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� The general lq–problem with infinite time horizon for well–posed
infinite–dimensional systems has been investigated in (Weiss and Weiss,
1997), and in (Staffans, 1997, 1999), (Mikkola and Staffans, 2004).

� Our aim is to present a solution of a general lq - optimal controller
synthesis problem for infinite–dimensional systems in factor form. The
systems in factor form are an alternative to additive models, of the theory
of well–posed systems and enable us to lead the analysis exclusively
within the basic state space. As a result of applying the simplified analysis
in terms of the factor systems, we obtain an equivalent, but, astonishingly
not the same formulae expressing the optimal controller in the
time–domain and a complement to the method of spectral factorization.

� The results are illustrated by two examples of construction of the
optimal control/controller for standard lq–problems met in literature:
(Chapelon and Xu, 2003), to which we give full solution and an example
of improving a river water quality by artificial aeration (active control)
(Żołopa and Grabowski, 2008).
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1 Introduction

Consider a control system governed by the model in factor form ẋ(t) = A [x(t)+Du(t)]

y(t) = C x(t)

 (1.1)

where the state operator A generates an EXS semigroup {S(t)}t≥0 on a
Hilbert space H with scalar product 〈·, ·〉H, , i.e., there exit M ≥ 1 and
α > 0 such that

‖S(t)x0‖H ≤Me−αt ‖x0‖H ∀t ≥ 0, ∀x0 ∈ H ; (1.2)

C : (D(C )⊂ H)−→ Y, C A −1 ∈ L(H,Y), D ∈ L(U,H) with
R(D)⊂ D(C ), C D ∈ L(U,Y) and u ∈ L2(0,∞;U). Here Y and U are
Hilbert spaces with scalar products 〈·, ·〉Y and 〈·, ·〉U, respectively.

The LQ–optimal control problem with infinite time horizon is to

3



'

&

$

%

minimize the quadratic integral performance index

J(x0,u) =
∫

∞

0

 y(t)

u(t)

∗ Q N

N∗ R

 y(t)

u(t)

dt, (1.3)

where Q = Q∗ ∈ L(Y), N ∈ L(U,Y) and R = R∗ ∈ L(U), on trajectories
of (1.1).

To solve this problem we shall assume that:

(A1) C is an admissible observation operator, i.e., R(Z )⊂ D(LY),
where

Z ∈ L(H,L2(0,∞;Y)), (Z x0)(t) := C A −1S(t)x0;

LY f = f ′, D(LY) = W1,2([0,∞);Y) .

Since LY generates the semigroup of left–shifts on L2(0,∞;Y)

then, by the closed–graph theorem, the admissibility of C holds
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iff
Ψ = LYZ ∈ L(H,L2(0,∞;Y)) ,

and Ψ is called the system observability map.

(A2) D is an admissible factor control operator, i.e., R(W )⊂ D(A ),
where

W ∈ L(L2(0,∞;U),H), W f :=
∫

∞

0
S(t)D f (t)dt .

By the closed–graph theorem, the admissibility of D holds iff

Φ = AW ∈ L(L2(0,∞;U),H) ,

and Φ is the system reachability map.

(A3) The system transfer function Ĝ(s) := sC (sI−A )−1D−C D

satisfies
Ĝ ∈ H∞(C+,L(U,Y))

(recall that Ĝ ∈ H∞(C+,Z), for some Banach space Z, if
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Ĝ : C+ 3 s 7−→ Ĝ(s) ∈ Z is holomorphic and∥∥Ĝ
∥∥

H∞(C+,Z) = sup
s∈C+

∥∥Ĝ(s)
∥∥

Z < ∞; this definition applies as

Z = L(U,Y) is a Banach space). If the latter is met then the
input–output operator, given by

(Fu)(t) :=
d
dt

∫ t

0
(Ψ[Du(τ)])(t− τ)dτ− (C D)u(t) .

satisfies F ∈ L(L2(0,∞;U),L2(0,∞;Y)). This follows from the
Paley–Wiener theorem (Arendt et al, 2001, Theorem 1.8.3, p. 48;
this version of the Paley–Wiener theorem does not require
separability of a Hilbert space) upon taking the Laplace
transforms: (F̂u)(s) = Ĝ(s)û(s), s ∈ C+.

Let us remark that since
Ĝ(s) = s2

(
C A −1

)
(sI−A )−1D− s

(
C A −1

)
D−C D then, by

EXS, Ĝ is analytic on a set containing C+, which jointly with
(A3) yields

∥∥Ĝ( jω)
∥∥

L(U,Y)
≤
∥∥Ĝ
∥∥

H∞(C+,L(U,Y))
for every ω ∈ R.
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Figure 1.1: Basic control–theoretic operators and their action.

Remark 1.1. If C is not admissible, the operator Ψ = LYZ with natural
domain D(Ψ) = {x ∈ H : Z x ∈ D(LY)} is closed and densely defined,
with Ψ|D(A ) = Z A (for x0 ∈ D(A ), Ψx0 is homogeneous part of the
system output), and therefore it has closed and densely defined adjoint
operator Ψ∗ = A ∗Z ∗ with natural domain
D(Ψ∗) = {y ∈ L2(0,∞;Y) : Z ∗y ∈ D(A ∗)}, with Ψ∗|D(RY)

= Z ∗RY,
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RY = L ∗
Y .

Similarly, if D is not admissible, the operator Φ = AW with natural
domain D(Φ) = {u ∈ L2(0,∞;U) : W u ∈ D(A )} is closed and densely
defined, with Φ|D(RU)

= W RU, RU = L ∗
U , and therefore it has closed

and densely defined adjoint operator Φ∗ = LUW ∗ with natural domain
D(Φ∗) = {x ∈ H : W ∗x ∈ D(LU)}, with Φ∗|D(A ∗) = W ∗A ∗.

2 Time–domain considerations

Lemma 2.1. By (A2), for every x0 ∈ H and u ∈ L2(0,∞;U)

x(t) = S(t)x0 + Φ︸︷︷︸
=AW

Rtu, (Rtu)(τ) :=

 u(t− τ) if τ ≤ t

0 if τ < t

 , (2.1)

is a weak solution of (1.1), and Rt ∈ L(L2(0,∞;U)) is called the operator
of reflection at t.
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Lemma 2.2. If in addition to (A2), the semigroup {S(t)}t≥0 is EXS then
the weak solution (2.1) is for every x0 ∈ H and u ∈ L2(0,∞;U) in
BUC0([0,∞),H), and t 7−→ 〈z,x(t)〉H is in L2(0,∞) for every z ∈ H,
x0 ∈ H and u ∈ L2(0,∞;U).

Lemma 2.3. If (A2) holds then for every u ∈W1,2([0,∞);U) and x0 ∈ H
such that x0 +Du(0) ∈ D(A ), (2.1) is a classical solution of (1.1).

The output equation

y(t) = C x(t) = C [x(t)+Du(t)]−C Du(t) (2.2)

is well–posed and is a continuous function of t. If, in addition (A1) holds,
then

y(t) = (Ψx0)(t)+
d
dt

∫ t

0
(Ψ[Du(τ)])(t− τ)dτ−C Du(t) . (2.3)

Finally, if all assumptions (A1), (A2) and (A3) are met then for every
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x0 ∈ H and u ∈ L2(0,∞;U):

y = Ψx0 +Fu . (2.4)

Now we are in position to present the main result of this section.

Theorem 2.1. Let A generates an EXS semigroup on H and the
assumptions (A1), (A2) and (A3) hold. If the operator

R := R+N∗F+F
∗QF+F

∗N = R∗ ∈ L(L2(0,∞;U))

is coercive then there exists a unique optimal control, given by

uopt =Mx0, M :=−R−1(F∗Q+N∗)Ψ ∈ L(H,L2(0,∞;U)) , (2.5)

on which the performance index J achieves its minimum. The minimal
value is J(x0) = 〈x0,Hoptx0〉H, where

Hopt := Ψ
∗QΨ−Ψ

∗(QF+N)R−1(F∗Q+N∗)Ψ =H ∗
opt ∈L(U) . (2.6)
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Next, define

N− :=N−Q(C D), R− :=R−(C D)∗N−N∗(C D)+(C D)∗Q(C D)=R∗−

and assume, in addition, that R− is coercive. Assume that H ∈ L(H),
H = H ∗ solves the Riccati operator equation

〈A z,H z〉H + 〈z,H A z〉H + 〈QC z,C z〉Y =

=
〈
−D∗H A z+N∗−C z,R−1

−
(
−D∗H A z+N∗−C z

)〉
U , z ∈ D(A ).

(2.7)
Define

G z :=−D∗H A z+N∗−C z, z ∈ D(A ) (2.8)

and consider the feedback control law

u(t) =−R−1
−

d
dt

[
G A −1x(t)

]
, (2.9)
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resulting in the closed–loop system

d
dt

[
A −1x

]
= x−DR−1

−
d
dt

[
G A −1x(t)

]
⇔ d

dt

[
A −1x+DR−1

− G A −1x
]
= x

(2.10)

(I) If u ∈ L2(0,∞;U) then u = uopt, H = Hopt (in particular, this means
that Hopt solves (2.7)) , G = Gopt, s 7−→ R−+ sGopt(sI−A )−1D is in
H∞(C+,L(U)) and the solution xopt of (2.10) with initial condition x0,
corresponding to uopt reads as xopt(t) = Sopt(t)x0 = [S(t)+ΦRtM]x0,
and {Sopt(t)}t≥0 is an EXS semigroup on H.

(II) If a solution H = H ∗ ∈ L(H) to the Riccati operator equation (2.7)
is such that for the corresponding G , defined by (2.8), the
operator–valued function s 7−→ [R−+ sG (sI−A )−1D ] is in
H∞(C+,L(U)) jointly with its L(U)–inverse
s 7−→ [R−+ sG (sI−A )−1D ]−1, then the implicitly defined feedback
control (2.9) is in L2(0,∞;U) and therefore it is optimal, i.e.,
u = uopt, H = Hopt and G = Gopt.
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Remark 2.1. If Gopt, originally defined on D(A ), extends to an operator
GΛ with domain D(GΛ) such that: (i) R(D)⊂ D(GΛ), (ii) (R−+GΛD),
(R−+GΛD)−1 ∈ L(U) then the equation z+DR−1

− Goptz = x, in definition
of D(Aopt), can be explicitly solved:

z+DR−1
− Goptz = x⇒ GΛz+GΛDR−1

− GΛz = (R−+GΛD)R−1
− GΛz = GΛx

=⇒ R−1
− GΛz = (R−+GΛD)−1 GΛx =⇒ z = x−D (R−+GΛD)−1 GΛx.

Consequently, the closed–loop state operator can be rewritten as

Aoptx = A
[
x−D (R−+GΛD)−1 GΛx

]
D(Aopt) =

{
x ∈ D(GΛ) : x−D (R−+GΛD)−1 GΛx ∈ D(A )

}
.

This form of Aoptx suggests that the optimal feedback reads as

u =−(R−+GΛD)−1 GΛx, x ∈ D(GΛ) , (2.11)

what can easily be confirmed by the Laplace transformation.
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A part of a proof of the Hille–Phillips–Yosida generation theorem is to
show that the operator As ∈ L(H), As f := sA (sI−A )−1 f satisfies
lims→∞,s∈RAs f = A f for every f ∈ D(A ) (Pazy, 1983, Lemma 3.3, p.
10). Therefore As has been called the Yosida approximation of A . Since
G A −1 ∈ L(H,U) the limit lims→∞,s∈R sG (sI−A )−1z exists for
z ∈ D(A ) and it is well–known that it may exist on some domain larger
than D(A ). Thus the Yosida approximation of Gopt,

GΛz := lim
s→∞,s∈R

sGopt(sI−A )−1z,

D(GΛ) = {z ∈ H : ∃ lim
s→∞,s∈R

sGopt(sI−A )−1z} ,

or even its restriction to R(D), may serve as the needed extension of Gopt,
provided that the limit

(R−+GΛD)u = lim
s→∞,s∈R

(R−u+ sGopt(sI−A )−1Du), u ∈ U

defines a Banach isomorphism on U.
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3 The frequency–domain approach

By the Paley–Wiener theorem (Arendt et al, 2001, Theorem 1.8.3, p. 48)

J(u,x0) = J(û,x0) = 〈û,Πû〉L2( jR,U)+ 〈û,
[
Ĝ∗Q+N∗

]
Ψ̂x0〉L2( jR,U)+

+〈Ψ̂x0,
[
QĜ+N

]
û〉L2( jR,Y)+ 〈Ψ̂x0,QΨ̂x0〉L2( jR,Y), û ∈ L2( jR,U),x0 ∈ H

where Π stands for the Popov spectral function,

Π( jω) := R+2Re[N∗Ĝ( jω)]+ Ĝ∗( jω)QĜ( jω) = Π
∗( jω) , (3.1)

which, thanks to the continuity and boundedness of Ĝ on jR, is
L(U)–valued bounded and continuous on jR. Here we use the notation
2ReZ := Z +Z∗, Z ∈ L(U).

Proposition 3.1. Assume that the assumptions (A1), (A2) and (A3) hold,
and A generates an EXS semigroup. Let Π be coercive. Then R is
coercive and, by Theorem 2.1, the LQ–problem has a unique

15



'

&

$

%

L2(0,∞;U)–minimizer, whence, by the Paley–Wiener theorem, a unique
H2(C+;U)–minimizer.

There exists a spectral factorization

Π( jω) = Ξ
∗( jω)Ξ( jω) , (3.2)

where Ξ ∈ H∞(C+,L(U)) jointly with C+ 3 s 7−→ Ξ−1(s) ∈ L(U). This
spectral factorization is uniquely determined up to a constant, i.e.,
independent of s, unitary operator multiplier which belongs to L(U).

Let P+ stand for the projection from L2( jR;U) onto its closed subspace
H2(C+;U). Then the H2(C+;U)–minimizer is given by

û(s) =−Ξ
−1(s)P+

{
Ξ
−∗( jω)

[
Ĝ∗( jω)Q+N∗

]
(̂Ψx0)( jω)

}
. (3.3)

Proposition 3.2. A generates an EXS semigroup. Assume that the
assumptions (A1), (A2) and (A3) hold. Let Π( jω) be coercive. Then
R− = Π(0) = Ξ∗(0)Ξ(0) is coercive, so we can discuss the operator
Riccati equation (2.7). To each its solution H , or to each G given by
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(2.8), there corresponds a spectral factorization (3.2), where

Ξ(s) :=V +V−∗G s(sI−A )−1D ∈ L(U) (3.4)

and s 7−→ Ξ(s) ∈ H∞(C+,L(U)). Furthermore, V−∗G is admissible.

If L(U)–inverse of Ξ is in H∞(C+,L(U)) then the implicit formula (2.9)
defines optimal feedback controller.

Finally,
∃ lims→∞,s∈R sG (sI−A )−1Du := GΛDu ⇐⇒ ∃ lims→∞,s∈RΞ(s)u := Du
and then V−∗(R−+GΛD) = D. Thus R−+GΛD is invertible iff so is D, a
fact important for verification whether the explicit formula for the optimal
feedback controller (2.11) holds true.
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4 The method of spectral factorization

Let us treat (3.4) not as a definition of a spectral factor but an equation
determining G . Such the equation is said to be the realization identity or
equation. Then, by (2.8) and (3.4) a unique spectral factor corresponds to
the optimal cost, thus this spectral factor is necessarily in H∞(C+,L(U))

jointly with its inverse and is determined up to a unitary operator which is
hidden in V . Thus if the LHS of (3.4) is a spectral factor in H∞(C+,L(U))

jointly with its inverse then the realization identity must be satisfied, out
of uniqueness, by G , corresponding to the optimal control/controller.

It should be emphasised that the realization equation is generally not
uniquely solvable. Nevertheless, if the system is approximately
controllable, i.e., if R(Φ) = H ⇐⇒ kerΦ∗ = {0}, then the realization
identity cannot have more then one solution, so it determines uniquely the
optimal controller (in its implicit form), provided that the LHS of the
realization identity is a spectral factor belonging to H∞(C+,L(U)) jointly
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with its inverse.

Thus if, in addition, the system is approximately controllable, then GΛ or
D−1V−∗GΛ are uniquely determined by the following equivalent
realization equations

Ξ∗(0)Ξ(s) = R−+GΛD + ĜG (s) ⇐⇒ Ξ∗(0) [Ξ(s)−D] = ĜG (s) ⇐⇒

⇐⇒ Ξ(s) = D
[
I +D−1V−∗GΛA (sI−A )−1D

]
,

(4.1)
where ĜG (s) := GΛA (sI−A )−1D and the second line arises by acting
with the operator D−1V−∗ on both sides of the last identity in the first line.
Comment 4.1. If τ is the operator of boundary control then, since
D(A )⊂ kerτ , τD =−I, one has

τA (sI−A )−1D = sτ(sI−A )−1D− τD = I

and (4.1) can also be written as

Ξ(s) = (Dτ +V−∗GΛ)A (sI−A )−1D .

19



'

&

$

%

5 Comparison with earlier works

Consider the tower (or scale) of Hilbert spaces

H1 ↪→ H(= H∗) ↪→ H−1 ,

with continuous dense embeddings, where H1 = (D(A ),‖ · ‖A ),
‖x‖A := ‖A x‖H whilst H−1 stands for the completion of H under the
norm ‖x‖H−1 := ‖A −1x‖H; the latter arises by taking the limits of all
sequences of H, which are Cauchy sequences with respect to ‖x‖H−1 .

Parallely, consider also the tower of Hilbert spaces

Z−1←↩ H(= H∗)←↩ Z1 ,

with continuous dense embeddings, where Z1 = (D(A ∗),‖ · ‖A ∗),
‖x‖A ∗ := ‖A ∗x‖H whilst Z−1 stands for the completion of H under the
norm ‖x‖Z−1 := ‖A −∗x‖H; the latter arises by taking the limits of all
sequences of H, which are Cauchy sequences with respect to ‖x‖Z−1 .
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The bilinear form

〈x,z〉H−1×Z1
:=
〈
Aex,A −∗z

〉
H×H ,

where Ae ∈ L(H,H−1) denotes the extension of A ∈ L(H1,H), an
isometry from H1, onto H, defines duality pairing between H−1 and Z1.
Here H−1 is isomorphic with [D(A ∗)]∗ whilst and Z−1 is isomorphic with
[D(A )]∗.

It is proved in (Weiss and Weiss, 1997) that if Π has the spectral
factorization Π( jω) = [Ξ( jω)]∗Ξ( jω), where Ξ, Ξ−1 ∈ H∞(C+,L(U))

and Ξ(s)−→ D as s→ ∞, s ∈ R with D and D−1 ∈ L(U) (regular spectral
function), then the optimal cost operator X solves the operator Riccati
(Weiss and Weiss, 1997, Theorem 12.8, p. 322, especially formula (12.7))
and (Staffans, 1997, Corollary 45, p. 3712); see also (Mikkola and
Staffans, 2004, Theorem 3, especially formula (6))

A ∗X +XA +C∗QC = (B∗Λw
X +NC)∗(D∗D)−1(B∗Λw

X +NC) , (5.1)
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where all terms are in L(H1,Z−1) and, actually, X maps D(A ) into
D(B∗

Λw
). Here B ∈ L(U,H−1) ⇐⇒ B∗ ∈ L(Z1,U),

C ∈ L(H1,Y) ⇐⇒ C∗ ∈ L(Y,Z−1), B∗
Λw

(B∗
Λ

) denotes weak (strong)
extension of B∗, defined as the weak (strong) limit of sB∗(sI−A )−1x as
s→ ∞, s ∈ R and D(B∗

Λw
) consists of those x ∈H for which the weak limit

exists (D(BΛ∗) consists of those x ∈ H for which the strong limit exists).
The optimal controller is given on D(A ) as

Fx =−(D∗D)−1(B∗Λw
X +NC)x, x ∈ D(A ) .

The spectral factor Ξ can be realized as a transfer function of the system
with the state operator A , control operator B, observation operator −DFΛ

and the feedtrough operator D (Weiss and Weiss, 1997, p. 329, Formula
(12.5)), i.e.,

Ξ(s) = D−DFΛ(sI−A )−1B = D
[
I−FΛ(sI−A )−1B

]
. (5.2)
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Finally, the state operator of the optimal closed–loop system reads as

Aopt = A +BFΛ, D(Aopt) = {x0 ∈ D(FΛ) : (A +BFΛ)x0 ∈ H}

so the optimal controller is u = Foptx0, where Foptx0 = FΛx0 for
x0 ∈ D(Aopt).

Our Riccati operator equation (2.7) slightly differs from (5.1) as:

(a) it does not employ the feedthrough operator D,

(b) it is stated in a weak sense within the state space H,

(c) even if we identify X with H (both operators express the minimal
cost), C with C and notify that B∗

Λw
is an extension of D∗A ∗ then the

ordering of operators defining G and F is not the same and in (2.7)
the operator N− appears instead of N in (5.1). Thus our Riccati
equation (2.7) is astonishingly not the same as (5.1).

Next, EXS of {Sopt(t)}t≥0 is not shown in (Weiss and Weiss, 1997),
though we still do not know whether it decays with the same rate or faster
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than {S(t)}t≥0.

On the other side our results and those of (Weiss and Weiss, 1997) are
very close in the frequency–domain aspects as:

(d) the idea of Remark 2.1 coincides with the concept of a regular
spectral factor,

(e) comparing the second line of (4.1) with (5.2) we get a relationship
between GΛ and FΛ,

FΛ =−D−1V−∗GΛ . (5.3)
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6 Solution of the example by Chapelon and Xu

The state operator A acts in H = L2(0,1)⊕L2(0,1),

A

 x1

x2

=

 −m1x′1
m2x′2

 , m1 > 0, m2 > 0;

D(A ) =

x =

 x1

x2

 ∈W1,2(0,1)⊕W1,2(0,1) :
x1(0) = αx2(0)

x2(1) = βx1(1)


and generates an EXS C0–semigroup, provided that α2β 2 < 1. This fact
is not explicitly proved in (Chapelon and Xu, 2003), where the authors
recall an older result due to D. Russell (Chapelon and Xu, 2003,
Proposition 3.1, p. 592), however we are able to give a separate
Lyapunov–type proof. For that, define the following matrix operators of
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multiplication E1 = E ∗1 , E2 = E ∗2 and E3 = E ∗3 ∈ L(H), E ∗3 ≥ 0:

(E1x)(θ) :=
1

1−α2β 2 diag
{

1
m1

,0
}

x(θ),

(E2x)(θ) :=
1

1−α2β 2 diag
{

0,
1

m2

}
x(θ)

(E3x)(θ) = diag
{

1−θ

m1
,

θ

m2

}
x(θ), x ∈ H .

Notice that its linear combination k1E1 + k2E2 +E3 satisfies

〈A x,(k1E1 + k2E2 +E3)x〉H + 〈x,(k1E1 + k2E2 +E3)A x〉H =

=−‖x‖2
H +

{
β 2− k1

1−α2β 2 +
k2β 2

1−α2β 2

}
x2

1(1)+

+

{
α2 +

k1α2

1−α2β 2 −
k2

1−α2β 2

}
x2

2(0), x ∈ D(A ) .

(6.1)

Solving an appropriate linear system of equations determining k1, k2 we
establish that E := (α2 +1)β 2E1 +(β 2 +1)α2E2 +E3 satisfies the
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Lyapunov operator equation

〈A x,E x〉H + 〈x,E A x〉H =−‖x‖2
H , x ∈ D(A ) .

Now EXS for α2β 2 < 1 ⇐⇒ E ≥ 0 follows from Datko’s theorem. If
the latter holds then C = I is admissible (A1).

(Chapelon and Xu, 2003) have used the framework of well–posed
systems rather than (1.1), so it is worth to note that the operator of
boundary control equals

τ

 x1

x2

=

 x1(0)−αx2(0)

x2(1)−βx1(1)

 , D(τ)⊂W1,2(0,1)⊕W1,2(0,1). (6.2)

U = R2, and the factor control operator D is given by

Du = Du, D =
1

αβ −1

 1 α1

β1 1

 .
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The adjoint operator of A is

A ∗

 v1

v2

=

 m1v′1

−m2v′2

 , D(A ∗) =

=

v =

 v1

v2

 ∈W1,2(0,1)⊕W1,2(0,1) :
m1v1(1) = βm2v2(1)

αm1v1(0) = m2v2(0)

 .

Hence

D∗A ∗v = DT
∫ 1

0
(A ∗v)(θ)dθ =

 m1v1(0)

m2v2(1)


and this observation operator is admissible (A2). Indeed, the operator

(HΦv)(θ) =
1

1−α2β 2 diag
{
(α2 +1)m1,(β

2 +1)m2
}

v(θ), v ∈ H
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is the system controllability gramian, because it solves the Lyapunov
operator equation, i.e., for v ∈ D(A ∗) there holds:

〈A ∗v,HΦv〉H + 〈v,HΦA ∗v〉H =−m2
1v2

1(0)−m2v2
2(1) =−‖D∗A ∗v‖2

U ,

The system is infinite-time exactly controllable as HΦ is a coercive
operator, whence the method of spectral factorization is applicable
because for standard lq–problems the Popov function is always coercive.

Next,

(A (sI−A )−1z)(θ) =

 se−
sθ
m1 c− z1(θ)+

s
m1

∫
θ

0
e−

s(θ−τ)
m1 z1(τ)dτ

1
α

se
sθ
m2 c− z2(θ)− s

m2

∫
θ

0
e

s(θ−τ)
m2 z2(τ)dτ

 ,

where

c=
1

1
α

e
s

m2 −βe−
s

m1

[
β

m1

∫ 1

0
e−

s(1−τ)
m1 z1(τ)dτ +

1
m2

∫ 1

0
e

s(1−τ)
m2 z2(τ)dτ

]
.
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Hence, taking z = Du, we get

Ĝ(s) =
1

1−αβe−s
(

1
m1

+ 1
m2

)
 e−

sθ
m1 αe−

s
m2 e−

sθ
m1

βe−
s

m1 e−
s(1−θ)

m2 e−
s(1−θ)

m2

 . (6.3)

with Ĝ ∈ H∞(C+,L(U)), i.e., (A3) is met.

The transfer function can be represented in the right coprime form
Ĝ(s) = U(s)M−1(s) with

U(s) =

 e−
sθ
m1 0

0 e−
s(1−θ)

m2

 , M(s) =

 1 −αe−
s

m2

−βe−
s

m1 1

 .

Denoting by Z∗(s) := ZT (−s) the para–Hermitian adjoint of Z(s), we see
that U∗(s) = UT (−s) = U(−s) = U−1(s), so U(s) is para–unitary. Now

Π(s) = I + Ĝ∗(s)Ĝ(s) = I +M−T (−s)M−1(s)

which facilitates finding a spectral factor of Π( jω)≥ I by reducing the
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problem to finding a spectral factor of an entire matrix–valued function

I +M∗(s)M(s) =

 2+β 2 −αe−
s

m2 −βe
s

m1

−αe
s

m2 −βe−
s

m1 2+α2

 .
We shall seek for a factorization I +M∗(s)M(s) = X∗(s)X(s) with

X(s) =

 m −ne−
s

m2

−pe−
s

m1 q

 .

This leads to the system of equations:

m2 +p2 = 2+β
2 (6.4)

nm = α (6.5)

pq = β (6.6)

n2 +q2 = 2+α
2 . (6.7)
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Eliminating n, p from (6.7)/(6.4) with the aid of (6.5)/(6.6), we get

n=
α

m
, p=

β

q
, q2 = 2+α

2− α2

m2 =⇒ p2 =
β 2m2

(2+α2)m2−α2

and a biquadratic equation determining m:

(2+α
2)m4−

[
α

2−β
2 +(2+α

2)(2+β
2)
]
m2+α

2(2+β
2)= 0 . (6.8)

Observe that the LHS of (6.8) at m2 = 0 equals: α2(2+β 2)≥ 0. Let

µ := α2−β 2 +(2+α2)(2+β 2) =

(2+β 2)+(2+α2)+α2(2+β 2)≥ 4+2α2 > 0

and observe that the determinant of (6.8) satisfies

µ2 ≥ ∆ = µ2−4α2(2+α2)(2+β 2)>

>
[
(2+α2)+α2(2+β 2)

]2−4α2(2+α2)(2+β 2) =

=
[
(2+α2)−α2(2+β 2)

]2 ≥ 0.
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Hence (6.8) has four real roots mB >mA ≥ 0≥−mA >−mB with
equality signs iff α = 0. Furthermore, the LHS of (6.8) at m2 = 2 equals:
−β 2(2+α2)≤ 0, so mB ≥

√
2 (=⇐⇒ β = 0) and qB ≥

√
2

(=⇐⇒ α = 0). Take the solution

m=mB :=

√
µ +
√

∆

2(2+α2)
, n=

α

mB
,

p=
βmB√

(2+α2)m2
B−α2

, q=

√
(2+α2)m2

B−α2

mB
.

Since

X−1(s) =
1

mq

[
1− np

mq
e−(

s
m1

+ s
m2

)
]
 q ne−

s
m2

pe−
s

m1 m

 .
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then s 7−→ X(s) ∈ H∞(C+,L(C2)) jointly with s 7−→ X−1(s) iff

1>
n2p2

m2q2 =
α2β 2[

(2+α2)m2
B−α2

]2 ⇔ [(2+α
2)m2

B−α
2]2 >α

2
β

2, (6.9)

but the last inequality holds as α2β 2 < 1 and
[
(2+α2)m2

B−α2
]2 ≥ 4.

Consequently the spectral factor Ξ(s) of Π reads as

Ξ(s) = X(s)M−1(s) =

=
1

1−αβe−(
s

m1
+ s

m2
)

 m−nβe−(
s

m1
+ s

m2
)

(mα−n)e−
s

m2

(qβ −p)e−
s

m1 q−pαe−(
s

m1
+ s

m2
)

 .
and belongs to H∞(C+,L(C2)) jointly with Ξ−1(s),

Ξ
−1(s)=

1

mq−npe−(
s

m1
+ s

m2
)

 q−pαe−(
s

m1
+ s

m2
)

(n−mα)e−
s

m2

(p−qβ )e−
s

m1 m−nβe−(
s

m1
+ s

m2
)

 .
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For obtaining the optimal controller we get

D= lim
s→∞,s∈R

Ξ(s)=

 m 0

0 q

 , Ξ(0)=
1

1−αβ

 m−nβ mα−n

qβ −p q−pα


and, since mq=

√
(2+α)2m2

B−α2 ≥
√

2,

D−1 =

 1
m 0

0 1
q

 , Ξ
−1(0) =

1
mq−np

 q−pα n−mα

p−qβ m−nβ

 .
From the realization identity (4.1), which here takes the form:

I−D−1 Ξ(s)︸︷︷︸
=X(s)M−1(s)

=

=FΛ︷ ︸︸ ︷
−D−1 V−∗︸︷︷︸

=Ξ−∗(0)

GΛ

=Ĝ(s)︷ ︸︸ ︷
A (sI−A )−1D = FΛ Ĝ(s)︸︷︷︸

=U(s)M−1(s)

⇐⇒ M(s)−D−1X(s) = FΛU(s)
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and (5.3) or (2.11), we determine the optimal controller

u = FΛx = −( R−︸︷︷︸
=Π(0)

+GΛD)−1GΛx =

 ( n
m −α)x2(0)

(pq −β )x1(1)


GΛx =

1
1−αβ

 (m−nβ )(αm−n)x2(0)+(qβ −p)2x1(1)

(αm−n)2x2(0)+(q−pα)(qβ −p)x1(1)

 ,
D(FΛ) = D(GΛ)⊃W1,2(0,1)⊕W1,2(0,1)⊃ R(D) .

The Riccati operator equation (2.7) takes the form

〈A x,H x〉H + 〈x,H A x〉H =−‖x‖2
H +(αm−n)2x2

2(0)+

+(βq−p)2x2
1(1) =−‖C x‖2

H +‖V−∗G x‖2
U , x ∈ D(A ) ,

(6.10)

It is not difficult to see that its solution H ∈ L(H), H = H ∗ equals

H = (m2−2)(1−α
2
β

2)E1 +(q2−2)(1−α
2
β

2)E2 +E3 ≥ 0
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and it was found using (6.1), where k1, k2 have been determined from the
linear system of equations −1 β 2

α2 −1

 k1(1−α2β 2)−1

k2(1−α2β 2)−1

=

 (βq−p)2−β 2

(αm−n)2−α2

 .

Using Theorem 2.1/(II) we can confirm optimality of the above GΛ

G x =−D∗H A x+N∗−C x =−D∗[H A x+ x] =

=
1

1−αβ

 (2−m2 +β 2q2−β 2)x1(1)+(2β −q2β +αm2−α)x2(0)

(2α−m2α +βq2−β )x1(1)+(2−q2 +α2m2−α2)x2(0)


= GΛx, x ∈ D(A ) .

Finally, we determine the closed-loop system state operator. Let

0 :=
1

1−αβ

αm−n

m
x2(0)1+

1
1−αβ

α(qβ −p)

q
x1(1)1 ,
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. :=
1

1−αβ

β (αm−n)

m
x2(0)1+

1
1−αβ

qβ −p

q
x1(1)1 .

Since for x ∈W1,2(0,1)⊕W1,2(0,1) one has:

x−D(R−+GΛD)−1GΛx =

 x1 +0

x2 +.

 ∈ D(A ) ⇐⇒

⇐⇒ x1(0) =
n

m
x2(0), x1(1) =

p

q
x2(1)

then

Aoptx = A [x−D(R−+GΛD)−1GΛx] = A x =

 −m1x′1
m2x′2

 , D(Aopt) =

=

{
x ∈W1,2(0,1)⊕W1,2(0,1) : x1(0) =

n

m
x2(0), x1(1) =

p

q
x2(1)

}
.

Aopt has the same structure as A with α and β replaced by n
m and p

q ,
respectively. Hence the result concerning EXS of the semigroup
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{S(t)}t≥0 applies to {Sopt(t)}t≥0, i.e., {Sopt(t)}t≥0 is EXS iff(
n
m

p
q

)2
< 1. However, the last inequality was shown to be true – see

(6.9), confirming the general EXS result of Theorem 2.1.

Observe that FΛ|D(Aopt)
= τ|D(Aopt)

, where τ is the operator of boundary
control given by (6.2). This fact is basic for establishing the structure of
optimal control closed–loop system depicted in Figure 6.1,

���C1 q
u1b

�

-
-

@@
��-kα -

x1(0) = u1 +αx2(0)

-

@@
��
kβ�

-

x2(1) = u2 +βx1(1)

�
� b
q -
����C2

-
0 1

θ

x1(θ)

x2(θ) u2

Figure 6.1: Open/closed–loop control system for the Chapelon–Xu exam-
ple; C1 := n

m −α , C2 := p
q −β .

where the external connections realize the optimal feedback control
u = FΛx =−(R−+GΛD)−1GΛx.
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7 LQ–problem of Żołopa and Grabowski

7.1 The SISO case

In (Żołopa and Grabowski, 2008) the LQ–problem has been formulated
for the dynamical system modelling propagation of pollutants in a river.
In this section we solve the standard LQ–problem for a controllable part
of this model arising from a general one (Żołopa and Grabowski, 2008, p.
174) by extracting its second component. This is possible as the second
component is affected by the first component but not conversely and the
control does not excite the first component, which therefore remains
uncontrolled.

Suppose also that we consider the SISO case, i.e., the case of a one point
control (one aerator) located at θ = η > 0 and one output (one sensor
measuring dissolved oxygen) located at θ = γ > η as depicted in Figure
7.1.
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- θ
γ

η

?

?

0 a

Figure 7.1: Configuration of measurement and control in the SISO case.

The state space is H = L2(0,a), a > 0, whilst U = Y = R. The state
operator is

A x =−vx′−K2x, D(A ) = W1,2
0 (0,a), K2 > 0

and it generates an EXS or even decaying in a finite–time semigroup on
H. The observation functional is given by

C x = x(γ), D(C ) = {x ∈ H : x is continuous at θ = γ} .

Finally, the factor control vector d ∈ H takes the form

d(θ) =−1
v

e−
K2
v (θ−η)

1(θ −η) =−1
v

e−
K2
v (θ−η)

χ[η ,a](θ), θ ∈ [0,a] .
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C is admissible as the operator HΨ ∈ L(H), HΨ = H ∗
Ψ
≥ 0, defined as

(HΨx)(θ) :=
1
v

e−
2K2

v (γ−θ)
χ[0,γ](θ)x(θ), x ∈ H , (7.1)

is the observability gramian:

〈A x,HΨx〉H + 〈x,HΨA x〉H =−x2(γ) =−|C x|2 , x ∈ D(A ) .

Next, d is an admissible factor control vector. Indeed, by duality, its is
enough to show that the observation functional d∗A ∗ is admissible with
respect to the adjoint semigroup. Here

A ∗w = vw′−K2w, D(A ∗) =
{

w ∈W1,2(0,a) : w(a) = 0
}

(7.2)

and the admissibility of d∗A ∗ follows from Lyapunov characterization of
admissibility as HΦ ∈ L(H), HΦ = H ∗

Φ
≥ 0

(HΦx)(θ) :=
1
v

e
2K2

v (η−θ)
χ[η ,a](θ)x(θ), x ∈ H ,

solves the Lyapunov operator equation (HΦ is the controllability
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gramian)

〈A ∗w,HΦw〉H+〈w,HΦA ∗w〉H =−w2(η)=−|d∗A ∗w|2 , w∈D(A ∗).

kerHΨ and kerHΦ are both nontrivial, whence the system is neither
(infinite–time) approximately observable nor approximately controllable,
so the method of spectral factorization is not applicable.

Since (
(sI−A )−1x

)
(θ) = 1

v

∫
θ

0
e−

s+K2
v (θ−ξ )x(ξ )dξ ,

(
A (sI−A )−1x

)
(θ) = −x(θ)+ s

v

∫
θ

0
e−

s+K2
v (θ−ξ )x(ξ )dξ

(7.3)

then with δ := K2
v (γ−η)> 0

Ĝ(s) = C A (sI−A )−1d =
1
v

e−
s
v (γ−η)e−δ , Ĝ ∈ H∞(C+) .

Recalling that the resolvent of A is Laplace transform of the semigroup
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generated by A and substituting t = θ−ξ

v in (7.3) we get

(S(t)X)(θ)= e−K2t

 X(θ − vt) if a≥ θ ≥ vt

0 if θ < vt

 , t ≥ 0, θ ∈ [0,a].

(7.4)

7.1.1 Direct solution using Theorem 2.1/(I)

In the case of standard LQ–problem Q = R = 1, N = 0 and thus

N∗− =−C d =
1
v

e−δ , R− := 1+
1
v2 e−2δ .

Here the Riccati operator equation (2.7) reduces to

〈A z,H z〉H + 〈z,H A z〉H +(C z)2 = R−1
− [〈A z,H d〉H +(C d)∗C z]2 ,

where z ∈ D(A ).
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As a result of seeking its solution in the form H = aHΨ +bH1, where

(H1x)(θ) :=
1
v

e−
2K2

v (η−θ)
χ[η ,γ](θ)x(θ) =

e2δ

v
e−

2K2
v (γ−θ)

χ[η ,γ](θ)x(θ)

one obtains

a=
v2

v2 + e−2δ
, b= (1−a)e−2δ =

e−4δ

v2 + e−2δ
,

which yields

(H x)(θ) =
1
v

e−
2K2

v (γ−θ)


a on [0,η)

1 on [η ,γ]

0 on (γ,a]

x(θ) , (7.5)

G z := [〈A z,−H d〉H− (C d)∗C z] =
e−2δ

v
z(η), z ∈ D(A ) .

If z ∈ Reg[0,a] – the space of regulated functions, i.e., functions having
one–sided (finite) limits at every point θ ∈ [0,a] then, by the Lebesgue
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dominated convergence theorem:

lim
s→∞,s∈R

sG (sI−A )−1z =
e−2δ

v2 lim
s→∞,s∈R

s
∫

η

0
e−

s+K2
v (η−ξ )z(ξ )dξ =

= e−2δ

v lim
s→∞,s∈R

s
s+K2

∫
∞

0
e−tz

(
η− v

s+K2
t
)
1

(
s+K2

v
η− t

)
dt =

=
e−2δ

v
z(η−) =⇒ GΛz :=

e−2δ

v
z(η−), D(GΛ) = Reg[0,a] .

Hence, d ∈ D(GΛ) and (2.11) gives

u =
−ve−2δ

v2 + e−2δ
z(η−), z ∈ D(GΛ) = Reg[0,a] .

Consequently, the closed–loop operator reads as

Aoptx =−vz′−K2z, z(θ) := x(θ)+ e−2δ

v2+e−2δ
x(η−)e−

K2
v (θ−η)

χ[η ,a] ;

D(Aopt) =
{

x ∈ H : z ∈W1,2
0 [0,a], x(η+) = v2

v2+e−2δ
x(η−)

}
,
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whence (on θ–intervals [0,η ], [η ,a] there holds Aoptx =−vx′− k2x)

x ∈ D(Aopt) =⇒ 〈x,Aoptx〉H + 〈Aoptx,x〉H = 〈x,A z〉H + 〈A z,x〉H =

=−vx2(η−)− vx2(a)+ vx2(η+)−2K2 ‖x‖2
H =

=− vc2(c2+2)
(1+c2)2 x2(η−)− vx2(a)−2K2 ‖x‖2

H , c = 1
v e−δ ,

and

x(θ) =


1
v

∫
θ

0
e−

(K2+λ )(θ−ξ )
v X(ξ )dξ if 0≤ θ < η

©+ 1
v

∫
θ

η

e−
(K2+λ )(θ−ξ )

v X(ξ )dξ if η ≤ θ ≤ a

 , (7.6)

where

© :=
1

v(1+ c2)

∫
η

0
e−

(K2+λ )(θ−ξ )
v X(ξ )dξ ,

solves the resolvent equation λx−Aoptx = X . By the Lummer–Phillips
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theorem, Aopt generates an EXS semigroup on H. Moreover, since

x ∈ D(Aopt) =⇒ 〈x,Aoptx〉H + 〈Aoptx,x〉H ≤−
vc2(c2 +2)
(1+ c2)2 x2(η−)

then, by Lyapunov characterization of admissibility, the functional
x 7−→ x(η−) is admissible with respect to the semigroup generated by
Aopt, which confirms that the control is in L2(0,∞), so its is optimal.
Actually, we have more. Since (7.6) defines the resolvent of Aopt then,
substituting t = θ−ξ

v in (7.6) and applying the Laplace transformation, we
obtain

(
Sopt(t)X

)
(θ)= e−K2t


X(θ − vt) if 0≤ t ≤ θ

v ,0≤ θ < η

X(θ − vt) if 0≤ t ≤ θ−η

v ,η ≤ θ < a
1

1+c2 X(θ − vt) if θ−η

v ≤ t ≤ θ

v ,η ≤ θ ≤ a

0 elsewhere


from which we deduce that the semigroup {Sopt(t)}t≥0 decays to 0 in a
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natural finite time a/v. The rate of decaying of {Sopt(t)}t≥0 is for θ ≥ η

faster than that of {S(t)}t≥0 given by (7.4).

7.1.2 Operator–theoretic approach

Since A can be represented as A = vRF −K2I, where RF , stands for the
generator of the semigroup of right–shifts on H then the semigroup
generated by A equals (7.4). Hence the homogeneous part of the output,
due to initial condition x0 ∈ H = L2(0,a) is

yhom(t) =

 e−K2tx0(γ− vt) if
( a

v ≥
)

γ

v ≥ t

0 if γ

v < t

= (Ψx0)(t) (7.7)

for almost all t ≥ 0, where Ψ ∈ L(H,L2(0,∞)) denotes the observability
map.

Recall that the system transfer function is Ĝ(s) =
1
v

e−δ e−s δ
K2 ,
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Ĝ ∈ H∞(C+), whence the nonhomogeneous part of the output, due to a
control u ∈ L2(0,∞), takes the form

ynonhom(t)=


1
v e−δ u

(
t− δ

K2

)
if t ≥ δ

K2

0 if t < δ

K2

 , for almost all t ≥ 0 ,

(7.8)
and therefore the extended input–output map and its adjoint are

F=
1
v

e−δ SR

(
δ

K2

)
, F

∗ =
1
v

e−δ SL

(
δ

K2

)
and F, F∗ ∈ L(L2(0,∞)), where {SR(t)}t≥0 and {SL (t)}t≥0 stand for the
semigroups of right–, respectively, left–shifts on L2(0,∞).

By (2.5), the optimal control (to be more precise its time–domain form) is

u =−(F∗F+ I)−1
F
∗
Ψx0 . (7.9)
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But

(F∗Ψx0)(t) =
1
v

e−δ

(
SL

(
δ

K2

)
Ψx0

)
(t) =

=
1
v

e−2δ

 e−K2tx0(η− vt) if t ∈ [0, η

v ]

0 if t > η

v

 .

Since SL (t)SR(t) = I, then (F∗F+ I)−1 = v2

v2+e−2δ
I and from (7.9) one

gets

u(t) =

 − ve−2δ

v2+e−2δ
e−K2tx0(η− vt) for almost all t ∈ [0, η

v ]

0 for almost all t > η

v

(7.10)

From (2.6) we get the optimal cost operator

H x0 = HΨx0−Ψ
∗
F(F∗F+ I)−1

F
∗
Ψx0 .
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Directly from definition of the adjoint operator we find

(Ψ∗ f )(θ) =
1
v

f
(

γ−θ

v

)
e−

K2(γ−θ)
v χ[0,γ](θ), θ ∈ [0,a] . (7.11)

Since SR(t)SL (t) = χ[t,∞)I then

−F(F∗F+ I)−1
F
∗ =− e−2δ

v2 + e−2δ
χ
[ δ

K2
,∞)

I ,

whence

−Ψ
∗
F(F∗F+ I)−1

F
∗
Ψx0 =−

e−2δ

v(v2 + e−2δ )
e−

K2(γ−θ)
v χ[0,η ](θ)x0(θ)

and finally

(H x0)(θ) =

=
1
v

e−
2K2

v (γ−θ)
χ[0,γ](θ)x0(θ)−

e−2δ

v(v2 + e−2δ )
e−

2K2(γ−θ)
v χ[0,η ](θ)x0(θ) .

The last formula coincides with (7.5) except for one point θ = η .
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Now, we show that the feedback realization of the optimal control (7.10)
is correct. Indeed, an initial condition x0 and a control u, not necessarily
optimal, give rise to the full state x(t) = S(t)x0 + xnonhom(t), t ≥ 0. Since

x̂nonhom(s)(θ) = (A (sI−A )−1d)(θ)û(s) =
1
v

e−
s+K2

v (θ−η)
1(θ −η)û(s)

=
1
v

e−
K2
v (θ−η)

χ[η ,a](θ)e−
s
v (θ−η)û(s) ,

then

xnonhom(t) =


1
v e−

K2
v (θ−η)

χ[η ,a](θ)u
(

t− θ−η

v

)
if t ≥ θ−η

v

0 if t < θ−η

v

 .

Thus if x0 ∈ Reg[0,a] then one has S(t)x0 ∈ Reg[0,a] for every t ≥ 0 and

53



'

&

$

%

the optimal feedback controller equation yields

u(t) = − ve−2δ

v2+e−2δ
lim

θ→η−
x(t)(θ) =− ve−2δ

v2+e−2δ
lim

θ→η−
(S(t)x0)(θ) =

= − ve−2δ

v2+e−2δ

 e−K2tx0(η− vt−) if 0≤ t < η

v

0 if t ≥ η

v

 ,

what agrees with (7.10).

7.2 The TISO case

Consider the TISO case, i.e., the case of two point controls (two aerators)
located at θ = η1 > 0, θ = η2 > η1 and one output (one sensor measuring
dissolved oxygen) located at θ = γ > η2 as depicted in Figure 7.2;
therefore still we have Y = R but now U = R2. The optimal controller can
be found by mixing the results of Sections 7.1.1 and 7.1.2
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- θ

a

?

γ
??

η1 η2

0

Figure 7.2: Configuration of measurement and controls in the TISO case.

The factor control operator modifies as follows

D =
[

d1 d2

]
, di(θ) =−

1
v

e−
K2
v (θ−ηi)χ[ηi,a](θ), θ ∈ [0,a], i = 1,2

and consequently D∗ =

 d∗1
d∗2

. Similarly to the SISO case,

HΦ ∈ L(H), HΦ = H ∗
Φ
≥ 0,

(HΦx)(θ) :=
1
v

[
e

2K2
v (η1−θ)

χ[η1,a](θ)+ e
2K2

v (η2−θ)
χ[η2,a](θ)

]
x(θ), x∈H,
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solves the Lyapunov operator equation (HΦ is the controllability
gramian)

〈A ∗w,HΦw〉H + 〈w,HΦA ∗w〉H =

=−w2(η1)−w2(η2) =−‖D∗A ∗w‖2
U , w ∈ D(A ∗) ,

whence D is admissibility, though the system is not (infinite-time)
approximately controllable as kerHΦ 6= {0}.

The observability map Ψ is still given by (7.7) whilst the input–output
operator has components somewhat similar to the SISO case:

Fu =
[
F1 F2

] u1

u2

 , Fi = ciSR

(
δi

K2

)
, i = 1,2 ,

F
∗y =

 F∗1

F∗2

y, F
∗
i = ciSL

(
δi

K2

)
, i = 1,2 ,
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where ci := 1
v e−δi , δi := K2(γ−ηi)

v (η1 < η2 ⇐⇒ δ1 > δ2).

Using the operator attempt of Section 7.1.2 we find the minimal cost
operator, H = HΨ−Ψ∗F(I +F∗F)−1F∗Ψ,

(H x0)(θ) =



1
1+c2

1+c2
2

on [0,η1]

1
1+c2

2
on (η1,η2]

1 on (η2,γ]

0 on (γ,a]


x0(θ) .

Now we switch to the attempt of Section 7.1.1. From (2.8) we get

G z =−D∗H A z+N∗−C z =

 vc2
1

1+c2
2

z(η1)+
vc1c3

2
1+c2

2
z(η2)

vc2
2 z(η2)

 (7.12)

for z ∈ D(A ) = W1,2
0 (0,a). It is enough to determine an extension of G

onto Reg[0,a]. Let z ∈ Reg[0,a]. Then, by (7.3), (7.12) and the Lebesgue
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dominated convergence theorem:

lim
s→∞,s∈R

sG (sI−A )−1z =

 vc2
1

1+c2
2
z(η1−)+

vc1c3
2

1+c2
2

z(η2−)

vc2
2z(η2−)

 := GΛz ,

(7.13)
whence, by (2.11),

u =−(R−+GΛD)−1GΛx =−

 vc2
1

1+c2
1+c2

2
x(η1−)

vc2
2

1+c2
2

x(η2−)

 . (7.14)

Remark 7.1 (Limit passage from TISO to SISO case). Taking η1→−∞,
which implies δ1→ ∞, c1→ 0 and fixing η2 = η , δ2 = δ , c2 = c = 1

v e−δ

we get u1 = 0 and u2 = u, where u is the optimal control or controller in
the SISO case.

The controller (7.14) has astonishingly simple realization, depicted in
Figure 7.3.
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η1 η2

0
− vc2

1
1+c2

1+c2
2

− vc2
2

1+c2
2

6 6

Figure 7.3: Optimal feedback controller realization in the TISO case.

Let x ∈ Reg[0,a] and u be the optimal controller (7.14). A discussion of
conditions ensuring that z = x+Du ∈ D(A ) (in particular, z = x+Du
must be continuous on [0,a]), leads to the following form of the
closed–loop state operator:

Aoptx =−vz′−K2z , z(θ) := x(θ)+ c2
1

1+c2
1+c2

2
x(η1−)e−

K2
v (θ−η1)χ[η1,a]+

+
c2

2
1+c2

2
x(η2−)e−

K2
v (θ−η2)χ[η2,a]; D(Aopt) =
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{
x ∈ H : z ∈W1,2

0 [0,a],x(η1+) =
1+c2

2
1+c2

1+c2
2
x(η1−),x(η2+) = 1

1+c2
2
x(η2−)

}
.

Hence (on θ -intervals [0,η1], [η1,η2], [η2,a] there holds
Aoptx =−vx′− k2x)

x ∈ D(Aopt) =⇒ 〈x,Aoptx〉H + 〈Aoptx,x〉H = 〈x,A z〉H + 〈A z,x〉H =

=−vx2(η1−)− vx2(η2−)− vx2(a)+ vx2(η1+)+ vx2(η2+)−2K2 ‖x‖2
H =

=− vc2
2(c

2
2+2)

(1+c2
2)

2 x2(η1−)−
vc2

1(c
2
1+2c2

2+2)
(1+c2

1+c2
2)

2 x2(η2−)− vx2(a)−2K2 ‖x‖2
H ,

and

x(θ) =



1
v

∫
θ

0
e−

(K2+λ )(θ−ξ )
v X(ξ )dξ if 0≤ θ < η1

« if η1 ≤ θ < η2

¨ if η2 ≤ θ ≤ a


, (7.15)

60



'

&

$

%

where

«=
1+ c2

2

v(1+ c2
1 + c2

2)

∫
η1

0
e−

(K2+λ )(θ−ξ )
v X(ξ )dξ +

1
v

∫
θ

η1

e−
(K2+λ )(θ−ξ )

v X(ξ )dξ ,

¨ =
1

v(1+ c2
1 + c2

2)

∫
η1

0
e−

(K2+λ )(θ−ξ )
v X(ξ )dξ+

1
v(1+ c2

2)

∫
η2

η1

e−
(K2+λ )(θ−ξ )

v X(ξ )dξ +
1
v

∫
θ

η2

e−
(K2+λ )(θ−ξ )

v X(ξ )dξ ,

solves the resolvent equation λx−Aoptx = X which, by the
Lummer–Phillips theorem, implies that Aopt generates an EXS semigroup
on H. Moreover, since

x ∈ D(Aopt) =⇒ 〈x,Aoptx〉H + 〈Aoptx,x〉H ≤

≤−vc2
2(c

2
2 +2)

(1+ c2
2)

2 x2(η1−)−
vc2

1(c
2
1 +2c2

2 +2)
(1+ c2

1 + c2
2)

2 x2(η2−)

then, by Lyapunov characterization of admissibility, the functionals
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x 7−→ x(η1−), x 7−→ x(η2−) are admissible with respect to the semigroup
genarated by Aopt, which confirms that the optimal control is in
L2(0,∞;R2). Now (7.15) defines the resolvent of Aopt. Thus substituting
t = θ−ξ

v in (7.15) and applying the definition of Laplace transformation,
we obtain

(
Sopt(t)X

)
(θ)= e−K2t



X(θ − vt) if 0≤ t ≤ θ

v , 0≤ θ < η1

1+c2
2

1+c2
1+c2

2
X(θ − vt) if θ−η1

v ≤ t ≤ θ

v , η1 ≤ θ < η2

X(θ − vt) if 0≤ t ≤ θ−η1
v , η1 ≤ θ < η2

1
(1+c2

2)(1+c2
1+c2

2)
X(θ − vt) if θ−η1

v ≤ t ≤ θ

v , η2 ≤ θ ≤ a

1
1+c2

2
X(θ − vt) if θ−η2

v ≤ t ≤ θ−η1
v , η2 ≤ θ ≤ a

X(θ − vt) if 0≤ t ≤ θ−η2
v , η2 ≤ θ ≤ a

0 elsewhere

from which we deduce that actually the semigroup {Sopt(t)}t≥0 decays to
0 is a natural finite time a/v. The rate of decaying of {Sopt(t)}t≥0 is for
θ ≥ η faster than that of {S(t)}t≥0 given by (7.4).
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