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1 Introduction

Want to study:

absolute stability, input-to-state stability, and boundedness properties of a
feedback interconnection of a well-posed infinite-dimensional MIMO linear
system Σ and a static nonlinearity f
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Well-posed linear systems: Curtain, Salamon, Staffans, Weiss.
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Feedback system

X and Y – complex Hilbert spaces: state space and output space
(which is also the input space) of Σ

A, B, C – generating operators of Σ

G – transfer function of Σ

f : Y → Y static nonlinearity

v ∈ L2
loc(R+, Y ) – external input

ẋ = Ax + Bu, x(0) = x0 ∈ X,

y = CΛ

(

x − (s0I − A)−1Bu
)

+ G(s0)u,

u = v − f(y)











(FS)
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Feedback system

X and Y – complex Hilbert spaces: state space and output space
(which is also the input space) of Σ

A, B, C – generating operators of Σ

G – transfer function of Σ

f : Y → Y static nonlinearity

v ∈ L2
loc(R+, Y ) – external input

ẋ = Ax + Bu, x(0) = x0 ∈ X,

y = CΛ

(

x − (s0I − A)−1Bu
)

+ G(s0)u,

u = v − f(y)











(FS)

where
Re s0 > exponential growth constant of A.
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loc([0, σ), Y )
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0 +
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Let (Tt)t≥0 denote the C0-semigroup generated by A.

Let 0 < σ ≤ ∞. A solution of (FS) on [0, σ) is a pair

(x, y) ∈ C([0, σ),X) × L2
loc([0, σ), Y )

such that f ◦ y ∈ L2
loc([0, σ), Y ),

x(t) = Ttx
0 +

∫ t

0
Tt−τB

(

v(τ) − f(y(τ))
)

dτ ∀ t ∈ [0, σ)

and, on [0, σ),

y = CΛ

(

x − (s0I − A)−1B(v − f ◦ y)
)

+ G(s0)(v − f ◦ y).

If σ = ∞, the solution is called global.

The set of all global solutions of (FS) is denoted by S(x0, v).
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CDPS2011 Workshop, Wuppertal, 18-22 July 2011



For every solution there exists (by Zorn’s lemma) a maximally defined
solution which cannot be extended any further.

We are mainly concerned with stability properties of (FS): existence
of solutions is not the main concern here.

CDPS2011 Workshop, Wuppertal, 18-22 July 2011



For every solution there exists (by Zorn’s lemma) a maximally defined
solution which cannot be extended any further.

We are mainly concerned with stability properties of (FS): existence
of solutions is not the main concern here.

The question of existence requires addressing on a less general basis,
taking into account relevant features of the particular system or
subclass of systems under consideration.

CDPS2011 Workshop, Wuppertal, 18-22 July 2011



For every solution there exists (by Zorn’s lemma) a maximally defined
solution which cannot be extended any further.

We are mainly concerned with stability properties of (FS): existence
of solutions is not the main concern here.

The question of existence requires addressing on a less general basis,
taking into account relevant features of the particular system or
subclass of systems under consideration.

Special case: if C is bounded, dim Y < ∞, feedthrough is equal to
0 and f is continuous, then, for every (x0, v) ∈ X × L2

loc(R+, Y ),
(FS) has solutions.
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The feedback system (FS) is said to be input-to-state stable (ISS) if there
exist functions γ1 ∈ KL and γ2 ∈ K such that, for each x0 ∈ X, each
v ∈ L∞

loc(R+, Y ) and all solutions in S(x0, v),

‖x(t)‖ ≤ γ1(t, ‖x
0‖) + γ2(‖v‖L∞

loc
(0,t)), ∀ t ∈ R+.
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The feedback system (FS) is said to be input-to-state stable (ISS) if there
exist functions γ1 ∈ KL and γ2 ∈ K such that, for each x0 ∈ X, each
v ∈ L∞

loc(R+, Y ) and all solutions in S(x0, v),

‖x(t)‖ ≤ γ1(t, ‖x
0‖) + γ2(‖v‖L∞

loc
(0,t)), ∀ t ∈ R+.

Recall that the classes K and KL of comparison functions are defined as
follows

K = all γ : R+ → R+ which are continuous, strictly increasing and
such that γ(0) = 0.

KL = all γ : R+ × R+ → R+ which are decreasing and converging to
0 in the first variable and of class K in the second variable.
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We say that K ∈ B(Y ) is an admissible feedback operator for Σ if
there exists α ∈ R such that

G(I + KG)−1 ∈ H∞
α (B(Y )).
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2 Balls of stabilizing gains: Aizerman version of circle criterion & ISS

We say that K ∈ B(Y ) is an admissible feedback operator for Σ if
there exists α ∈ R such that

G(I + KG)−1 ∈ H∞
α (B(Y )).

We say that K ∈ B(Y ) is a stabilizing feedback operator for Σ if

G(I + KG)−1 ∈ H∞
0 (B(Y )) =: H∞(B(Y )).

The set of all stabilizing feedback operators is denoted by S(G).

Notation. For K ∈ B(Y ) and r > 0, define

B(K, r) := {T ∈ B(Y ) : ‖T − K‖ < r}.
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Theorem (Aizerman version of circle criterion)
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Theorem (Aizerman version of circle criterion)

Let K ∈ B(Y ) and r > 0. Assume that Σ is optimizable and estimatable
and B(K, r) ⊂ S(G). If

sup
z 6=0

‖f(z) − Kz‖

‖z‖
< r,

then there exist positive γ and Γ such that, for each (x, y) ∈ S(x0, v),
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(
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Theorem (Aizerman version of circle criterion)

Let K ∈ B(Y ) and r > 0. Assume that Σ is optimizable and estimatable
and B(K, r) ⊂ S(G). If

sup
z 6=0

‖f(z) − Kz‖

‖z‖
< r,

then there exist positive γ and Γ such that, for each (x, y) ∈ S(x0, v),

‖x(t)‖ ≤ Γ
(

exp(−γt)‖x0‖ + ‖v‖L2(0,t)

)

, ∀ t ∈ R+

and
‖y‖L2(0,t) ≤ Γ

(

‖x0‖ + ‖v‖L2(0,t)

)

, ∀ t ∈ R+.

Moreover, if v ∈ L∞
loc(R+, Y ), then, in the above estimate for x, the

L2-norm of v on [0, t] may be replaced by the L∞-norm of v on [0, t]
(yielding an ISS result).
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Theorem shows that, over the field of complex numbers, the
Aizerman conjecture is true:

stability for all linear feedbacks F with ‖F − K‖ < r implies stability
for all nonlinear feedbacks f with ‖f − K‖ < r.

Theorem remains true for time-dependent nonlinearities f = f(t, z)
provided the “boundedness” condition on f holds uniformly in t.

The assumptions of the above Theorem guarantee that maximal
defined solutions are global, provided that (FS) has the blow-up
property.

(FS) has the blow-up property if, for every maximally defined solution
(x, y) with finite interval of existence [0, ω),

max

{

lim sup
t↑ω

‖x(t)‖, lim
t↑ω

∫ t

0
‖y(τ)‖2dτ

}

= ∞.
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If f ◦ w ∈ L2
loc(R+, Y ) for all w ∈ L2

loc(R+, Y ), then the condition

max

{

lim sup
t↑ω

‖x(t)‖, lim
t↑ω

∫ t

0
‖y(τ)‖2dτ

}

= ∞

is equivalent to

lim
t↑ω

∫ t

0
‖y(τ)‖2dτ = ∞.
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If f ◦ w ∈ L2
loc(R+, Y ) for all w ∈ L2

loc(R+, Y ), then the condition

max

{

lim sup
t↑ω

‖x(t)‖, lim
t↑ω

∫ t

0
‖y(τ)‖2dτ

}

= ∞

is equivalent to

lim
t↑ω

∫ t

0
‖y(τ)‖2dτ = ∞.

Special case: blow-up property holds if C is bounded, dim Y < ∞,
feedthrough is equal to 0 and f satisfies the “ball condition” of the
Theorem.
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Proof of Aizerman version of circle criterion - main ideas

Lemma

If B(K, r) ⊂ S(G), then ‖G(I + KG)−1‖H∞ ≤ 1/r.

It is important that Y is a complex space - Lemma does not hold in a
real setting.

Apply loop shifting with K.

Apply small-gain ideas together with exponential weighting technique
to output equation and use Lemma to obtain estimate for y.

Use results from theory of well-posed linear systems to obtain
estimate for state. �
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Exponential weighting/small gain: idea is old - goes back to papers
by Sandberg and Zames from the 1960s. Was used in input-output
setting, but not in state-space context.
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Exponential weighting/small gain: idea is old - goes back to papers
by Sandberg and Zames from the 1960s. Was used in input-output
setting, but not in state-space context.

Aizerman conjecture over the complex field: was studied (in a
different context) by Hinrichsen & Pritchard (1992).
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Let us look at the Lemma again.

Lemma

If B(K, r) ⊂ S(G), then ‖G(I + KG)−1‖H∞ ≤ 1/r.

CDPS2011 Workshop, Wuppertal, 18-22 July 2011



Let us look at the Lemma again.

Lemma

If B(K, r) ⊂ S(G), then ‖G(I + KG)−1‖H∞ ≤ 1/r.

Proof of Lemma

CDPS2011 Workshop, Wuppertal, 18-22 July 2011



Let us look at the Lemma again.

Lemma

If B(K, r) ⊂ S(G), then ‖G(I + KG)−1‖H∞ ≤ 1/r.

Proof of Lemma

Set GK := G(I + KG)−1.
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Let us look at the Lemma again.

Lemma

If B(K, r) ⊂ S(G), then ‖G(I + KG)−1‖H∞ ≤ 1/r.

Proof of Lemma

Set GK := G(I + KG)−1.

Choose sn with Re sn > 0 such that

‖GK‖H∞ − ‖GK(sn)‖ ≤ 1/n.

Can construct operators Zn ∈ B(Y ) (of rank 1, in general complex, even if
the underlying system is real) such that

0 ≤ ‖Zn‖ − 1/‖GK(sn)‖ ≤ 1/n

and
I + ZnGK(sn) is not invertible.
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Hence Zn 6∈ S(GK) and so Zn + K 6∈ S(G). By hypothesis, this implies
that Zn + K 6∈ B(K, r) and therefore ‖Zn‖ ≥ r. By the above
construction, ‖Zn‖ → 1/‖GK‖H∞ as n → ∞, showing that

1

‖GK‖H∞
≥ r,

or, equivalently,

‖G(I + KG)−1‖|H∞ = ‖GK‖H∞ ≤
1

r
.

�
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Lemma remains true for real data, provided that

‖GK‖H∞ = sup
s∈R

‖GK(s)‖, (⋆)

where
R := {s ∈ C0 : GK(s) real}.
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where
R := {s ∈ C0 : GK(s) real}.

(In this case, the operators Zn can be chosen to be real.)

In the SISO case, (⋆) means that the maximal distance of the Nyquist
diagram of GK to the origin is achieved when it “intersects” the real
axis.
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Lemma remains true for real data, provided that

‖GK‖H∞ = sup
s∈R

‖GK(s)‖, (⋆)

where
R := {s ∈ C0 : GK(s) real}.

(In this case, the operators Zn can be chosen to be real.)

In the SISO case, (⋆) means that the maximal distance of the Nyquist
diagram of GK to the origin is achieved when it “intersects” the real
axis.

Under the additional assumption that (⋆) holds, Aizerman version of
the circle criterion remains true in a real setting.
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3 “Standard” version of circle criterion & ISS

Theorem (“Standard” version of circle criterion)

Let K1,K2 ∈ B(Y ) and let Σ be optimizable and estimatable. Assume
that

K1 is an admissible feedback operator,

K2 − K1 is invertible,

(I + K2G)(I + K1G)−1 is positive real.

Moreover, assume that there exists δ > 0 such that the sector condition

Re〈f(z) − K1z, f(z) − K2z〉 ≤ −δ‖z‖2 ∀ z ∈ Y

holds.
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Then there exist positive γ and Γ such that, for each (x, y) ∈ S(x0, v),

‖x(t)‖ ≤ Γ
(

exp(−γt)‖x0‖ + ‖v‖L2(0,t)

)

, ∀ t ∈ R+
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Then there exist positive γ and Γ such that, for each (x, y) ∈ S(x0, v),

‖x(t)‖ ≤ Γ
(

exp(−γt)‖x0‖ + ‖v‖L2(0,t)

)

, ∀ t ∈ R+

and
‖y‖L2(0,t) ≤ Γ

(

‖x0‖ + ‖v‖L2(0,t)

)

, ∀ t ∈ R+.
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Then there exist positive γ and Γ such that, for each (x, y) ∈ S(x0, v),

‖x(t)‖ ≤ Γ
(

exp(−γt)‖x0‖ + ‖v‖L2(0,t)

)

, ∀ t ∈ R+

and
‖y‖L2(0,t) ≤ Γ

(

‖x0‖ + ‖v‖L2(0,t)

)

, ∀ t ∈ R+.

Moreover, if v ∈ L∞
loc(R+, Y ), then, in the above estimate for x, the

L2-norm of v on [0, t] may be replaced by the L∞-norm of v on [0, t]
(yielding an ISS result).
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In the SISO real case, the strict sector condition

Re〈f(z) − K1z, f(z) − K2z〉 ≤ −δ‖z‖2 ∀ z ∈ Y

can be expressed as
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In the SISO real case, the strict sector condition

Re〈f(z) − K1z, f(z) − K2z〉 ≤ −δ‖z‖2 ∀ z ∈ Y

can be expressed as

(k1 + ε)z2 ≤ f(z)z ≤ (k2 − ε)z2 ∀ z ∈ R,

where k1 < k2 and ε > 0.
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In the SISO real case, the strict sector condition

Re〈f(z) − K1z, f(z) − K2z〉 ≤ −δ‖z‖2 ∀ z ∈ Y

can be expressed as

(k1 + ε)z2 ≤ f(z)z ≤ (k2 − ε)z2 ∀ z ∈ R,

where k1 < k2 and ε > 0.

z

f(z)

(k1 + ε)z

(k2 − ε)z
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Proof of “standard” version of circle criterion - main ideas
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Proof of “standard” version of circle criterion - main ideas

Set L := (K2 − K1)/2

Consider

v Σ

K1

y
L Ly

+

−

The system Σ̃

Let G̃ denote the transfer function of Σ̃

Set
f̃(z) := f(L−1z) − K1L

−1z ∀z ∈ Y.
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If (x, y) ∈ S(x0, v), then (x,Ly) is a solution of

v Σ̃

f̃

Ly
+

−

Lure system given by Σ̃ and f̃
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If (x, y) ∈ S(x0, v), then (x,Ly) is a solution of

v Σ̃

f̃

Ly
+

−

Lure system given by Σ̃ and f̃

Positive real condition guarantees that B(I, 1) ⊂ S(G̃).
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If (x, y) ∈ S(x0, v), then (x,Ly) is a solution of

v Σ̃

f̃

Ly
+
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Lure system given by Σ̃ and f̃

Positive real condition guarantees that B(I, 1) ⊂ S(G̃).

Sector condition guarantees that

sup
z 6=0

‖f̃(z) − z‖/‖z‖ < 1.
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If (x, y) ∈ S(x0, v), then (x,Ly) is a solution of

v Σ̃

f̃

Ly
+

−

Lure system given by Σ̃ and f̃

Positive real condition guarantees that B(I, 1) ⊂ S(G̃).

Sector condition guarantees that

sup
z 6=0

‖f̃(z) − z‖/‖z‖ < 1.

Aizerman version of circle criterion (with K = I and r = 1) applies to

above system, proving the claim. �
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Theorem extends to the “non-square” case, provided that K2 − K1 is
left invertible.
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Theorem extends to the “non-square” case, provided that K2 − K1 is
left invertible.

Standard text-book versions of the circle criterion for state-space
systems are usually proved using Lyapunov techniques combined with
the positive-real lemma.
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systems are usually proved using Lyapunov techniques combined with
the positive-real lemma.

Exponential weighting/small gain is more elementary and yields
(exponential) ISS.
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Exponential weighting/small gain is more elementary and yields
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If, in the sector condition, δ = 0, then small gain does not work and
Lyapunov techniques are needed.
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left invertible.
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systems are usually proved using Lyapunov techniques combined with
the positive-real lemma.

Exponential weighting/small gain is more elementary and yields
(exponential) ISS.

If, in the sector condition, δ = 0, then small gain does not work and
Lyapunov techniques are needed.

⊲ Not clear how to do this in ∞-dimensional case: results on KYP
inequality by Arov & Staffans (2007) may be useful in this context.
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Theorem extends to the “non-square” case, provided that K2 − K1 is
left invertible.

Standard text-book versions of the circle criterion for state-space
systems are usually proved using Lyapunov techniques combined with
the positive-real lemma.

Exponential weighting/small gain is more elementary and yields
(exponential) ISS.

If, in the sector condition, δ = 0, then small gain does not work and
Lyapunov techniques are needed.

⊲ Not clear how to do this in ∞-dimensional case: results on KYP
inequality by Arov & Staffans (2007) may be useful in this context.

⊲ For finite-dimensional case, see Arcak & Teel (2002) and
Jayawardhana, L & Ryan (2009).
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Theorem (Circle criterion - ISS with bias 1)

Let K1,K2 ∈ B(Y ), let v ∈ L∞
loc(R+, Y ) and let Σ be optimizable and

estimatable. Assume that
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f is bounded on bounded sets,
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Let K1,K2 ∈ B(Y ), let v ∈ L∞
loc(R+, Y ) and let Σ be optimizable and
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f is bounded on bounded sets,

K1 is an admissible feedback operator,

K2 − K1 is invertible,

(I + K2G)(I + K1G)−1 is positive real.
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4 ISS with bias (practical ISS)

Theorem (Circle criterion - ISS with bias 1)

Let K1,K2 ∈ B(Y ), let v ∈ L∞
loc(R+, Y ) and let Σ be optimizable and

estimatable. Assume that

f is bounded on bounded sets,

K1 is an admissible feedback operator,

K2 − K1 is invertible,

(I + K2G)(I + K1G)−1 is positive real.

Moreover, assume that there exist δ > 0 and a bounded set E ⊂ Y such
that the generalized sector condition

Re〈f(z) − K1z, f(z) − K2z〉 ≤ −δ‖z‖2 ∀ z ∈ Y \E

holds.
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Then there exist β ≥ 0, γ > 0 and Γ ≥ 1 such that, for each
(x, y) ∈ S(x0, v),

‖x(t)‖ ≤ Γ
(

exp(−γt)‖x0‖ + ‖v‖L∞(0,t) + β
)

, ∀ t ∈ R+
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Then there exist β ≥ 0, γ > 0 and Γ ≥ 1 such that, for each
(x, y) ∈ S(x0, v),

‖x(t)‖ ≤ Γ
(

exp(−γt)‖x0‖ + ‖v‖L∞(0,t) + β
)

, ∀ t ∈ R+

where the bias β depends on f , E, K1 and K2.
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Then there exist β ≥ 0, γ > 0 and Γ ≥ 1 such that, for each
(x, y) ∈ S(x0, v),

‖x(t)‖ ≤ Γ
(

exp(−γt)‖x0‖ + ‖v‖L∞(0,t) + β
)

, ∀ t ∈ R+

where the bias β depends on f , E, K1 and K2.

The bias β is a measure of the extent of the violation of the sector
condition on the set E. A bound for β is given by

β ≤ sup
z∈E

∥

∥f(z) −
1

2
(K1 + K2)z

∥

∥.
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z

f(z)

b b
−1

+1

SISO nonlinearity f satisfying a generalized sector condition with
E = [−1, 1].
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Proof of Theorem - main ideas
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Proof of Theorem - main ideas

Construct nonlinearity f̃ such that f̃ satisfies a “proper” sector
condition with sector data K1 and K2,

f̃(z) = f(z) ∀ z ∈ Y \E.
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Proof of Theorem - main ideas

Construct nonlinearity f̃ such that f̃ satisfies a “proper” sector
condition with sector data K1 and K2,

f̃(z) = f(z) ∀ z ∈ Y \E.

Replace f by f̃ and absorb error into input, that is, replace v by

ṽ(t) := v(t) + f̃(y(t)) − f(y(t)).

CDPS2011 Workshop, Wuppertal, 18-22 July 2011



Proof of Theorem - main ideas

Construct nonlinearity f̃ such that f̃ satisfies a “proper” sector
condition with sector data K1 and K2,

f̃(z) = f(z) ∀ z ∈ Y \E.

Replace f by f̃ and absorb error into input, that is, replace v by

ṽ(t) := v(t) + f̃(y(t)) − f(y(t)).

Apply ISS version of circle criterion to Lure system with nonlinearity
f̃ .
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v Σ

f

y
+
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v Σ

f

y
+

−

v Σ

f̃

y
+

−

+

f̃ − f
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v Σ

f

y
+

−

v Σ

f̃

y
+

−

+

f̃ − f

ṽ Σ

f̃

y
+

−
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5 Hysteretic nonlinearities

Replace static nonlinearity f : Y → Y by a causal nonlinear operator

F : dom(F ) ⊂ L2
loc(R+, Y ) → L2

loc(R+, Y ).
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loc(R+, Y ).

v Σ

F

y
+

−

CDPS2011 Workshop, Wuppertal, 18-22 July 2011



5 Hysteretic nonlinearities

Replace static nonlinearity f : Y → Y by a causal nonlinear operator

F : dom(F ) ⊂ L2
loc(R+, Y ) → L2

loc(R+, Y ).

v Σ

F

y
+

−

Theorem on ISS with bias extends to this case.
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5 Hysteretic nonlinearities

Replace static nonlinearity f : Y → Y by a causal nonlinear operator

F : dom(F ) ⊂ L2
loc(R+, Y ) → L2

loc(R+, Y ).

v Σ

F

y
+

−

Theorem on ISS with bias extends to this case.

In what sense?
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Theorem (Circle criterion - ISS with bias 2)
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Let K1,K2 ∈ B(Y ), let v ∈ L∞
loc(R+, Y ) and let Σ be optimizable and

estimatable. Assume that
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Theorem (Circle criterion - ISS with bias 2)

Let K1,K2 ∈ B(Y ), let v ∈ L∞
loc(R+, Y ) and let Σ be optimizable and

estimatable. Assume that

K1 is an admissible feedback operator,

K2 − K1 is invertible,

(I + K2G)(I + K1G)−1 is positive real.

Moreover, assume that there exist δ > 0, a bounded set E ⊂ Y and b > 0
such that

Re〈(F (w))(t) − K1w(t), (F (w))(t) − K2w(t)〉 ≤ −δ‖w(t)‖2

∀ (t, w) ∈ R+ × dom(F ) s.t. w(t) ∈ Y \ E

and

‖F (w))(t)‖ ≤ b ∀ (t, w) ∈ R+ × dom(F ) s.t. w(t) ∈ E.

.
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Then there exist β ≥ 0, γ > 0 and Γ ≥ 1 such that, for each
(x, y) ∈ S(x0, v),

‖x(t)‖ ≤ Γ
(

exp(−γt)‖x0‖ + ‖v‖L∞(0,t) + β
)

, ∀ t ∈ R+
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‖x(t)‖ ≤ Γ
(

exp(−γt)‖x0‖ + ‖v‖L∞(0,t) + β
)

, ∀ t ∈ R+

where the bias β depends on F , E, K1 and K2.
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Then there exist β ≥ 0, γ > 0 and Γ ≥ 1 such that, for each
(x, y) ∈ S(x0, v),

‖x(t)‖ ≤ Γ
(

exp(−γt)‖x0‖ + ‖v‖L∞(0,t) + β
)

, ∀ t ∈ R+

where the bias β depends on F , E, K1 and K2.

Are there any non-static nonlinearities which satisfy the relevant
conditions?
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Then there exist β ≥ 0, γ > 0 and Γ ≥ 1 such that, for each
(x, y) ∈ S(x0, v),

‖x(t)‖ ≤ Γ
(

exp(−γt)‖x0‖ + ‖v‖L∞(0,t) + β
)

, ∀ t ∈ R+

where the bias β depends on F , E, K1 and K2.

Are there any non-static nonlinearities which satisfy the relevant
conditions?

Yes: hysteretic nonlinearities!
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In the following: Y = R.

.
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In the following: Y = R.

F : C(R+) → C(R+) is a hysteresis operator if F is causal and
rate-independent.
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In the following: Y = R.

F : C(R+) → C(R+) is a hysteresis operator if F is causal and
rate-independent.

Rate independence means that

F (w ◦ ζ) = F (w) ◦ ζ

for every w ∈ C(R+) and every time transformation ζ : R+ → R+

(continuous, non-decreasing and surjective).
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In the following: Y = R.

F : C(R+) → C(R+) is a hysteresis operator if F is causal and
rate-independent.

Rate independence means that

F (w ◦ ζ) = F (w) ◦ ζ

for every w ∈ C(R+) and every time transformation ζ : R+ → R+

(continuous, non-decreasing and surjective).

A basic hysteresis operator is the backlash or play operator:

−σ

σ
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Denote backlash operator by Bσ, η, where η ∈ R plays the role of an initial
condition.
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condition.

It is clear from diagram that Bσ, η satisfies a generalized sector condition.
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Denote backlash operator by Bσ, η, where η ∈ R plays the role of an initial
condition.

It is clear from diagram that Bσ, η satisfies a generalized sector condition.

Bσ, η is the basic building block for other hysteresis operators, such as the
Prandtl and Preisach operators which are “weighted sums” of backlash
operators and exhibit nested hysteresis loops.
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Denote backlash operator by Bσ, η, where η ∈ R plays the role of an initial
condition.

It is clear from diagram that Bσ, η satisfies a generalized sector condition.

Bσ, η is the basic building block for other hysteresis operators, such as the
Prandtl and Preisach operators which are “weighted sums” of backlash
operators and exhibit nested hysteresis loops.

Prandtl operator:

(Pξ(w))(t) =

∫ ∞

0
(Bσ, ξ(σ)(w))(t)µ(dσ),

where
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∫ ∞

0
(Bσ, ξ(σ)(w))(t)µ(dσ),
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ξ : R+ → R is globally Lipschitz and compactly supported.
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Denote backlash operator by Bσ, η, where η ∈ R plays the role of an initial
condition.

It is clear from diagram that Bσ, η satisfies a generalized sector condition.

Bσ, η is the basic building block for other hysteresis operators, such as the
Prandtl and Preisach operators which are “weighted sums” of backlash
operators and exhibit nested hysteresis loops.

Prandtl operator:

(Pξ(w))(t) =

∫ ∞

0
(Bσ, ξ(σ)(w))(t)µ(dσ),

where

ξ : R+ → R is globally Lipschitz and compactly supported.

µ is a finite Borel measure on R+ such that
∫ ∞

0 σµ(dσ) < ∞.

CDPS2011 Workshop, Wuppertal, 18-22 July 2011



Illustration

CDPS2011 Workshop, Wuppertal, 18-22 July 2011



Illustration

ξ(σ) ≡ 0
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Illustration

ξ(σ) ≡ 0

µ(S) = λ(S ∩ [0, 5]) for every Borel set S ⊂ R+
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Illustration

ξ(σ) ≡ 0

µ(S) = λ(S ∩ [0, 5]) for every Borel set S ⊂ R+
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Generalized sector bounds
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Generalized sector bounds

Under the above assumptions, the Prandtl operator satisfies a generalized
sector bound:
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Under the above assumptions, the Prandtl operator satisfies a generalized
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for every α > 0,
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Generalized sector bounds

Under the above assumptions, the Prandtl operator satisfies a generalized
sector bound:

for every α > 0,

(k − α)w2(t) ≤ (Pξ(w))(t)w(t) ≤ (k + α)w2(t)

∀ (t, w) ∈ R+ × C(R+) s.t. |w(t)| ≥ l/α
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Generalized sector bounds

Under the above assumptions, the Prandtl operator satisfies a generalized
sector bound:

for every α > 0,

(k − α)w2(t) ≤ (Pξ(w))(t)w(t) ≤ (k + α)w2(t)

∀ (t, w) ∈ R+ × C(R+) s.t. |w(t)| ≥ l/α

where

k := µ(R+), l :=

∫ ∞

0
σµ(dσ).
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Generalized sector bounds

Under the above assumptions, the Prandtl operator satisfies a generalized
sector bound:

for every α > 0,

(k − α)w2(t) ≤ (Pξ(w))(t)w(t) ≤ (k + α)w2(t)

∀ (t, w) ∈ R+ × C(R+) s.t. |w(t)| ≥ l/α

where

k := µ(R+), l :=

∫ ∞

0
σµ(dσ).

Conclusion: circle criterion (ISS with bias 2) applies.
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