin{cases} 1, & n = 0, 1 \\ \frac{2 + b^i}{a^i}, & n = 2 \\ \frac{1}{a^i} \left(\frac{2F_{n-2}^i}{D(n-1)^\alpha} + \frac{b^i}{D(n-1)^\alpha} \sum_{i=0}^{n-3} \binom{n-2}{i} \frac{F_{n-2-i}^i F_{i+1}^i}{(\beta^i)^\alpha} + b^i F_{n-1}^i F_0^i \right), & n \geq 3 \end{cases}\)

⇒ Use Leibniz formula, Gevrey assumption for \(y_1(t), y_2(t), c^i(t)\) and induction

(ii) \(F_n^i \leq (A_i(D))^n \frac{n!}{(n-1)!^\alpha}, \quad n \geq 1\)

with \(A_i(D) = \max \left\{ 1, \sqrt{\frac{2 + b^i}{2a^i}}, \frac{b^i}{6a^i} \left(1 + \frac{3}{2D} \right) + \sqrt{\left(\frac{b^i}{6a^i} \left(1 + \frac{3}{2D} \right) \right)^2 + \frac{2}{Da^i} } \right\} \)

⇒ Induction

(iii) Apply Cauchy–Hadamard with \(\sup_{t \geq 0} |\hat{x}_n(t)| \leq (DA_i(D))^n n!, \quad n \geq 2\) from (i) and (ii)
Parameter–space ensuring uniform convergence with $\rho > \frac{1}{2}$

Convergence restrictions can be relaxed by **summability methods** [5]

\[
x'^i(z, t) \approx \hat{x}^i(z, t) = \left(S^N_k \hat{x}^i\right)(z, t) = \frac{\sum_{n=0}^{N} s_n^i(z, t) \frac{\xi}{\Gamma(1 + \frac{n}{k})}}{\sum_{n=0}^{N} \frac{\xi}{\Gamma(1 + \frac{n}{k})}}, \quad s_n^i(z, t) = \sum_{j=0}^{n} \hat{x}^i_j(t) \frac{(z - \frac{1}{2})^j}{j!}
\]
Goal: Realize finite time deployment into steady state formation profiles

\[a^i \partial_z^2 x^i_s(z) - b^i x^i_s(z) \partial_z x^i_s(z) + c^i_s x^i_s(z) = 0, \quad z \in (0, 1) \]

\[x^i_s(0) = u^i_{a,s}, \quad x^i_s(1) = u^i_{l,s} \]

Admits a closed-form solution only for special cases

(1) **Shock–like steady st.** for \(a^i \downarrow \lor b^i \uparrow

(2) **Eigenf.** for \(b^i = 0, \quad c^i_s = (k\pi)^2, \quad k \in \mathbb{N} \)
Goal: Realize finite time deployment into steady state formation profiles

\[
\begin{align*}
\alpha^i \frac{\partial^2 x_s^i(z)}{\partial z^2} - \beta^i x_s^i(z) \frac{\partial x_s^i(z)}{\partial z} + \gamma^i x_s^i(z) &= 0, \quad z \in (0, 1) \\
x_s^i(0) &= u^i_{a,s}, \quad x_s^i(1) = u^i_{l,s}
\end{align*}
\]

Admits a closed–form solution only for special cases

(1)+(2) \implies \text{non–trivial profiles}

⇒ Transitions by means of desired trajectories \((y_1^{*,i}(t), y_2^{*,i}(t))\) for basic output
Trajectory assignment for basic output

- **Goal:** Realize finite time deployment into steady state formation profiles

\[a^i \partial_z^2 x^i_s(z) - b^i x^i_s(z) \partial_z x^i_s(z) + c^i_s x^i_s(z) = 0, \quad z \in (0, 1) \]

\[x^i_s(0) = u^i_{a,s}, \quad x^i_s(1) = u^i_{l,s} \]

- Desired trajectories for the basic output

\[y^{*,i}_1(t) = A_1^0 + (A_1^T - A_1^0) \Phi_{Y,T}(t) \]

\[y^{*,i}_2(t) = A_2^0 + (A_2^T - A_2^0) \Phi_{Y,T}(t) \]

- \(\Phi_{Y,T}(t) \) non-analytic, i.e. \(\Phi_{Y,T}(t) = 0 \) if \(t \leq 0 \), \(\Phi_{Y,T}(t) = 1 \) if \(t \geq T \), \(\partial_t^n \Phi_{Y,T}(t)|_{t \in \{0, T\}} = 0 \)

- \(A_1^0 = y^{*,i}_1(0) = x^{i,0}_s(1/2), \quad A_2^0 = y^{*,i}_2(0) = \partial_z x^{i,0}_s(1/2), \quad A_1^T = y^{*,i}_1(T) = x^{i,T}_s(1/2), \quad A_2^T = y^{*,i}_2(T) = \partial_z x^{i,T}_s(1/2) \)

 for **consistency** with initial and final steady states \(x^{i,0}_s(z) \) and \(x^{i,T}_s(z) \)

- Temporal path for reaction parameter

\[c^i(t) = c^i_{s,0} + (c^i_{s,T} - c^i_{s,0}) \Phi_{Y,T}(t) \quad \Rightarrow \text{connect different families of steady states} \]
Feedforward formation tracking control

- **Feedforward controls** for leader and anchor

 \[u^{*,i}_a(t) = \left(S_k^{N,s} \hat{x} \right)(0, t), \quad u^{*,i}_i(t) = \left(S_k^{N,s} \hat{x} \right)(1, t) \text{ with } x^i(z, t) = \sum_{n=0}^{\infty} \psi_n(y^{*,i}_1(t), y^{*,i}_2(t)) \frac{(z-1/2)^n}{(n)!} \]

 \[\Rightarrow \text{ independent of communication topology} \]

- **Communication topology** by discretization (continuum to } m \text{ agents} \]

 \[
 \partial_t x_j^i(t) = \frac{2a_i - b_i \Delta z x_j^i(t)}{2\Delta z^2} x_j^i_{j+1}(t) + \left(c_i(t) - \frac{2a_i}{\Delta z^2} \right) x_j^i(t) + \frac{2a_i + b_i \Delta z x_j^i(t)}{2\Delta z^2} x_j^i_{j-1}(t), \quad j = 1, \ldots, m - 1
 \]

 \[x_0^i(t) = u^{*,i}_a(t), \quad x_m^i(t) = u^{*,i}_l(t) \]
Simulation results (1)

- Finite time deployment into Z–shape ($m = 25$)
Simulation results (2)

- Finite time deployment into 8–shape \((m = 25)\)

- Enlarged set of target formations by including unstable steady state profiles

\[\Rightarrow \text{Realization requires the exponential stabilization of the tracking error} \]

- 2DOF control approach for spatial–temporal systems

\[\Sigma^* \quad y^* \quad \Sigma_{\infty}^{-1} \quad u^* \quad u \quad \Sigma_{\infty} \quad x \rightarrow x^* \]

Flatness–based motion planning

Backstepping–based state feedback [6, 7]
PDE motion planning for finite–time multi–agent deployment

Conclusion

- Flatness–based motion planning approach for finite time deployment of mobile agents
- Continuum of agents governed by viscous time–varying Burgers–type PDE
- Applicability of the PDE–based motion planning can be significantly enhanced by summability techniques
- Communication topology for discrete set of agents by finite difference discretization (decentralized)

Ongoing research

- Feedback stabilization with agent localization using backstepping
- Relationship with (approximate) controllability, stabilizability, ...
- Different communication topologies (2D, 3D, ...)
References

