Introduction 00	Modelling 0000	Casimir functional	Control design 0000	Conclusion

Boundary control of infinite-dimensional port-Hamiltonian systems with dissipation using invariant function approach.

Y. Le $Gorrec^1$

¹FEMTO-ST, Automatic Control and Micro-Mechatronic Systems Department

CDPS 2011

Introduction	Modelling	Casimir functional	Control design	Conclusion

IntroductionContext

2 Modelling

- Considered system
- Model
- Port Hamiltonian modeling

3 Casimir functional

- Conservative case
- Dissipative case

4 Control design

- Immersion approach
- Example

5 Conclusion

Introduction ●0	Modelling 0000	Casimir functional	Control design 0000	Conclusion
Context				

Infinite dimensional port Hamiltonian systems :

- Material and energy balance equations → physically consistent model.
- Definition of the geometric structure (Dirac structure) and of the boundary port variables → derivation of boundary control systems.
- The core of the approach is the energy of the system and its links with the dynamics and the environment.

Introduction ●0	Modelling 0000	Casimir functional	Control design 0000	Conclusion
Context				

Infinite dimensional port Hamiltonian systems :

- Material and energy balance equations → physically consistent model.
- Definition of the geometric structure (Dirac structure) and of the boundary port variables → derivation of boundary control systems.
- The core of the approach is the energy of the system and its links with the dynamics and the environment.

New issue for system control theory

Modelling step is important \rightarrow the physical properties can be advantageously used for analysis, simulation and control purposes

Introduction O	Modelling 0000	Casimir functional	Control design 0000	Conclusion
Context				

In this talk :

- Boundary control of infinite dimensional system using the energy shaping approach and the immersion/reduction method.
 - Controller under port Hamiltonian format.
 - Power preserving interconnection.
 - Use of Casimir invariant (to link controller states to system states).
- Casimir functions :
 - In the power preserving case : dynamical and structural invariants obtained from Poisson Bracket.
 - In the case of system with dissipation : structural invariants obtained from Leibnitz Bracket. Not necessarily dynamical invariants
- Chosen illustrative example :

Introduction O•	Modelling 0000	Casimir functional	Control design 0000	Conclusion
Context				

In this talk :

- Boundary control of infinite dimensional system using the energy shaping approach and the immersion/reduction method.
 - Controller under port Hamiltonian format.
 - Power preserving interconnection.
 - Use of Casimir invariant (to link controller states to system states).
- Casimir functions :
 - In the power preserving case : dynamical and structural invariants obtained from Poisson Bracket.
 - In the case of system with dissipation : structural invariants obtained from Leibnitz Bracket. Not necessarily dynamical invariants
- Chosen illustrative example :

Control of microsystems : Nanotweezers for DNA manipulation

• Objective : nano manipulation and DNA characterization

- Actuator : electrostatic comb drive \rightarrow force proportional to the square of the applied voltage $F_c = f(V^2)$
- Sensor : electrostatic comb drive+capacitor \rightarrow velocity

Introduction 00	Modelling ○●○○	Casimir functional	Control design 0000	Conclusion
Model				

• Mass spring damper + Timoshenko beam + mass spring damper

- Mass spring damper + Timoshenko beam + mass spring damper
- Port Hamiltonian controller

Introduction 00	Modelling ○○●○	Casimir functional	Control design 0000	Conclusion
Port Hamiltonian modeling				

- Beam model :
 - State (energy) variables (w(z, t) is the transverse displacement and φ(z, t) the rotation angle) :

$$x = \begin{bmatrix} \frac{\partial w}{\partial z} - \phi \\ \rho \frac{\partial w}{\partial t} \\ \frac{\partial \phi}{\partial z} \\ l_{\rho} \frac{\partial \phi}{\partial t} \end{bmatrix} \xrightarrow{\longrightarrow \text{ shear displacement}} \text{ angular displacement,} \\ \xrightarrow{\longrightarrow \text{ angular displacement,}} \text{ angular momentum distribution.}$$

• Effort variables and energy :

$$e = \begin{bmatrix} F \\ v \\ T \\ \omega \end{bmatrix} \xrightarrow{\longrightarrow \text{ longitudinal force,}}_{\text{ torque,}} ; \ \mathcal{H}_{bm} = \frac{1}{2} \int_0^L \left(K x_1^2 + \frac{x_2^2}{\rho} + E I x_3^2 + \frac{x_4^2}{I_{\rho}} \right) dz$$

• DNA

• Combdrive+suspension system

Introduction 00	Modelling ○○●○	Casimir functional	Control design 0000	Conclusion
Port Hamiltonian modeling				

- Beam model :
 - From balance equations :

That can be written :

$$\frac{\partial x}{\partial t} = \left(P_1 \frac{\partial}{\partial z} + P_0 + G_0\right) \mathcal{L}x \text{ with } P_1 = P_1^T, P_0 = -P_0^T, G_0 = G_0^T$$

- DNA
- Combdrive+suspension system

Introduction 00	Modelling ○○●○	Casimir functional	Control design 0000	Conclusion
Port Hamiltonian modeling				

- Beam model :
 - From balance equations :

Considering $f_{bm} = 0$ one can choose as boundary port variables as :

$$\begin{bmatrix} f_{\partial} \\ e_{\partial} \end{bmatrix} = U \begin{bmatrix} P_{1} & -P_{1} \\ I & I \end{bmatrix} \begin{bmatrix} \mathcal{L}x(b) \\ \mathcal{L}x(a) \end{bmatrix} \text{ with } U^{\mathsf{T}}\Sigma U = \Sigma$$

DNA

Combdrive+suspension system

Introduction 00	Modelling ○○●○	Casimir functional	Control design 0000	Conclusion
Port Hamiltonian modeling				

- Beam model :
 - From balance equations :

A possible choice is :

$$\begin{bmatrix} f_{\partial} \\ e_{\partial} \end{bmatrix} = \begin{bmatrix} v(b) \\ \omega(b) \\ -v(a) \\ -\omega(a) \\ F(b) \\ T(b) \\ F(a) \\ T(a) \end{bmatrix}, \text{ and } u = \begin{bmatrix} v(b) \\ \omega(b) \\ -v(a) \\ -\omega(a) \end{bmatrix} y = \begin{bmatrix} F(b) \\ T(b) \\ F(a) \\ T(a) \end{bmatrix}$$

- DNA
- Combdrive+suspension system

Introduction 00	Modelling ○○●○	Casimir functional	Control design 0000	Conclusion
Port Hamilton	ian modeling			
•	Beam model : DNA From balance equ $p_b = \begin{bmatrix} M_b \frac{dw_b}{dt} \\ \int \frac{d\phi_b}{dt} \end{bmatrix} gu$ $\mathcal{H}(q_b, p_b) = \frac{1}{2} \left(\frac{p_{b1}^2}{M_b} \right)$	ations $(q_b = \begin{bmatrix} w \\ \phi \end{bmatrix}$ en. moment., $+ rac{p_{b2}^2}{J_b} + k_b q_{b1}^2)$:	$\binom{b}{b}$ gen. coord.,	
	$\left\{ egin{array}{c} rac{d}{dt} \left[egin{array}{c} q_b \ p_b \end{array} ight] &= \ \left[egin{array}{c} v_b \ \omega_b \end{array} ight] &= \end{array} ight.$	$\underbrace{\left[\begin{array}{cc} 0 & I \\ -I & -D_b \end{array}\right]}_{J_b - R_b}$ $\begin{bmatrix} 0 & I \end{bmatrix}$	$\begin{bmatrix} \partial_{q_b} \mathcal{H}(q_b, p_b) \\ \partial_{p_b} \mathcal{H}(q_b, p_b) \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} \begin{vmatrix} \\ \partial_{q_b} \mathcal{H}(q_b, p_b) \\ \partial_{p_b} \mathcal{H}(q_b, p_b) \end{bmatrix}$	$\left[\begin{array}{c}F_b\\T_b\end{array}\right]$

• Combdrive+suspension system

Introduction 00	Modelling ○○●○	Casimir functional	Control design 0000	Conclusion
Port Hamiltonian modeling				

- Beam model :
- DNA
- Combdrive+suspension system

From balance equations $(q_a = \begin{bmatrix} w_a \\ \phi_a \end{bmatrix}$ gen. coord., $p_a = \begin{bmatrix} M_a \frac{dw_a}{dt} \\ J \frac{d\phi_a}{dt} \end{bmatrix}$ gen. moment., $\mathcal{H}(q_a, p_a) = \frac{1}{2} \left(\frac{p_{a1}^2}{M_b} + \frac{p_{a2}^2}{J_a} + k_a q_{a1}^2 \right)$:

$$\begin{cases} \frac{d}{dt} \begin{bmatrix} q_{a} \\ p_{a} \end{bmatrix} &= \begin{bmatrix} 0 & I \\ -I & -D_{a} \end{bmatrix} & \begin{bmatrix} \partial_{q_{a}} \mathcal{H}(q_{a}, p_{a}) \\ \partial_{p_{a}} \mathcal{H}(q_{a}, p_{a}) \\ \partial_{q_{a}} \mathcal{H}(q_{a}, p_{a}) \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} \begin{bmatrix} F_{a} \\ T_{a} \end{bmatrix} \\ \begin{bmatrix} v_{a} \\ \omega_{a} \end{bmatrix} &= \begin{bmatrix} 0 & I \end{bmatrix} & \begin{bmatrix} \partial_{q_{a}} \mathcal{H}(q_{a}, p_{a}) \\ \partial_{q_{a}} \mathcal{H}(q_{a}, p_{a}) \\ \partial_{p_{a}} \mathcal{H}(q_{a}, p_{a}) \end{bmatrix}$$

Introduction 00	Modelling ○○●○	Casimir functional	Control design 0000	Conclusion
Port Hamiltonian modeling				

- Beam model :
- DNA
- Combdrive+suspension system +controller Controller :

$$\begin{cases} \frac{d}{dt}x_c &= (J_c - R_c) \quad \partial_{x_c}\mathcal{H}(x_c) + G_c \begin{bmatrix} v_a \\ \omega_a \end{bmatrix} \\ \begin{bmatrix} F_c \\ T_c \end{bmatrix} &= G_c^T \quad \partial_{x_c}\mathcal{H}(x_c) \end{cases}$$

Introduction 00	Modelling ○○●○	Casimir functional	Control design 0000	Conclusion
Port Hamiltonian modeling				

- Beam model :
- DNA
- Combdrive+suspension system +controller From balance equations :

$$\begin{pmatrix} \frac{d}{dt} \begin{bmatrix} q_a \\ p_a \\ x_c \end{bmatrix} &= \begin{bmatrix} 0 & I & 0 \\ -I & -D_a & -G_c^T \\ 0 & G_c & J_c - R_c \end{bmatrix} \begin{bmatrix} \partial_{q_a} \mathcal{H}(q_a, p_a, x_c) \\ \partial_{p_a} \mathcal{H}(q_a, p_a, x_c) \\ \partial_{x_c} \mathcal{H}(q_a, p_a, x_c) \\ \partial_{q_a} \mathcal{H}(q_a, p_a, x_c) \\ \partial_{p_a} \mathcal{H}(q_a, p_a, x_c) \\ \partial_{x_c} \mathcal{H}(q_a, p_a, x_c) \end{bmatrix} + \begin{bmatrix} 0 \\ I \\ 0 \end{bmatrix} \begin{bmatrix} F_a \\ T_a \end{bmatrix}$$

Introduction 00	Modelling ○○○●	Casimir functional	Control design	Conclusion
Port Hamiltonian modeling				

Power preserving interconnexion :

$$\left(\begin{array}{c} u_{beam} = \left[\begin{array}{c} u_{beam,a} \\ u_{beam,b} \end{array} \right] = \left[\begin{array}{c} f_{\partial,a} \\ f_{\partial,b} \end{array} \right] = \left[\begin{array}{c} -y_a \\ -y_b \end{array} \right] \\ u = \left[\begin{array}{c} u_a \\ u_b \end{array} \right] = \left[\begin{array}{c} e_{\partial,a} \\ e_{\partial,b} \end{array} \right]$$

The closed loop operator $f = (\mathcal{J}_t - \mathcal{R}_t) e$ is equal to :

$$\mathcal{J}_{t} - \mathcal{R}_{t} = \begin{bmatrix} \frac{\mathcal{J}_{bm} - \mathcal{R}_{bm}}{0} & 0 & 0 & 0 \\ 0 & 0 & I & 0 \\ G_{a} & -I & -D_{a} & -G_{c}^{T} & 0 \\ 0 & 0 & G_{c} & J_{c} - R_{c} \\ \hline G_{b} & 0 & -I & -D_{b} \end{bmatrix}$$

 $G_{a,b} = \left[\begin{array}{ccc} 1|_{a,b} & 0 & 0 & 0 \\ 0 & 0 & 1|_{a,b} & 0 \end{array} \right] \text{ and } \mathcal{D}(\mathcal{J}_t - \mathcal{R}_t) = \left\{ e \in H^1 | e_{p_{a,b}} = -G_{a,b} e \right\}$

Introduction 00	Modelling 0000	Casimir functional	Control design 0000	Conclusion
Conservative case				

- In the conservative case $f = \mathcal{J}e$:
 - Space of *admissible efforts* :

$$\mathcal{E}_{\mathsf{adm}} = \{ e \in \mathcal{E} | \exists f \in \mathcal{F} \text{ such that } (f, e) \in \mathcal{D} \}$$

• Skew symmetric bilinear form on \mathcal{E}_{adm}

$$[e_1,e_2]:= < e_1|f_2>\in L, \ f_2\in \mathcal{F}$$
 such that $(f_2,e_2)\in \mathcal{D}$

• Set of admissible functions

$$\begin{split} \mathcal{K}_{\mathsf{adm}} &= \left\{ k: \mathcal{F} \to \mathbb{R} | \forall a \in \mathcal{F} \; \exists e \in \mathcal{E}_{\mathsf{adm}} \; \mathsf{such that} \; \forall \delta a \in \mathcal{F}, \right. \\ & \forall \eta \in \mathbb{R}, k(a + \eta \delta a) = k(a) + \eta < e | \delta a > + o(\eta) \rbrace \end{split}$$

e is the *derivative* of k at a, is denoted by $\delta k(a)$

Introduction 00	Modelling 0000	Casimir functional	Control design 0000	Conclusion
Conservative case				

• In the conservative case $f = \mathcal{J}e$: on K_{adm} we define

$$\{k_1, k_2\}(a) := [\delta k_1(a), \delta k_2(a)], \quad k_1, k_2 \in K_{adm}$$

- {,} defines a *pseudo-Poisson bracket*.
 - By skew-symmetry of [,] it immediately follows that also $\{,\}$ is skew-symmetric
 - Satisfies the Jacobi identity (in the linear case){ $x, \{y, z\}$ } + { $z, \{x, y\}$ } + { $y, \{z, x\}$ } = 0

Hamiltonian system are defined by : $\dot{x} = \{x, H(x)\}$

The Casimir functions are the functions $C \in K_{adm}$ such that :

$$\{k, C\} = [\delta k, \delta C] = 0, \ \forall k \in K_{adm}$$

In this case : $\frac{dC}{dt} = \frac{\partial C}{\partial x}^T \frac{\partial x}{\partial t} = [\delta C, \delta H] = \{C, H\} = -\{H, C\} = 0$

Introduction 00	Modelling 0000	Casimir functional	Control design 0000	Conclusion
Conservative case				

In the dissipative case f = (J - R) e : we consider f₀ = J e
Space of admissible efforts :

$$\mathcal{E}_{\mathsf{adm}} = \{ e \in \mathcal{E} | \exists \mathit{f}_0 \in \mathcal{F} \text{ such that } (\mathit{f}_0, e) \in \mathcal{D}_\mathcal{J} \}$$

• Bilinear form on
$$\mathcal{E}_{adm}$$

$$[e_1, e_2] := \langle e_1 | f_0 \rangle - \langle e_1 | \mathcal{R} e_2 \rangle \in L, \ f_0 \in \mathcal{F} \text{ such that } (f_0, e_1) \in \mathcal{D}_{\mathcal{J}}$$
on \mathcal{K}_{adm} we define

 $\{k_1, k_2\}(a) := [\delta k_1(a), \delta k_2(a)], \quad k_1, k_2 \in K_{adm}$

 $\{,\}$ defines a Leibnitz bracket. Dissipative port Hamiltonian system are defined by : $\dot{x}=\{x, H(x)\}$

The right Casimir functions are the functions $C \in K_{adm}$ such that :

$$\{k, C\} = [\delta k, \delta C] = 0, \quad \forall k \in K_{adm}$$

In this case : $\frac{dC}{dt} = \frac{\partial C}{\partial x}^T \frac{\partial x}{\partial t} = \{C, H\} \neq -\{H, C\} \Rightarrow \frac{dC}{dt} = 0$

Introduction 00	Modelling 0000	Casimir functional	Control design ●○○○	Conclusion
Immersion approach				

Idea

From the closed loop system dynamics :

$$\frac{d}{dt} \begin{bmatrix} x \\ x_c \end{bmatrix} = (\mathcal{J}_{tot} - \mathcal{R}_{tot}) \begin{bmatrix} \delta_x H_{cl}(x, x_c) \\ \delta_{x_c} H_{cl}(x, x_c) \end{bmatrix}$$

shape the closed loop energy function :

$$H_{cl}(x, x_c) = H(x) + H_c(x_c)$$

by restricting the controller dynamics using Casimir invariants of the form :

$$\mathcal{C}=x_c+F(x)$$

Then

$$H_{cl}(x, x_c) = H(x) + H_c(\mathcal{C} - F(x))$$

It remains to choose H_c such that : $\delta H_{cl}(x^*) = 0$ +stability

Introduction 00	Modelling 0000	Casimir functional	Control design ○●○○	Conclusion
Example				

Back to the example : the right Casimir invariants are defined such that :

$$\{k, C\} = [\delta k, \delta C] = 0 \quad \forall k, C \in K_{adm}$$

i.e. for $\delta_x C \in \mathcal{D}(\mathcal{J}_t - \mathcal{R}_t)$
$$\begin{cases} (\mathcal{J}_{bm} - \mathcal{R}_{bm}) \, \delta_x \mathcal{C} = 0\\ \delta_{p_a} \mathcal{C} = 0\\ G_a \delta_x \mathcal{C} - \delta_{q_a} \mathcal{C} - D_a \delta_{p_a} \mathcal{C} - G_c^T \delta_{x_c} \mathcal{C} = 0\\ G_c \delta_{p_a} \mathcal{C} + (J_c - R_c) \, \delta_{x_c} \mathcal{C}\\ \delta_{p_b} \mathcal{C} = 0\\ G_b \delta_x \mathcal{C} - \delta_{q_b} \mathcal{C} - D_b \delta_{p_b} \mathcal{C} = 0 \end{cases}$$

Choosing $J_c = R_c = 0$, $G_c = I$ and :

$$\mathcal{C}_i(x, q_a, p_a, q_b, p_b, x_c) = x_{ci} + F_i(x, p_a, q_b, p_b)$$

one can find :

$$C_{1} = x_{c1} - q_{1,a} + 2q_{1,b} - 2Lq_{2,b} - 2\int_{0}^{L} (x_{1} + zx_{3}) dz, \quad C_{2} = x_{c2} + q_{2,a} + 2q_{2,b} + 2\int_{0}^{L} x_{3} dz$$

Introduction 00	Modelling 0000	Casimir functional	Control design ○○●○	Conclusion
Example				

One can express the controller state from the system state by :

$$x_{c1} = q_{1,a} - 2Lq_{2,b} + 2\int_0^L (x_1 + zx_3) dz - 2q_{1,b} + C_1, \quad x_{c2} = q_{2,a} - 2q_{2,b} - 2\int_0^L x_3 dz + C_2$$

It remains to choose the controller Hamiltonian function in order to shape the closed loop energy function. The desired equilibrium is given by :

$$F(L) = -k_b x^*, T^*(L) = 0, v^*(L) = \omega^*(L) = 0, v(0) = \omega^*(L) = 0, \phi^* = 0$$

That leads to :

$$\phi^* = \frac{mg}{2EI} \left[\left(z - L \right)^2 - L^2 \right]$$

$$w^{*} = \frac{mg}{2EI} (z - L)^{3} - \left(\frac{mgL^{2}}{2EI} + \frac{mg}{K}\right) (z - L) - k_{b}x^{*}$$
$$\implies \Xi^{*} = (x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, x_{4}^{*}, q_{a}^{*}, p_{a}^{*}, x_{c}^{*}, q_{b}^{*}, p_{b}^{*})$$

Introduction 00	Modelling 0000	Casimir functional	Control design ○00●	Conclusion
Example				

$$\begin{aligned} \mathcal{H}_{cl} &= \frac{1}{2} \int_0^L \left(\mathsf{K} \mathsf{x}_1^2 + \frac{\mathsf{x}_2^2}{\rho} + \mathsf{E} \mathsf{l} \mathsf{x}_3^2 + \frac{\mathsf{x}_4^2}{\mathsf{I}_\rho} \right) \mathsf{d} \mathsf{z} \\ &+ \frac{1}{2} \left(\frac{\mathsf{p}_{a1}^2}{\mathsf{M}_a} + \frac{\mathsf{p}_{a2}^2}{\mathsf{J}_a} + \mathsf{k}_a \mathsf{q}_{a1}^2 \right) + \frac{1}{2} \left(\frac{\mathsf{p}_{b1}^2}{\mathsf{M}_b} + \frac{\mathsf{p}_{b2}^2}{\mathsf{J}_b} + \mathsf{k}_b \mathsf{q}_{b1}^2 \right) + \mathsf{H}_c(\mathsf{x}_{c1}, \mathsf{x}_{c2}) \end{aligned}$$

Search of admissible Lyapunov function through H_c

i.e.

$$H_c(x_{c1}, x_{c2}) = H_c(q_a, x_1, x_3, q_b)$$

such that $\mathcal{H}_{\textit{cl}}$ has a minimum in Ξ^* :

•
$$\partial_{\Xi}\mathcal{H}_{cl}(\Xi^*) = 0$$

• there exist $\gamma, \Gamma_1, \Gamma_2 > 0$ such that $\Gamma_1 \| \delta \Xi \| \leq \mathcal{H}_{cl}(\Xi^* + \delta \Xi) - \mathcal{H}_{cl}(\Xi^*) \leq \Gamma_2 \| \delta \Xi \|^{\gamma}$

$$Ex: H_c(x_{c1}, x_{c2}) = -K_1(x_{c1} - x_{c1}^*)^2 - K_2(x_{c2} - x_{c2}^*)^2 + M_1(x_{c1} - x_{c1}^*) + M_2(x_{c2} - x_{c2}^*)$$

Introduction 00	Modelling 0000	Casimir functional	Control design 0000	Conclusion

What has been done :

- Definition of the right Casimir invariant derived from Leibnitz bracket.
- Use of the right Casimir invariant derived from Leibnitz bracket for control purpose.
- A first application to nanotweezers.

Ongoing researches :

- Proof of stability for a class of controllers using results obtained for PHS.
- Application to dissipative differential operators.
- Other controller parametrizations.

Introduction 00	Modelling 0000	Casimir functional	Control design 0000	Conclusion	
	Y. Le Gorrec, H. Zw Dirac structures and Skew-Symmetric Dif <i>SIAM Journal on Co</i>	art and B. Maschke, Boundary Control Sy ferential Operators ontrol and Optimization	vstems associated wit	:h pages	
	1864-1892, 2005.				
	Y. Le Gorrec, B. Maschke, H. Zwart and J. Villegas. Casimir functions and interconnection of boundary port Hamiltonian systems				
	IFAC Workshop on (Namur, Belgium, 23	Control of Distributed -27 July 2007.	Parameter Systems,		

Introduction 00	Modelling 0000	Casimir functional	Control design 0000	Conclusion	
	A. Macchelli and C. Melchiorri. Modeling and control of the timoshenko beam. the distributed port hamiltonian approach.				
	SIAM J. on Control and	<i>Optim.</i> , 43(2) :743–7	67, 2004.		
	J.P. Ortega and V. Plan	as-Bielsa.			
	Dynamics on Leibniz manifolds,				
	Journal of Geometry and Physics , 52 (1) :1-27, 2004				