LQR control
 for long-but-finite strings and LQR control
 for a class of infinite dimensional systems: similarities and differences

Orest V. Iftime

University of Groningen
The Netherlands

- Motivation
- The attractive mathematical features of the class of spatially invariant systems and their applications.
- Many possible applications: MEMS, flow control, veh. platoons, pde's etc.
- a class of spatially invariant systems
- Motivation
- The attractive mathematical features of the class of spatially invariant systems and their applications.
- Many possible applications: MEMS, flow control, veh. platoons, pde's etc.
- a class of spatially invariant systems
- Infinite-matrix formulation
- Fourier-transform formulation
- Motivation
- The attractive mathematical features of the class of spatially invariant systems and their applications.
- Many possible applications: MEMS, flow control, veh. platoons, pde's etc.
- a class of spatially invariant systems
- Infinite-matrix formulation
- Fourier-transform formulation
- Similarities and differences
- of LQR control design for infinite strings and for large-but-finite strings of 2×2 MIMO systems.
- Motivation
- The attractive mathematical features of the class of spatially invariant systems and their applications.
- Many possible applications: MEMS, flow control, veh. platoons, pde's etc.
- a class of spatially invariant systems
- Infinite-matrix formulation
- Fourier-transform formulation
- Similarities and differences
- of LQR control design for infinite strings and for large-but-finite strings of 2×2 MIMO systems.
- Some results.
- Special cases.

summary

- Motivation
- The attractive mathematical features of the class of spatially invariant systems and their applications.
- Many possible applications: MEMS, flow control, veh. platoons, pde's etc.
- a class of spatially invariant systems
- Infinite-matrix formulation
- Fourier-transform formulation
- Similarities and differences
- of LQR control design for infinite strings and for large-but-finite strings of 2×2 MIMO systems.
- Some results.
- Special cases.
- Conclusions.

Motivation

- Automatica (2010): Curtain, Iftime and Zwart, A comparison: scalar case
- IEEE Trans. A-C (2011): Curtain,

Comments on Distributed control of spatially invariant systems, by Bamieh, Paganini and Dahleh, IEEE Trans. A-C (2002).

- Automatica (2009): Curtain, Iftime and Zwart, System theoretic properties.
- IEEE Tr. A-C (2005): Jovanovic and Bamieh pointed out that the shortcomings of previous papers were due to lack of exponential stabilizability or detectability of the infinite platoon model.
- IEEE Tr. A-C (2002): Bamieh, Paganini and Dahleh, Distributed control of spatially invariant systems.
- Levine and Athans (1966), Melzer and Kuo (1971), J.L. Willems (1971) studied the LQR control problem for very large and infinite platoons of vehicles.

Question: when spatially invariant systems serve as good models for long-but-finite strings?

A finite string model - scalar

$$
\begin{aligned}
\dot{z}_{r}(t) & =a_{0} z_{r}(t)+b_{0} u_{r}(t)+b_{1} u_{r-1}(t), \quad-N+1 \leq r \leq N \\
\dot{z}_{-N}(t) & =a_{0} z_{-N}(t)+u_{-N}(t), \\
y_{r}(t) & =c_{0} z_{r}(t), \quad-N \leq r \leq N, \quad t \geq 0 .
\end{aligned}
$$

A finite string model - scalar

$$
\begin{aligned}
\dot{z}_{r}(t) & =a_{0} z_{r}(t)+b_{0} u_{r}(t)+b_{1} u_{r-1}(t), \quad-N+1 \leq r \leq N \\
\dot{z}_{-N}(t) & =a_{0} z_{-N}(t)+u_{-N}(t), \\
y_{r}(t) & =c_{0} z_{r}(t), \quad-N \leq r \leq N, \quad t \geq 0 .
\end{aligned}
$$

$$
\mathbf{A}_{N}=a_{0} I, \quad \mathbf{C}_{N}=c_{0} I, \quad \mathbf{B}_{N}=\left[\begin{array}{ccccc}
b_{0} & 0 & 0 & \ldots & 0 \\
b_{1} & b_{0} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & b_{1} & b_{0}
\end{array}\right]
$$

where $\mathbf{A}_{N}, \mathbf{B}_{N}, \mathbf{C}_{N}$ are Toeplitz matrices and we order from $-N$ to N,

$$
z^{N}=\left[\begin{array}{c}
z_{-N} \\
z_{-N+1} \\
\cdot \\
\cdot \\
z_{N}
\end{array}\right], \quad u^{N}=\left[\begin{array}{c}
u_{-N} \\
u_{-N+1} \\
\cdot \\
\cdot \\
u_{N}
\end{array}\right], \quad y^{N}=\left[\begin{array}{c}
y_{-N} \\
y_{-N+1} \\
\cdot \\
\cdot \\
y_{N}
\end{array}\right]
$$

A finite string model - matrix case

$$
\begin{align*}
& \dot{z}_{r}(t)=\sum_{l=-N}^{N} A_{l} z_{r-l}(t)+\sum_{l=-N}^{N} B_{l} u_{r-l}(t) \tag{1}\\
& y_{r}(t)=\sum_{l=-N}^{N} C_{l} z_{r-l}(t), \quad-N \leq r \leq N, \quad t \geq 0
\end{align*}
$$

finitely many nonzero $A_{l}, B_{l}, C_{l} \in \mathbb{C}^{2 \times 2}$; col. vect. $z_{r}, y_{r}, u_{r} \in \mathbb{C}^{2}$

A finite string model - matrix case

$$
\begin{align*}
& \dot{z}_{r}(t)=\sum_{l=-N}^{N} A_{l} z_{r-l}(t)+\sum_{l=-N}^{N} B_{l} u_{r-l}(t) \tag{1}\\
& y_{r}(t)=\sum_{l=-N}^{N} C_{l} z_{r-l}(t), \quad-N \leq r \leq N, \quad t \geq 0
\end{align*}
$$

finitely many nonzero $A_{l}, B_{l}, C_{l} \in \mathbb{C}^{2 \times 2}$; col. vect. $z_{r}, y_{r}, u_{r} \in \mathbb{C}^{2}$

Example - 2×2

The only the nonzero coefficients are

$$
\begin{align*}
& A_{0}=\left[\begin{array}{cc}
0 & 1 \\
0 & -\kappa
\end{array}\right], B_{0}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \tag{2}\\
& C_{0}=h_{0} I_{2} \text { and } C_{1}=h_{1} I_{2}
\end{align*}
$$

$z_{r}(t)=\left[x_{r}(t), \dot{x}_{r}(t)\right]^{T}, y_{r}(t)=\left[y_{r, 1}(t), y_{r, 2}(t)\right]^{T}, u_{r}(t)=\left[0, u_{r, 2}(t)\right]^{T}$ for $t \geq 0$.

Example: a second order system

$$
\begin{align*}
\ddot{x}_{r}(t)= & -\kappa \dot{x}_{r}(t)+u_{r, 2}(t),-N \leq r \leq N, \tag{3}\\
y_{r, 1}(t)= & h_{1} x_{r-1}(t)+h_{0} x_{r}(t), \\
y_{r, 2}(t)= & h_{1} \dot{x}_{r-1}(t)+h_{0} \dot{x}_{r}(t), \\
& -N+1 \leq r \leq N, \tag{4}\\
y_{-N, 1}(t)= & h_{0} x_{-N}(t), \\
y_{-N, 2}(t)= & h_{0} \dot{x}_{-N}(t), \quad t \geq 0 .
\end{align*}
$$

Example - 2×2

The only the nonzero coefficients are

$$
\begin{align*}
& A_{0}=\left[\begin{array}{cc}
0 & 1 \\
0 & -\kappa
\end{array}\right], B_{0}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \tag{5}\\
& C_{0}=h_{0} I_{2} \text { and } C_{1}=h_{1} I_{2}
\end{align*}
$$

$z_{r}(t)=\left[x_{r}(t), \dot{x}_{r}(t)\right]^{T}, y_{r}(t)=\left[y_{r, 1}(t), y_{r, 2}(t)\right]^{T}, u_{r}(t)=\left[0, u_{r, 2}(t)\right]^{T}$ for $t \geq 0$.

A finite string model - matrix case

$$
\begin{aligned}
& \dot{z}_{r}(t)=\sum_{l=-N}^{N} A_{l} z_{r-l}(t)+\sum_{l=-N}^{N} B_{l} u_{r-l}(t) \\
& y_{r}(t)=\sum_{l=-N}^{N} C_{l} z_{r-l}(t), \quad-N \leq r \leq N, \quad t \geq 0
\end{aligned}
$$

A finite string model: compact form $\Sigma\left(\mathbf{A}_{N}, \mathbf{B}_{N}, \mathbf{C}_{N}, 0\right)$

$$
\begin{align*}
\dot{\mathbf{z}}_{N}(t) & =\mathbf{A}_{N} \mathbf{z}_{N}(t)+\mathbf{B}_{N} \mathbf{u}_{N}(t) \tag{6}\\
\mathbf{y}_{N}(t) & =\mathbf{C}_{N} \mathbf{z}_{N}(t), \quad t \geq 0
\end{align*}
$$

where, $\mathbf{u}_{N}(t), \mathbf{y}_{N}(t), \mathbf{z}_{N}(t)$ are column vectors in $\mathbb{C}^{2(2 N+1)}$, e.g.,

$$
\mathbf{z}_{N}(t)=\left[\begin{array}{llll}
z_{-N}(t)^{T} & z_{-N+1}(t)^{T} & \cdots & z_{N}(t)^{T}
\end{array}\right]^{T}
$$

and $\mathbf{A}_{N}, \mathbf{B}_{N}, \mathbf{C}_{N}$ are $2(2 N+1) \times 2(2 N+1)$ banded block Toeplitz matrices.

A finite string model: compact form $\Sigma\left(\mathbf{A}_{N}, \mathbf{B}_{N}, \mathbf{C}_{N}, 0\right)$

$$
\begin{align*}
\dot{\mathbf{z}}_{N}(t) & =\mathbf{A}_{N} \mathbf{z}_{N}(t)+\mathbf{B}_{N} \mathbf{u}_{N}(t), \tag{7}\\
\mathbf{y}_{N}(t) & =\mathbf{C}_{N} \mathbf{z}_{N}(t), \quad t \geq 0
\end{align*}
$$

For example

$$
\mathbf{A}_{N}=\left[\begin{array}{ccccccc}
A_{0} & A_{-1} & 0 & 0 & \cdots & \cdots & 0 \tag{8}\\
A_{1} & A_{0} & A_{-1} & 0 & \cdots & \cdots & 0 \\
A_{2} & A_{1} & A_{0} & A_{-1} & 0 & \cdots & 0 \\
0 & A_{2} & A_{1} & A_{0} & A_{-1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & A_{2} & A_{1} & A_{0} & A_{-1} \\
0 & \cdots & \cdots & 0 & A_{2} & A_{1} & A_{0}
\end{array}\right]
$$

when only $A_{0}, A_{ \pm 1}, A_{2}$ are nonzero.

$$
\begin{aligned}
\dot{z}_{r}(t) & =\sum_{l=-\infty}^{\infty} A_{l} z_{r-l}(t)+\sum_{l=-\infty}^{\infty} B_{l} u_{r-l}(t), r \in \mathbb{Z} \\
y_{r}(t) & =\sum_{l=-\infty}^{\infty} C_{l} z_{r-l}(t)+\sum_{l=-\infty}^{\infty} D_{l} u_{r-l}(t)
\end{aligned}
$$

Infinite strings = spatially invariant systems

$$
\begin{aligned}
& \dot{z}_{r}(t)=\sum_{l=-\infty}^{\infty} A_{l} z_{r-l}(t)+\sum_{l=-\infty}^{\infty} B_{l} u_{r-l}(t), r \in \mathbb{Z} \\
& y_{r}(t)=\sum_{l=-\infty}^{\infty} C_{l} z_{r-l}(t)+\sum_{l=-\infty}^{\infty} D_{l} u_{r-l}(t)
\end{aligned}
$$

$\Sigma(A, B, C, D)$: Infinite matrix formulation

$$
\begin{aligned}
\dot{z}(t) & =(A z)(t)+(B u)(t) \\
y(t) & =(C z)(t)+(D u)(t), \quad t \geq 0
\end{aligned}
$$

where A, B, C, D are infinite banded matrices and bounded operators on the infinite-dimensional spaces $Z=\ell_{2}\left(\mathbb{C}^{2}\right)=U=Y$.
For simplicity, assume for the moment that $A_{l}=a_{l}, B_{l}=b_{l}, C_{l}=c_{l}, D_{l}=d_{l}$ are real scalar and only finitely many are nonzero.

$$
\begin{aligned}
& \dot{z}_{r}(t)=\sum_{l=-\infty}^{\infty} a_{l l_{r-l}(t)+} \sum_{l=-\infty}^{\infty} b_{l} u_{r-l}(t), \quad-\infty \leq r \leq \infty, \\
& y_{r}(t)=\sum_{l=-\infty}^{\infty} c_{l z_{r-l}(t)+\sum_{l=-\infty}^{\infty} d_{l} u_{r-l}(t) .} .
\end{aligned}
$$

$$
\begin{aligned}
& \dot{z}_{r}(t)=\sum_{l=-\infty}^{\infty} a_{l Z_{r-l}(t)+} \sum_{l=-\infty}^{\infty} b_{l} u_{r-l}(t), \quad-\infty \leq r \leq \infty, \\
& y_{r}(t)=\sum_{l=-\infty}^{\infty} c_{l z_{r-l}(t)+\sum_{l=-\infty}^{\infty} d_{l} u_{r-l}(t) .} .
\end{aligned}
$$

Take Fourier transforms:

$$
\check{z}(t, \theta)=\sum_{r=-\infty}^{\infty} z_{r}(t) e^{-\jmath \theta}, \quad \check{D}(\theta):=\sum_{l=-\infty}^{\infty} d_{l} e^{-\jmath l \theta} \text { for } 0 \leq \theta \leq 2 \pi .
$$

$$
\begin{aligned}
& \dot{z}_{r}(t)=\sum_{l=-\infty}^{\infty} a_{l z_{r-l}}(t)+\sum_{l=-\infty}^{\infty} b_{l} u_{r-l}(t), \quad-\infty \leq r \leq \infty, \\
& y_{r}(t)=\sum_{l=-\infty}^{\infty} c_{l z_{r}-l}(t)+\sum_{l=-\infty}^{\infty} d_{l} u_{r-l}(t) .
\end{aligned}
$$

Take Fourier transforms:

$$
\check{z}(t, \theta)=\sum_{r=-\infty}^{\infty} z_{r}(t) e^{-\jmath \theta}, \quad \check{D}(\theta):=\sum_{l=-\infty}^{\infty} d_{l} e^{-\jmath l \theta} \text { for } 0 \leq \theta \leq 2 \pi .
$$

Fourier transformed formulation: $\Sigma(\check{A}, \check{B}, \check{C}, \check{D})$

$$
\begin{aligned}
\frac{\partial}{\partial t} \check{z}(\theta, t) & =\check{A}(\theta) \check{z}(\theta, t)+\check{B}(\theta) \check{u}(\theta, t) \\
\check{y}(\theta, t) & =\check{C}(\theta) \check{z}(\theta, t)+\check{D}(\theta) \check{u}(\theta, t), \quad t \geq 0, \quad 0 \leq \theta \leq 2 \pi
\end{aligned}
$$

$$
\begin{aligned}
& \dot{z}_{r}(t)=\sum_{l=-\infty}^{\infty} a_{l} z_{r-l}(t)+\sum_{l=-\infty}^{\infty} b_{l} u_{r-l}(t), \quad-\infty \leq r \leq \infty \\
& y_{r}(t)=\sum_{l=-\infty}^{\infty} c_{l} z_{r-l}(t)+\sum_{l=-\infty}^{\infty} d_{l} u_{r-l}(t)
\end{aligned}
$$

Take Fourier transforms:

$$
\check{z}(t, \theta)=\sum_{r=-\infty}^{\infty} z_{r}(t) e^{-\jmath \theta}, \quad \check{D}(\theta):=\sum_{l=-\infty}^{\infty} d_{l} e^{-\jmath l \theta} \text { for } 0 \leq \theta \leq 2 \pi .
$$

Fourier transformed formulation: $\Sigma(\check{A}, \check{B}, \check{C}, \check{D})$

$$
\begin{aligned}
\frac{\partial}{\partial t} \check{z}(\theta, t) & =\check{A}(\theta) \check{z}(\theta, t)+\check{B}(\theta) \check{u}(\theta, t) \\
\check{y}(\theta, t) & =\check{C}(\theta) \check{z}(\theta, t)+\check{D}(\theta) \check{u}(\theta, t), \quad t \geq 0, \quad 0 \leq \theta \leq 2 \pi
\end{aligned}
$$

A 2×2 MIMO system parametrized by $\theta \in[0,2 \pi]$ and an ∞-dim. system $\Sigma(\check{A}, \check{B}, \check{C}, \check{D})$ with $\check{Z}=\mathbf{L}_{2}\left(\partial \mathbb{D}, \mathbb{C}^{2}\right)=\check{U}=\check{Y}$.

- $\Sigma(\check{A}, \check{B}, \check{C}, \check{D})$ and $\Sigma(A, B, C, D)$ are isometrically isomorphic systems:

$$
\Sigma\left(\mathfrak{F} A \mathfrak{F}^{-1}, \mathfrak{F} B \mathfrak{F}^{-1}, \mathfrak{F} C \mathfrak{F}^{-1}, \mathfrak{F} D \mathfrak{F}^{-1}\right)=\Sigma(\check{A}, \check{B}, \check{C}, \check{D})
$$

- $\Sigma(\check{A}, \check{B}, \check{C}, \check{D})$ and $\Sigma(A, B, C, D)$ are isometrically isomorphic systems:

$$
\Sigma\left(\mathfrak{F} A \mathfrak{F}^{-1}, \mathfrak{F} B \mathfrak{F}^{-1}, \mathfrak{F} C \mathfrak{F}^{-1}, \mathfrak{F} D \mathfrak{F}^{-1}\right)=\Sigma(\check{A}, \check{B}, \check{C}, \check{D})
$$

- So the system theoretic properties are identical
- $\Sigma(\check{A}, \check{B}, \check{C}, \check{D})$ and $\Sigma(A, B, C, D)$ are isometrically isomorphic systems:

$$
\Sigma\left(\mathfrak{F} A \mathfrak{F}^{-1}, \mathfrak{F} B \mathfrak{F}^{-1}, \mathfrak{F} C \mathfrak{F}^{-1}, \mathfrak{F} D \mathfrak{F}^{-1}\right)=\Sigma(\check{A}, \check{B}, \check{C}, \check{D})
$$

- So the system theoretic properties are identical
- \check{Z}, \check{U}, and \check{Y} are all INFINITE-DIMENSIONAL.
- $\Sigma(\check{A}, \check{B}, \check{C}, \check{D})$ and $\Sigma(A, B, C, D)$ are isometrically isomorphic systems:

$$
\Sigma\left(\mathfrak{F} A \mathfrak{F}^{-1}, \mathfrak{F} B \mathfrak{F}^{-1}, \mathfrak{F} C \mathfrak{F}^{-1}, \mathfrak{F} D \mathfrak{F}^{-1}\right)=\Sigma(\check{A}, \check{B}, \check{C}, \check{D})
$$

- So the system theoretic properties are identical
- \check{Z}, \check{U}, and \check{Y} are all INFINITE-DIMENSIONAL.
- $\check{A}, \check{B}, \check{C}, \check{D}$ are BOUNDED OPERATORS with norm $\|\check{T}\|_{\infty}=\max _{0<\theta \leq 2 \pi}|\check{T}(\theta)|$.
- $\Sigma(\check{A}, \check{B}, \check{C}, \check{D})$ and $\Sigma(A, B, C, D)$ are isometrically isomorphic systems:

$$
\Sigma\left(\mathfrak{F} A \mathfrak{F}^{-1}, \mathfrak{F} B \mathfrak{F}^{-1}, \mathfrak{F} C \mathfrak{F}^{-1}, \mathfrak{F} D \mathfrak{F}^{-1}\right)=\Sigma(\check{A}, \check{B}, \check{C}, \check{D})
$$

- So the system theoretic properties are identical
- \check{Z}, \breve{U}, and \check{Y} are all INFINITE-DIMENSIONAL.
- $\check{A}, \check{B}, \check{C}, \check{D}$ are BOUNDED OPERATORS with norm $\|\check{T}\|_{\infty}=\max _{0<\theta \leq 2 \pi}|\check{T}(\theta)|$.
- $\check{A}(\theta), \check{B}(\theta), \check{C}(\theta), \check{D}(\theta)$ have only finitely many nonzero terms are so they are all continuous periodic functions on $[0,2 \pi]$.

Key features of these spatially invariant systems.

- $\Sigma(\check{A}, \check{B}, \check{C}, \check{D})$ and $\Sigma(A, B, C, D)$ are isometrically isomorphic systems:

$$
\Sigma\left(\mathfrak{F} A \mathfrak{F}^{-1}, \mathfrak{F} B \mathfrak{F}^{-1}, \mathfrak{F} C \mathfrak{F}^{-1}, \mathfrak{F} D \mathfrak{F}^{-1}\right)=\Sigma(\check{A}, \check{B}, \check{C}, \check{D})
$$

- So the system theoretic properties are identical
- \check{Z}, \check{U}, and \check{Y} are all INFINITE-DIMENSIONAL.
- $\check{A}, \check{B}, \check{C}, \check{D}$ are BOUNDED OPERATORS with norm $\|\check{T}\|_{\infty}=\max _{0<\theta \leq 2 \pi}|\check{T}(\theta)|$.
- $\check{A}(\theta), \check{B}(\theta), \check{C}(\theta), \check{D}(\theta)$ have only finitely many nonzero terms are so they are all continuous periodic functions on $[0,2 \pi]$.
- The analysis for $\Sigma(\check{A}, \check{B}, \check{C}, \check{D}): 2 \times 2$ MIMO systems with parameter θ.

System theoretic properties

Exponential stability

$e^{\check{A} t}$ is exponentially stable iff $\exists M>0$ and $\alpha>0$ such that

$$
\left\|e^{\check{A} t}\right\|_{\infty} \leq M e^{-\alpha t} \text { for all } t \geq 0 .
$$

System theoretic properties

Exponential stability

$e^{\check{A} t}$ is exponentially stable iff $\exists M>0$ and $\alpha>0$ such that

$$
\left\|e^{\check{A} t}\right\|_{\infty} \leq M e^{-\alpha t} \text { for all } t \geq 0 .
$$

$e^{\check{A} t}$ is exponentially stable iff $\check{A}(\theta)$ is a stable matrix for all $\theta \in[0,2 \pi]$

System theoretic properties

Exponential stability

$e^{\check{A} t}$ is exponentially stable iff $\exists M>0$ and $\alpha>0$ such that

$$
\left\|e^{\check{A} t}\right\|_{\infty} \leq M e^{-\alpha t} \text { for all } t \geq 0 .
$$

$e^{\check{A} t}$ is exponentially stable iff $\check{A}(\theta)$ is a stable matrix for all $\theta \in[0,2 \pi]$

Exponential stabilizability and detectability

$\Sigma(\check{A}, \check{B}, \check{C}, 0)$ is exponentially stabilizable if and only if $(\check{A}(\theta), \check{B}(\theta))$ is stabilizable for each $\theta \in[0,2 \pi]$.

System theoretic properties

Exponential stability

$e^{\check{A} t}$ is exponentially stable iff $\exists M>0$ and $\alpha>0$ such that

$$
\left\|e^{\check{A} t}\right\|_{\infty} \leq M e^{-\alpha t} \text { for all } t \geq 0 .
$$

$e^{\check{A} t}$ is exponentially stable iff $\check{A}(\theta)$ is a stable matrix for all $\theta \in[0,2 \pi]$

Exponential stabilizability and detectability

$\Sigma(\check{A}, \check{B}, \check{C}, 0)$ is exponentially stabilizable if and only if $(\check{A}(\theta), \check{B}(\theta))$ is stabilizable for each $\theta \in[0,2 \pi]$.
$\Sigma(\check{A}, \check{B}, \check{C}, 0)$ is exponentially detectable if and only if $(\check{A}(\theta), \check{C}(\theta))$ is detectable for each $\theta \in[0,2 \pi]$.

Corresponding Riccati equations

The control Riccati equation and the closed-loop generators corresponding to $\Sigma\left(\mathbf{A}_{N}, \mathbf{B}_{N}, \mathbf{C}_{N}, 0\right), \Sigma(A, B, C, 0)$ and $\Sigma(\check{A}, \check{B}, \check{C}, 0)$ are respectively

$$
\begin{gather*}
\mathbf{A}_{N}^{*} Q_{N}+Q_{N} \mathbf{A}_{N}-Q_{N} \mathbf{B}_{N} \mathbf{B}_{N}^{*} Q_{N}+\mathbf{C}_{N}^{*} \mathbf{C}_{N}=0 \\
A^{*} Q+Q A-Q B B^{*} Q+C^{*} C=0 \tag{10}\\
\check{A}^{*} \check{Q}+\check{Q} \check{A}-\check{Q} \check{B} \check{B}^{*} \check{Q}+\check{C}^{*} \check{C}=0 \tag{11}
\end{gather*}
$$

Denote $A_{Q_{N}}:=\mathbf{A}_{N}-\mathbf{B}_{N} \mathbf{B}_{N}^{*} Q_{N}, A_{Q}:=A-B B^{*} Q, \check{A}_{Q}:=\check{A}-\check{B} \check{B}^{*} \check{Q}$. A closed-loop operator $A_{c l}$ has a growth bound which equals the spectral bound $\omega_{c l}=\sup \left\{\operatorname{Re}(\lambda): \lambda \in \sigma\left(A_{c l}\right)\right\}$ (since $A_{c l}$ is bounded). Denote by ω_{∞} and ω_{N} the growth bounds of the infinite systems and its Toeplitz approximants, respectively.

LQR RICCATI EQUATIONS AND TOEPLITZ APPROXIMANTS

THEOREM

The system $\Sigma(A, B, C, 0)$ is exponentially stabilizable (detectable) if and only if $\left(\check{A}\left(e^{\mathrm{j} \theta}\right), \check{B}\left(e^{\mathrm{j} \theta}\right), \check{C}\left(e^{\mathrm{j} \theta}\right), 0\right)$ is stabilizable (detectable) for each $\theta \in[0,2 \pi]$. If the above holds, then the control Riccati equation (10) has a unique nonnegative solution Q and A_{Q} generates an exponentially stable semigroup. Moreover (11), the control Riccati equation for $\Sigma(\check{A}, \check{B}, \check{C}, 0)$ has a unique nonnegative solution $\check{Q} \in \mathbf{L}_{\infty}\left(\partial \mathbb{D} ; \mathbb{C}^{2 \times 2}\right)$ and \check{A}_{Q} generates an exponentially stable semigroup. Furthermore, $\check{Q}\left(e^{\mathrm{j} \theta}\right)$ is continuous in θ on $[0,2 \pi]$.

Note that the input and output spaces are infinite-dimensional. The strongest convergence results for approximating solutions to operator Riccati equations (Ito 1987) are achieved only if the input and output spaces are finite-dimensional.

LQR RICCATI EQUATIONS AND TOEPLITZ APPROXIMANTS

THEOREM

Suppose $\Sigma(A, B, C, 0)$ is exponentially stabilizable and detectable and the sequence of finite-dim. approximating systems $\Sigma\left(\mathbf{A}_{N}, \mathbf{B}_{N}, \mathbf{C}_{N}, 0\right)$ is uniformly stabilizable and detectable. Let $Q \in \mathcal{L}\left(\ell_{2}\left(\mathbb{C}^{2}\right)\right)$ and $Q_{N} \in \mathcal{L}\left(Z^{N}\right)$ be the unique nonnegative solutions of the Riccati equations (10) and (9). Then Q_{N} converges strongly to Q, i.e.,

$$
Q z=\lim _{N \rightarrow \infty} i^{N} Q_{N} \pi^{N} z, \quad \forall z \in \ell_{2}\left(\mathbb{C}^{2}\right)
$$

and consequently $\left\|Q_{N}\right\|$ are uniformly bounded in N. Moreover, $A_{Q_{N}}$ converges strongly to A_{Q}, i.e.,

$$
i^{N} e^{A_{Q_{N}} t} \pi^{N} z \rightarrow e^{A_{Q} t} z, \quad \forall z \in \ell_{2}\left(\mathbb{C}^{2}\right)
$$

as $N \rightarrow \infty$ uniformly on compact time intervals. There exist $\bar{M}>0$ and $\mu>0$ such that $\left\|e^{A} Q^{t}\right\| \leq \bar{M} e^{-\mu t}$,

$$
\left\|e^{A}{Q_{N} t}^{t}\right\| \leq \bar{M} e^{-\mu t} \text { for all } t \geq 0 . \text { Moreover, } \ldots
$$

We present now an example in which $\Sigma(\check{A}, \check{B}, \check{C}, 0)$ is exponentially stabilizable and detectable, $\Sigma\left(\mathbf{A}_{N}, \mathbf{B}_{N}, \mathbf{C}_{N} 0\right)$ are uniformly stabilizable but not uniformly detectable and ω_{N} does not converge to ω_{∞}.
Consider $\mathbf{A}_{N}=\operatorname{diag}\left\{A_{0}\right\}$ and $\mathbf{B}_{N}=\operatorname{diag}\left\{B_{0}\right\}$, (where $a_{1}=0$, $\kappa=1), c_{i}\left(e^{\mathrm{j} \theta}\right)=h\left(e^{\mathrm{j} \theta}\right)=h_{0}+h_{1} e^{\mathrm{j} \theta}$, for $i=1,2, \theta \in[0,2 \pi]$. Let $h_{0}, h_{1} \in \mathbb{R}$ positive numbers, $h_{0} \neq h_{1}$ and $\left|h\left(e^{\mathrm{j} \theta}\right)\right|>\delta>0$. The \mathbf{C}_{N}-matrix is lower triangular block Toeplitz with

$$
C_{0}=\left[\begin{array}{cc}
h_{0} & 0 \\
0 & h_{0}
\end{array}\right] \text { and } C_{1}=\left[\begin{array}{cc}
h_{1} & 0 \\
0 & h_{1}
\end{array}\right] .
$$

The infinite-dimensional system $\Sigma(\check{A}, \check{B}, \check{C}, 0)$ associated to the above Toeplitz approximant system is exponentially stabilizable and detectable and has the growth bound $\omega_{\infty}=\max _{\theta \in[0,2 \pi]}\left\{-\left|h\left(e^{\mathrm{j} \theta}\right)\right|\right\}$. The growth bounds for the Toeplitz approximants are given by
$\omega_{N}=-\min _{k=0, . ., 2 N} \gamma_{k}(N)$.

Table: The growth bounds ω_{N} and $\widetilde{\omega}_{N}$ when $1=h_{0}<h_{1}=2\left(\omega_{\infty}=-1\right)$

$N=$	1	2	3	4	5	6
$\omega_{N}=$	-0.1378	-0.0333	-0.0083	-0.0021	-0.0005	-0.0001
$\widetilde{\omega}_{N}=$	-1.1688	-1.0789	-1.0444	-1.0281	-1.0193	-1.0140

$$
\lim _{N \rightarrow \infty} \omega_{N}=0>-1=\omega_{\infty}
$$

which is a significant gap.

Table: The growth bounds ω_{N} and $\widetilde{\omega}_{N}$ when $2=h_{0}>h_{1}=1\left(\omega_{\infty}=-1\right)$

$N=$	1	2	3	4	5	10
$\omega_{N}=$	-1.0870	-1.0464	-1.0288	-1.0196	-1.0141	-1.0046
$\widetilde{\omega}_{N}=$	-1.1688	-1.0789	-1.0444	-1.0281	-1.0193	-1.0055

Consider the system

$$
\check{A}\left(e^{\mathrm{j} \theta}\right)=\left[\begin{array}{cc}
0 & 1 \tag{12}\\
-a_{1} & -\kappa
\end{array}\right], \check{B}\left(e^{\mathrm{j} \theta}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

are constant matrices in $\mathbb{R}^{2 \times 2}$ and

$$
\begin{equation*}
\check{C}\left(e^{\mathrm{j} \theta}\right)=\operatorname{diag}\left\{c_{1}\left(e^{\mathrm{j} \theta}\right), c_{2}\left(e^{\mathrm{j} \theta}\right)\right\}, \theta \in[0,2 \pi], \tag{13}
\end{equation*}
$$

with $c_{i}\left(e^{\mathrm{j} \theta}\right), i=1,2$, having finitely many nonzero Fourier coefficients. The system $\Sigma(\check{A}, \check{B}, \check{C}, 0)$ is exponentially stabilizable and, for $c_{1}\left(e^{\mathrm{j} \theta}\right) \neq 0$ for all $\theta \in[0,2 \pi]$ it is also exponentially detectable (use Aut 2009).

Proposition:

Consider the particular infinite-dimensional system where \check{A}, \check{B} and \check{C} are given by (12) and (13) with $c_{1}=c_{2}=h \in \mathbf{H}_{\infty}$, together with the corresponding large-but-finite system (1). Then there holds

$$
\lim _{N \rightarrow \infty}\left\|Q_{N}\right\|=\|\check{Q}\|_{\infty}
$$

Proposition:

Consider the particular infinite-dimensional system where \check{A}, \check{B} and \check{C} are given by (12) and (13) with $c_{1}=c_{2}=h \in \mathbf{H}_{\infty}, h\left(e^{\mathrm{j} \theta}\right) \neq 0$ for all $\theta \in[0,2 \pi]$, together with the corresponding large-but-finite system
(1). Assume also that $T(h)$ is invertible. Then there holds
(1) $\lim _{N \rightarrow \infty} \omega_{N} \rightarrow \omega_{\infty}$.
(2) There exists an $\alpha>0$ such that $\left\|e^{\mathbf{A}_{Q_{N}} t}\right\| \leq e^{-\alpha t}$ for all $t \geq 0$ and all N.

Tilli, P.,(1998) Singular Values and Eigenvalues of Non-Hermitian Block Toeplitz Matrices, Linear Algebra and Its Applications 272.

Theorem:

Suppose that $\check{F} \in \mathbf{L}_{\infty}^{2 \times 2}$. Then

$$
\sigma_{\max }\left(\mathbf{F}_{n}\right) \leq \sigma_{\max }(\check{F}), \text { for all } n \in \mathbb{N} .
$$

A nontrivial lower bound for the singular values of $\left\{\mathbf{F}_{n}\right\}_{n}$ cannot be given in general even in the case when $\sigma_{\min }(\check{F})>0$ (see Remark 4.2, Tilli, P.,(1998)).

Denote by $\sigma_{\text {min }}(\check{F})$ and $\sigma_{\text {max }}(\check{F})$ the smallest and the greatest singular values of the function \check{F}. For example

$$
\sigma_{\min }(\check{F}):=\min _{\theta \in[0,2 \pi]} \sigma_{\min }\left(\check{F}\left(e^{\mathrm{j} \theta}\right)\right)
$$

A finite string model - matrix case

$$
\begin{aligned}
& \dot{z}_{r}(t)=\sum_{l=-N}^{N} A_{l} z_{r-l}(t)+\sum_{l=-N}^{N} B_{l} u_{r-l}(t) \\
& y_{r}(t)=\sum_{l=-N}^{N} C_{l} z_{r-l}(t), \quad-N \leq r \leq N, \quad t \geq 0
\end{aligned}
$$

A finite string model: compact form $\Sigma\left(\mathbf{A}_{N}, \mathbf{B}_{N}, \mathbf{C}_{N}, 0\right)$

$$
\begin{align*}
\dot{\mathbf{z}}_{N}(t) & =\mathbf{A}_{N} \mathbf{z}_{N}(t)+\mathbf{B}_{N} \mathbf{u}_{N}(t) \tag{14}\\
\mathbf{y}_{N}(t) & =\mathbf{C}_{N} \mathbf{z}_{N}(t), \quad t \geq 0
\end{align*}
$$

Block circulant: compact form $\Sigma\left(\tilde{A}_{N}, \tilde{B}_{N}, \tilde{C}_{N}, 0\right)$

$$
\begin{align*}
\dot{\mathbf{z}}_{N}(t) & =\tilde{A}_{N} \mathbf{z}_{N}(t)+\tilde{B}_{N} \mathbf{u}_{N}(t) \tag{15}\\
\mathbf{y}_{N}(t) & =\tilde{C}_{N} \mathbf{z}_{N}(t), \quad t \geq 0
\end{align*}
$$

LQR RICCATI EQUATIONS AND CIRCULANT APPROXIMANTS

THEOREM

Consider the exponentially stabilizable and detectable system $\Sigma(A, B, C, 0)$ with Q the unique self-adjoint solution to the Riccati equation (10)
(1) The Riccati equation

$$
\begin{equation*}
\tilde{A}_{N}^{*} \tilde{Q}_{N}+\tilde{Q}_{N} \tilde{A}_{N}-\tilde{Q}_{N} \tilde{B}_{N} \tilde{B}_{N}^{*} \tilde{Q}_{N}+\tilde{C}_{N}^{*} \tilde{C}_{N}=0 \tag{16}
\end{equation*}
$$

has a unique self-adjoint stabilizing solution \tilde{Q}_{N} which is the circular approximant of \check{Q}.
(2) There holds $\lim \sup \left\|\tilde{Q}_{N}\right\|=\|\check{Q}\|_{\infty}=\|Q\|$.

$$
N \rightarrow \infty
$$

(3) The growth bound $\tilde{\omega}_{N}$ of $e^{\tilde{A}} Q_{N} t$ satisfies

$$
\tilde{\omega}_{N} \leq \omega_{\infty}, \quad \limsup _{N \rightarrow \infty} \tilde{\omega}_{N}=\omega_{\infty}
$$

LQR RICCATI EQUATIONS AND CIRCULANT APPROXIMANTS

We now relate the solutions to the Toeplitz Riccati equations to those to the circulant Riccati equations.

THEOREM

Assume that $\Sigma(A, B, C, 0)$ is stabilizable and detectable and $\Sigma\left(\mathbf{A}_{N}, \mathbf{B}_{N}, \mathbf{C}_{N}, 0\right)$ is uniformly stabilizable and detectable. Then the following hold
(1) $\left(Q_{N}-\tilde{Q}_{N}\right)$ and $\left(A_{Q_{N}}-\tilde{A}_{Q_{N}}\right)$ converge strongly to zero as $N \rightarrow \infty$.
(2) $\left|Q_{N}-\tilde{Q}_{N}\right|_{N} \rightarrow 0$ and $\left|A_{Q_{N}}-\tilde{A}_{Q_{N}}\right|_{N} \rightarrow 0$ as $N \rightarrow \infty$ (see the Appendix for the definition of the $|\cdot|_{N}$ norm).
(3) The closed-loop transfer functions satisfy

$$
\begin{aligned}
& \left\|\left|G^{c l}(\cdot)-G_{N}^{c l}(\cdot)\right|_{N}\right\|_{\mathbf{H}_{\infty}} \rightarrow 0 \text { and } \\
& \left\|\left|G^{c l}(\cdot)-G_{N}^{c l}(\cdot)\right|_{N}\right\|_{\mathbf{H}_{2}} \rightarrow 0 .
\end{aligned}
$$

Conclusions

- We mainly investigated the approximation issue for strings of second order systems.

Conclusions

- We mainly investigated the approximation issue for strings of second order systems.
- A particular system in which long-but-finite strings (Toeplitz approximants) and the corresponding infinite strings have the same growth bounds.

Conclusions

- We mainly investigated the approximation issue for strings of second order systems.
- A particular system in which long-but-finite strings (Toeplitz approximants) and the corresponding infinite strings have the same growth bounds.
- An example (analytical and simulation) in which long-but-finite strings (Toeplitz approximants) and the corresponding infinite strings have different growth bounds,

Conclusions

- We mainly investigated the approximation issue for strings of second order systems.
- A particular system in which long-but-finite strings (Toeplitz approximants) and the corresponding infinite strings have the same growth bounds.
- An example (analytical and simulation) in which long-but-finite strings (Toeplitz approximants) and the corresponding infinite strings have different growth bounds,
- and argue that the convergence of the growth bounds cannot be achieved in general.

Conclusions

- We mainly investigated the approximation issue for strings of second order systems.
- A particular system in which long-but-finite strings (Toeplitz approximants) and the corresponding infinite strings have the same growth bounds.
- An example (analytical and simulation) in which long-but-finite strings (Toeplitz approximants) and the corresponding infinite strings have different growth bounds,
- and argue that the convergence of the growth bounds cannot be achieved in general.
- For an exponentially stabilizable and detectable system $(A ; B ; C ; 0)$ the growth bounds of long-but-finite strings
- circulant approximants exhibit a similar behavior as $N \rightarrow \infty$.

Conclusions

- We mainly investigated the approximation issue for strings of second order systems.
- A particular system in which long-but-finite strings (Toeplitz approximants) and the corresponding infinite strings have the same growth bounds.
- An example (analytical and simulation) in which long-but-finite strings (Toeplitz approximants) and the corresponding infinite strings have different growth bounds,
- and argue that the convergence of the growth bounds cannot be achieved in general.
- For an exponentially stabilizable and detectable system $(A ; B ; C ; 0)$ the growth bounds of long-but-finite strings
- circulant approximants exhibit a similar behavior as $N \rightarrow \infty$.
- A similar result is also true for almost toeplitz approximants.

Conclusions

- We mainly investigated the approximation issue for strings of second order systems.
- A particular system in which long-but-finite strings (Toeplitz approximants) and the corresponding infinite strings have the same growth bounds.
- An example (analytical and simulation) in which long-but-finite strings (Toeplitz approximants) and the corresponding infinite strings have different growth bounds,
- and argue that the convergence of the growth bounds cannot be achieved in general.
- For an exponentially stabilizable and detectable system $(A ; B ; C ; 0)$ the growth bounds of long-but-finite strings
- circulant approximants exhibit a similar behavior as $N \rightarrow \infty$.
- A similar result is also true for almost toeplitz approximants.
- Connections between two types of long-but-finite strings: toeplitz approximants and toeplitz approximants.

Conclusions

- We mainly investigated the approximation issue for strings of second order systems.
- A particular system in which long-but-finite strings (Toeplitz approximants) and the corresponding infinite strings have the same growth bounds.
- An example (analytical and simulation) in which long-but-finite strings (Toeplitz approximants) and the corresponding infinite strings have different growth bounds,
- and argue that the convergence of the growth bounds cannot be achieved in general.
- For an exponentially stabilizable and detectable system $(A ; B ; C ; 0)$ the growth bounds of long-but-finite strings
- circulant approximants exhibit a similar behavior as $N \rightarrow \infty$.
- A similar result is also true for almost toeplitz approximants.
- Connections between two types of long-but-finite strings: toeplitz approximants and toeplitz approximants.
- The mathematics of the approximation properties is nontrivial.

Conclusions

- We mainly investigated the approximation issue for strings of second order systems.
- A particular system in which long-but-finite strings (Toeplitz approximants) and the corresponding infinite strings have the same growth bounds.
- An example (analytical and simulation) in which long-but-finite strings (Toeplitz approximants) and the corresponding infinite strings have different growth bounds,
- and argue that the convergence of the growth bounds cannot be achieved in general.
- For an exponentially stabilizable and detectable system $(A ; B ; C ; 0)$ the growth bounds of long-but-finite strings
- circulant approximants exhibit a similar behavior as $N \rightarrow \infty$.
- A similar result is also true for almost toeplitz approximants.
- Connections between two types of long-but-finite strings: toeplitz approximants and toeplitz approximants.
- The mathematics of the approximation properties is nontrivial.
- Thank you for your attention!

