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Theorem

Let G ∈ H∞(C+
0 ;B(U ,Y )) denote a strictly bounded real

transfer function with summable bounded real singular values and
where U and Y are finite dimensional. Then for each integer n
there exists a rational transfer function denoted Gn such that

‖G−Gn‖H∞ ≤ 2
∑

k≥n+1

σk,

where σk are the bounded real singular values. The function Gn is
bounded real.

Gn is called the reduced order transfer function obtained by
bounded real balanced truncation.
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Bounded real transfer functions.

For D ⊆ C, G : D → B(U ,Y ) is bounded real (or Schur) if

‖G‖H∞ ≤ 1.

Necessarily G bounded real implies G ∈ H∞(C+
0 ;B(U ,Y )).

G is strictly bounded real if

‖G‖H∞ < 1,

which is equivalent to G ∈ H∞ and

∃ ε > 0 : I − [G(s)]∗G(s) ≥ εI, a.a. s ∈ iR.

Chris Guiver CDPS 2011 Wuppertal 5/ 30



Contents
Main result

Recap of balanced truncation methods
Outline of proof

Summary

Statement
Background
Aims

Bounded real singular values.

The bounded real singular values are some quantities
associated with the system.

They will be defined later.

Note they are not the Hankel singular values (used in
Lyapunov balancing).

We will consider later when they are summable (form an `1

sequence).
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For finite-dimensional systems (equivalently rational transfer
functions)

Bounded real balanced truncation (BRBT) first proposed by
Opdenacker & Jonckheere [1988].

Based on the model reduction scheme suggested by Moore
[1981], now called Lyapunov balancing.

Lyapunov balanced truncation is a model reduction scheme
with error bounds.
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Since bounded real systems are stable systems, Lyapunov
balancing is applicable.

Natural question to ask is, why bounded real balancing?

Bounded real systems occur frequently in physical examples.

BRBT preserves bounded realness (contractivity) of the
reduced order transfer function Gn, which Lyapunov balancing
does not necessarily.

There are error bounds for BRBT.
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Positive real balanced truncation (PRBT), sometimes also
called stochastic balanced truncation in early literature, is very
similar in principle to BRBT. PRBT was derived by Desai &
Pal [1984].

PRBT retains positive realness (passivity) of the reduced order
transfer function Gn.

Not the same H∞ error bound as BRBT.
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We are aiming to extend BRBT and PRBT to the infinite
dimensional case.

This is still work in progress.

Bounded real and positive real systems are closely related via
the Cayley (diagonal) transform.

As such bounded real results imply positive real results.

Note positive real systems must be “square”, U = Y .
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The model reduction schemes mentioned so far (Lyapunov,
BRBT, PRBT) use certain (“balanced”) realisations.

In balanced realisations, certain functions of the state are
equal or balanced.

Model reduction by balanced truncation is a truncation
method to create an approximate or reduced order system by
truncating the state space.

BRBT is based on Lyapunov balanced truncation.
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Given G ∈ H∞(Cp×m) rational we can find a minimal
realisation denoted by

[
A B
C D

]
such that the system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

x(0) = x0,

(1)

with state-space Cn, has transfer function G.

Here A is stable and

G(s) = C(sI −A)−1B +D,

which is certainly defined for s ∈ C with Re s > 0.

If T ∈ Cn×n is invertible then
[
T−1AT T−1B
CT D

]
is another

realisation for G.
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Recall the controllability Q and observability O Gramians,

Q = ΦΦ∗, O = Ψ∗Ψ,

which are bounded operators Cn → Cn.

Note Q and O depend on the realisation.

Definition

The realisation
[
A B
C D

]
is Lyapunov balanced if Q = O =: Σ with Σ

diagonal. The diagonal entries are the singular values of the
Hankel operator H = ΨΦ, ordered in decreasing magnitude.

The Hankel singular values are similarity invariants- so do not
depend on the realisation.
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For Lyapunov balanced truncation, partition a Lyapunov
balanced realisation

[
A B
C D

]
by

A =
[
A11 A12
A21 A22

]
, B =

[
B1
B2

]
, C = [ C1 C2 ] ,

with A11 ∈ Cr×r, r < n and B1, C1 conformly sized.

States that correspond to larger singular values are kept, and
the states corresponding to smaller singular values are
omitted.

Really

A11 = PXnA|Xn , B1 = PXnB, C1 = C|Xn ,

with Xn ⊂X = Cn.
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The reduced order system is defined by its realisation[
A11 B1
C1 D

]
, so that

Gn(s) = C1(sI −A11)−1B1 +D.

It can be proven that
[
A11 B1
C1 D

]
is minimal, A11 is stable and

the error bound

‖G−Gn‖H∞ ≤ 2

r∑
k=n+1

σk,

holds. σk are the Hankel singular values.
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Let G ∈ H∞(Cp×m) be rational, proper and bounded real
with minimal realisation

[
A B
C D

]
. Then from the Bounded Real

Lemma there exists P = P ∗ ≥ 0, K,W such that

A∗P + PA+ C∗C = −K∗K,
PB + C∗D = −K∗W,
I −D∗D = W ∗W.

(2)

There is minimal, non-negative, self-adjoint solution to (2)
Pm which satisfies

− 〈x0, Pmx0〉 = inf
u

∫
R+

‖u(s)‖2 − ‖y(s)‖2 ds, (3)

subject to (1).

When W is invertible, (W ∗W )−1K is the optimal feedback
operator for the optimal control problem (3).
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Similarly Qm = Q∗m ≥ 0 solving the optimal control problem

− 〈x0, Qmx0〉 = inf
ud

∫
R+

‖ud(s)‖2 − ‖yd(s)‖2 ds, (4)

subject to the dual system of (1), is the minimal, self-adjoint
solution of the dual bounded real equations

AQ+QA∗ +BB∗ = −LL∗,
QC∗ +BD∗ = −LV ∗,

I −DD∗ = V V ∗.

(5)

Definition

The realisation
[
A B
C D

]
is bounded real balanced if Pm = Qm =: Σ

with Σ diagonal. The diagonal entries are the bounded real
singular values, which are the squareroots of the eigenvalues of
PmQm, ordered in decreasing magnitude.
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If
[
A B
C D

]
is bounded real balanced with Pm = Qm =: Σ then

from the bounded real equations (2) and (5)

A∗Σ + ΣA+ [ C∗ K∗ ]
[
C
K

]
= 0,

AΣ + ΣA∗ + [B L ]
[
B∗
L∗
]

= 0.
(6)

[
A B
C D

]
bounded real balanced implies

[
A [B L ][
C
K

]
−

]
is

Lyapunov balanced.

Bounded real singular values are the Hankel singular values of
the extended system.

Error bound now follows from Lyapunov balanced case.
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Now make some remarks on the proof of the main result.

Theorem

Transfer function G strictly bounded real, summable bounded real
singular values (σk)k∈N then there exists rational Gn such that

‖G−Gn‖H∞ ≤ 2
∑

k≥n+1

σk.

Argument is similar to finite-dimensional case:

Construct extended system.
Apply Lyapunov balanced truncation to extended system.
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In the finite dimensional case the Bounded Real Lemma gives
the extended system.

Bounded Real Lemma harder for infinite dimensional case.

Can still make sense of the optimal control problems.

We use the Weiss & Weiss [1997] optimal control paper.
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Start with a stable well-posed linear realisation
[ T Φ

Ψ F
]

of G.

The strict bounded realness assumption implies existence of
invertible spectral factors θ ∈ H∞(B(U )), ξ ∈ H∞(B(Y ))
such that

I −G∗G = θ∗θ, I −GG∗ = ξ∗ξ.

The factors θ and ξ have input-output maps Fθ and Fξ and
we define

Ψθ = −F−1
θ F∗Ψ.

Ψθ is an output map for T.
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We obtain first extended system[ T Φ
Ψ F

]
→
[ T Φ[

Ψ
Ψθ

] [ F
Fθ

] ]
,

which has observability Gramian Pm, solution of optimal
control problem. “Extended output.”

Dual process gives input map Φξ and second extended system[ T Φ
Ψ F

]
→
[
T [ Φ Φξ ]
Ψ [F Fξ ]

]
,

which has controllability Gramian Qm, solution of dual
optimal control problem. “Extended input.”
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The extended system is defined by combining the two
extended systems[ T Φ[

Ψ
Ψθ

] [ F
Fθ

] ]
,
[
T [ Φ Φξ ]
Ψ [F Fξ ]

]
→
[ T [ Φ Φξ ][

Ψ
Ψθ

] [ F Fξ
Fθ ?

] ]
=:
[

T ΦE
ΨE FE

]
.

Has transfer function GE =
[
G ξ
θ ?

]
.

Unclear presently how to finish defining the transfer function
GE and input-output map FE , but we can make sense of the
Hankel operator HE = ΨEΦE .
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The bounded real singular values are the singular values of the
product PmQm.

If the bounded real singular values are summable then the
extended Hankel operator HE is nuclear (or trace class).

Nuclear Hankel operators have lots of nice properties. For
example the transfer function is regular and the Hankel
operator determines the transfer function up to a constant
(the feedthrough).

Can then make sense of the input-output map and transfer
function of the extended system.
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Lyapunov balanced truncation has been extended to a class of
infinite dimensional systems by Glover et al. [1988], and we
make use of some of their ideas. Those results have recently
been extended by Guiver, Opmeer [2011].

We truncate the exactly observable shift realisation on L1 of
HE [

S HE
I FE

]
,

by truncating the generators of the above realisation.

Key is we do not truncate a balanced (or output-normal)
realisation.
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Which systems have summable bounded real singular values?

Summable bounded real singular values corresponds to a
nuclear Hankel operator of the extended system.

Sufficient conditions for a Hankel operator to be nuclear have
been investigated by others, Opmeer [2010], Curtain & Sasane
[2001].

If the semigroup is analytic and the control B and observation
operators C are not too unbounded, i.e.

C : Xα → Y , B : U →Xβ, α− β < 1,

then the Hankel operator is nuclear.

From Staffans [1997], for strictly bounded real systems, the
extended operators are no more unbounded than the original
operators.
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Transfer results to positive real case. In the finite-dimensional
case the gap metric error bound

δ(G,Gn) ≤ 2

r∑
k=n+1

σk,

holds, Guiver, Opmeer [2010] and Timo Reis.

Investigate whether strict bounded realness is required. In the
finite-dimensional theory it is not required for the error bound.

Look at ways to compute Gn numerically etc.
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Under the assumptions of strict bounded realness, and
summable bounded real singular values, bounded real balanced
truncation has been extended to infinite dimensional systems.

BRBT truncation is Lyapunov balanced truncation of a certain
extended system, related to the solution of two optimal control
problems.
The extended system is constructed using spectral
factorisations of the Popov functions I −G∗G and I −GG∗,
which uses strict bounded realness.

Bounded real balanced truncation gives rise to an H∞ error
bound, analogous to that for finite dimensional bounded real
balanced truncation.

Error bound follows from the error bound for Lyapunov
balanced truncation.
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There are checkable conditions for summable bounded real
singular values for strictly bounded real systems

Using BRSV are the Hankel singular values of the extended
system.
Require analytic semigroup, B and C not too unbounded.

Does not provide a constructive method of finding reduced
order transfer function Gn.

Under the Cayley transform bounded real balanced truncation
(will probably) become positive real balanced truncation.
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Thank you!
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