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Fractional guys ? almost everywhere !

Fractional differential systems have become quite popular in
the recent decades, giving rise to a wide literature, both on the
theoretical and on the applied sides :

monogaphs,
international journals : Fractional Calculus and Applied
Analysis,Fractional Dynamics and Applications,
special issues of international journals,

and also
international conferences : Fractional Differentiation and its
Applications
workshops of international conferences,

are now devoted to this active research field !



Outline Introduction Diffusive Rep. Models under study Optimal control of the toy model Optimal diffusive representations Conclusion and Future works Some references

What about optimal control, then ?

However, even if different scientific communities seem to have
been involved in these questions, still very few papers are
concerned with the question of optimal control of fractional
differential systems.

In e.g. [Tricaud & Chen (2010)] or [Defterli (2010)],
1 ad hoc finite-dimensional approximations of fractional

derivatives are used in the first place,
2 classical optimal control methods are being applied in the

second place ;
But no proof of convergence of the process is provided.
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Why is it so ?

Possible answers :
1 optimal control of infinite-dimensional systems is a quite

involved and technical field,
2 the very nature of fractional operators itself : causal, but

highly non-local in time ; hence their adjoint becomes
necessarily anti-causal and still... non-local in time.

Thus, we will be left with coupled forward and backward
fractional dynamics in order to solve the optimal control
problem for fractional differential systems.
=⇒ at first glance, it seems very unlikely that Riccati equations
could be either analysed or even solved (not to speak of
adequate numerical schemes for these) in such a complicated
setting !
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So, what ?

In order to overcome this intrinsic difficulty, we propose to use
the equivalent diffusive representations of fractional systems,
and to work on it, as for infinite dimensional systems of integer
order !

Let us recall diffusive representations of fractional operators
and their adjoints and see how these can be useful for optimal
control problems, on a series of models of decreasing
complexity, namely :

1 Webster-Lokshin Wave equation,
2 A Fractionally Damped Oscillator,
3 An Oscillator Damped by Memory Variables.
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Introduction

Some useful identities

Let β ∈ (0, 1), in the frequency domain, we have :

Hβ : C \ R− → C

s 7→
∫ ∞

0
µβ(ξ)

1
s + ξ

dξ =
1
sβ

,with µβ(ξ) ∝ ξ−β .

So to speak, fractional transfer functions Hβ are nothing but a
superposition of first-order systems, with appropriate weight µβ .
Equivalently, in the time domain, this reads :

hβ : R+ → R

t 7→
∫ ∞

0
µβ(ξ) e−ξ t dξ =

1
Γ(β)

tβ−1 .

So to speak, fractional kernels hβ are nothing but a
superposition of decaying exponential, with weight µβ .
=⇒ Input-output & State-space representations can be derived
for fractional integrals Iβ and derivatives Dα.
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State-space representations

Input-output representation

Let u and y = Iβu be the input and output of the causal
fractional integral of order β, defined by the Riemann-Liouville
formula y = hβ ? u =

∫ t
0 hβ(t − τ) u(τ) dτ in the time domain,

which reads Y (s) = Hβ(s) U(s) in the Laplace domain :

y(t) =

∫ ∞

0
µβ(ξ) [eξ ? u](t) dξ ,

with eξ(t) := e−ξ t 1t≥0, and [eξ ? u](t) =
∫ t

0 e−ξ (t−τ) u(τ) dτ .

Now for fractional derivative of order α ∈ (0,1) in the sense of
distributions of Schwartz, we have ỹ = Dαu = D[I1−αu], and a
careful computation shows that :

ỹ(t) =

∫ ∞

0
µ1−α(ξ) [u − ξ eξ ? u] (t) dξ .
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State-space representations

State-space representations

Let ϕ(ξ, .) := [eξ ? u](t) be the state, parametrized by ξ.

∂tϕ(ξ, t) = −ξ ϕ(ξ, t) + u(t), ϕ(ξ,0) = 0 , (1)

y(t) =

∫ ∞

0
µβ(ξ)ϕ(ξ, t) dξ ; (2)

and

∂t ϕ̃(ξ, t) = −ξ ϕ̃(ξ, t) + u(t), ϕ̃(ξ, 0) = 0 , (3)

ỹ(t) =

∫ ∞

0
µ1−α(ξ) [u(t)− ξ ϕ̃(ξ, t)] dξ . (4)

are state-space representations for Iβ and Dα, respectively.

Note : functional spaces must be specified for these
representations to make sense ; more precisely :

ϕ belongs to Hβ := {ϕ s.t .
∫∞

0 µβ(ξ)|ϕ|2 dξ <∞},
ϕ̃ belongs to H̃α := {ϕ̃ s.t .

∫∞
0 µ1−α(ξ)|ϕ̃|2 ξ dξ <∞} ;

see e.g. [Haddar and M. (2008)].
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Adjoints of Fractional Operators

Adjoints of fractional integrals

On H = L2(0,T ), the adjoint of the causal fractional integrator
Iβ0+ : u 7→ hβ ? u, defined by

y(t) := Iβ0+u(t) =
1

Γ(β)

∫ t

0
(t − τ)β−1 u(τ) dτ ,

is IβT− : z 7→ v , the anti-causal fractional integral, defined by

v(τ) := IβT−z(τ) =
1

Γ(β)

∫ T

τ
(t − τ)β−1 z(t) dt .

=⇒ quite difficult to handle, especially in coupled situations of
optimal control !
=⇒ Need to make it easier.
=⇒ Extend diffusive representation to anti-causal context !
(see e.g. [M. (2009)] for a first definition of those).
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Adjoints of Fractional Operators

The backward diffusive realization (1)

Let the backward dynamical system :

∂tψ(ξ, τ) = +ξ ψ(ξ, τ)− z(τ), for 0 < τ < T , (5)
with ψ(ξ,T ) = 0 as final condition ; (6)

together with the output, defined by :

v(τ) =

∫ ∞

0
µβ(ξ)ψ(ξ, τ) dξ ;

they provide a realization for v = IβT−z.

Moreover, the fundamental equality holds :

(Iβ0+u, z)L2(0,T ) = (u, IβT−z)L2(0,T ) . (7)

Proof : straightforward, simply relies on properties of
real-valued exponentials.
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Adjoints of Fractional Operators

Adjoints of fractional derivatives

On H = L2(0,T ), the adjoint of the causal fractional derivative
Dα

0+ : u 7→ d
dt (h1−α ? u), defined on its domain by

ỹ(t) := Dα
0+u(t) =

d
dt

[
1

Γ(1− α)

∫ t

0
(t − τ)−α u(τ) dτ

]
,

is Dα
T− : z 7→ ṽ , the anti-causal fractional derivative, defined on

its domain by

ṽ(τ) := Dα
T−z(τ) = − d

dτ

[
1

Γ(1− α)

∫ T

τ
(t − τ)−α z(t) dt

]
.

Note : the derivatives are to be understood in the sense of
distributions of Schwartz.
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Adjoints of Fractional Operators

The backward diffusive realization (2)

Let the backward dynamical system :

∂t ψ̃(ξ, τ) = +ξ ψ̃(ξ, τ)− z(τ), for 0 < τ < T , (8)
with ψ̃(ξ,T ) = 0 as final condition ; (9)

together with the extended output, defined by :

ṽ(τ) =

∫ ∞

0
µ1−α(ξ)

[
z(τ)− ξ ψ̃(ξ, τ)

]
dξ ;

they provide a realization for ṽ = Dα
T−z.

Moreover, the fundamental equality holds :

(Dα
0+u, z)L2(0,T ) = (u,Dα

T−z)L2(0,T ) , (10)

Proof : less straightforward, but still relies on properties of
real-valued exponentials.
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Webster-Lokshin Wave equation

1 Webster-Lokshin Wave equation :

∂2
t w +ε(x)D1/2

0+ [∂tw ]+d(x) ∂tw +η(x) I1/2
0+ [∂tw ]−∂2

x w = 0 ,

for 0 < x < L and t > 0, with boundary control ue(t) at
x = 0, and initial conditions.
Provided ε(x) > 0, d(x) ≥ 0 and η(x) > 0, once the
diffusive reformulation has been used, we can prove :

existence and uniqueness, see e.g. [Haddar & M. (2008)],
asymptotic stability, see [M. (2006)], [M. & Prieur (2011)],
consistent and accurate numerical schemes, see e.g.
[Haddar, Li & M. (2009)], also [Li (2010)].

A finite horizon optimal control problem, reformulated in the
new framework presented above, will become tractable
with the theory of optimal control for linear PDEs, because
the system is now no more than the coupling of a 1D wave
equation with two 1D diffusion equations... still to be done !
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A Fractionally Damped Oscillator

2 A Fractionally Damped Oscillator : together with dynamic
boundary conditions of Robin type, the Lokshin model has
a Riesz basis of eigenvectors (studied in [M. (1996)], see
also [Kergomard, Debut & M. (2006)]) : the projection of
the PDE onto one mode gives rise to a fractionally damped
oscillator, studied in [M. & Prieur (2005)], and for which
elementary propreties and numerical simulations have
been presented in e.g. [Deü & M. (2010)].

ẍ + Dα
0+[ẋ ] + ẋ + Iβ0+[ẋ ] + ω2 x = ue ,

The above framework is well suited to the formulation of an
optimal control problem of this system in a classical setting,
with no more fractional operators and no more heredity :
only the diffusive subsystems are infinite dimensional.
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Oscillator Damped by Memory Variables

3 An Oscillator Damped by Memory Variables (toy model) :
Discretizing the diffusive representations of y = Iβ0+u on K
points, and ỹ = Dα

0+u on L points, in a consistent way, we
get :

ẍ + ỹ + ẋ + y + ω2 x = ue ,

with three types of damping :
ẋ = u, instantaneous w.r.t u ;
y(u), with memory and low-pass behaviour : measure µ
consists of finitely many (K ) Dirac measures located at
some ξk with positive weights µk ;
ỹ(u) with memory and high-pass behaviour : measure ν
consists of finitely many (L) Dirac measures located at
some ξl with positive weights νl .
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Methodology

The objective is to minimize the energy functional

J(ue) =
1
2

∫ T

0
X t(τ) Q X (τ) + ue(τ)2 dτ +

1
2

X t(T ) DT X (T )

with an external input ue on the toy model, a controlled
dynamical systems.
Why ? Because the diffusive components with small ξk (big τk )
display a long-memory behaviour that is typical for fractional
systems ! Thus, the objective is to make the convergence to
equilibrium much faster.
=⇒ solve Dynamic Riccati Equation on S(t), of dimension
(2 + K + L)× (2 + K + L), thanks to a Runge-Kutta method,
then apply the time-varying feedback on the state X .
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Time domain simulations

Parameters : K = L = 3, and T = 20, DT = 1.

Left : Open Loop, Right : Closed Loop (feedback from DRE).
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A plot of the SVD of the Riccati matrix

Parameters : K = L = 3, and T = ∞.

Left : SVD plot, Right : Closed Loop (feedback from ARE).
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An interesting idea ?

An interesting idea follows from the plot the singular values of
the Riccati matrix versus time : why not apply the infinite-time
feedback, solution of the Algebraic Riccati equation, then ?
(much easier, allows greater values of K and L).

But... this heuristics cannot be used to prove any convergence
results, since the diffusive approximations converge on finite
horizons only.

=⇒ there is indeed a need for low dimensional representation
of complexity, by :

interpolation methods,
optimization methods.
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l2 criteria and closed-form solutions

Re-interpreting Sobolev spaces

Optimization in the frequency domain, stemming from

ĥ(f ) = lim
ε→0+

H(ε+ 2iπf )

Norms in L2, or Sobolev spaces Hs, are defined as :

‖h‖2
Hs(Rt )

=

∫
Rf

ws(f ) |H(2iπf )|2 df , with ws(f ) = (1+4π2f 2)s .

where s ∈ R tunes the balance between low and high
frequencies.
For specific applications, more general frequency
dependent weights can be used : bounded frequency
range, logarithmic scale, relative error measurement,
bounded dynamics ... see e.g. [Hélie & M. (2006)].
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l2 criteria and closed-form solutions

Building up specific weights for audio applications

For audio applications, w(f ) can be adapted and modified
according to the following requirements :

1 a bounded frequency range f ∈ [f−, f +] : w(f ) 1[f−,f +](f ) ;
2 a frequency log-scale : w(f )/f ;
3 a relative error measurement : w(f )/|H(2iπf )|2
4 a relative error on a bounded dynamics :

w(f )/
(
SatH,Θ(f )

)2 where the saturation function SatH,Θ

with threshold Θ is defined by

SatH,Θ(f ) =

{
|H(2iπf )| if |H(2iπf )| ≥ ΘH
ΘH otherwise

Note : normalization of the samples is desirable in most
audio applications, before the sequence is sent to DAC
audio converters.
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l2 criteria and closed-form solutions

Regularized criterion with equality constraints

Let H̃µ(s) =
∑K

k=1 µk (s + ξk )−1 ; based on Bode diagrams,
a heuristic choice for the {ξk}1≤k≤K leads to a geometric
sequence on a frequency range of interest.

The regularized criterion reads :

CR (µ) =

∫
R+

∣∣∣H̃µ(2iπf )−H(2iπf )
∣∣∣2w(f )df +

K∑
k=1

εk |µk |2,

Equality constraints for H̃µ
(dj ) at prescribed frequency

points ηj , 1 ≤ j ≤ J are taken into account thanks to a
Lagrangian CR,L by adding to CR :

<e

`∗


H(d1)(2iπη1)− H̃µ

(d1)
(2iπη1)

...

H(dJ)(2iπηJ)− H̃µ
(dJ)

(2iπηJ)


 ,
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l2 criteria and closed-form solutions

Discrete criterion

Discrete version of the criterion for frequencies increasing
from f1 = f− to fN+1 = f+ is, with sn = 2iπfn :

C(µ) ≈
N∑

n=1

wn

∣∣∣H̃µ(sn)− H(sn)
∣∣∣2 with wn =

∫ fn+1

fn
w(f )df .

In matrix notations, this rewrites

CR,L(µ) =
(
Mµ−h

)∗W (
Mµ−h

)
+µtEµ+<e

(
`∗ [k − Nµ]

)
,

with



M : model N × K
N : constraint model J × K
E : regularization K × K
W : weights N × N
h : data N × 1
k : constraints J × 1
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l2 criteria and closed-form solutions

Closed-form solutions !

If J = 0 (no constraint), the solution reduces to

µ=M−1H ,

where M=<e
(
M∗WM+E

)
and H=<e

(
M∗Wh

)
.

For J ≥ 1, the solution reads :

µ = M−1
[
H+ N tN−1

(
k − NM−1H

)]
,

where N = NM−1N t is invertible for non-redundant

constraints, and
{

N t denotes [<e(N t),=m(N t)]

k t denotes [<e(k t),=m(k t)]
.
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l2 criteria and closed-form solutions

Our example : Hβ(s) = s−β, µβ(−ξ) ∝ ξ−β

Top : Interpolation, K = 16. Bottom : Optimization, K = 10 !
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l1 criteria, Linear Programming formulation and simplex algorithm

Identification in l1 setting

Suppose we want to identify K values of µk with N prescribed
measurements, and N >> K . Following [Boyd et al. (2004)],

1 Consider the following free optimization problem :

min
µ∈RK

‖M µ− h‖l1(RN) , i.e. min
µ∈RK

N∑
n=1

|(M µ)n − hn| .

It can be rewritten in an equivalent Linear Programming
problem, as follows, where ≤ means componentwise :

min
{µ ∈ RK , t ∈ RN

+, −t ≤ M µ− h ≤ t}
1t t

2 Using the simplex algorithm, the LP problem can be solved
efficiently. Moreover, the algorithm searches for vertices
(corners of the polytope) as particular solutions : many
equalities are fulfilled !
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Many things are... still to be done !

1 Optimal weights ? Refine constrained l2 methods,
thourough study of l1 methods, comparison of the results.
Frequency domain versus time-domain formulation ?

2 Optimal control ? Solve dynamic Riccati equation through
the Hamiltonian matrix, using symplectic numerical
methods on an invariant manifold.

3 Top-down methodology instead of bottom-up strategy ?
Derive the infinite-dimensional optimal control system in
the first place, discretize the equations second place.
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