Use of mobile actuator and sensor network with augmented vehicle dynamics for control and estimation of distributed parameter systems

Michael A. Demetriou¹²

²Department of Mechanical Engineering Worcester Polytechnic Institute Worcester, MA 01609

7th Workshop on control of Distributed Parameter Systems Monday, July 18, 2011, 09:45-10:10 July 18th-22th 2011, Wuppertal, Germany

¹ The author gratefully acknowledges financial support from the AFOSR, grant FA9550-09-1-0469. 🤞 🗆 🕨 🖉 🖉 🔍 🔍 🖓

Outline

- Problem statement
 - Mobile actuators
 - Mobile sensors

Guidance of moving collocated actuators/sensors

- 4 Numerical results
 - 1D diffusion equation
 - 2D diffusion equation

5 Conclusions

< 3 > 4 3 >

mobile and scheduled actuators and/or sensors:

- improved estimation and control of PDEs
- better address effects of spatiotemporally varying disturbances
- requires the solution to large scale Riccati equations
- added complexity when vehicle dynamics are accounted for

address the design complexity:

- consider simpler structure of controller or filter
- minimal design complexity and computational requirements
- link vehicle motion to performance of controller/filter

main contribution:

- actuating/sensing devices affixed on vehicles that are capable of moving throughout the interior of spatial domain
- can dispense control signal/obtain process information at any point within spatial domain

ヘロト 人間 ト イヨト イヨト

• vehicle motion dictated by controller/filter performance

mobile and scheduled actuators and/or sensors:

- improved estimation and control of PDEs
- better address effects of spatiotemporally varying disturbances
- requires the solution to large scale Riccati equations
- added complexity when vehicle dynamics are accounted for

address the design complexity:

- consider simpler structure of controller or filter
- minimal design complexity and computational requirements
- link vehicle motion to performance of controller/filter

main contribution:

- actuating/sensing devices affixed on vehicles that are capable of moving throughout the interior of spatial domain
- can dispense control signal/obtain process information at any point within spatial domain

э

• vehicle motion dictated by controller/filter performance

mobile and scheduled actuators and/or sensors:

- improved estimation and control of PDEs
- better address effects of spatiotemporally varying disturbances
- requires the solution to large scale Riccati equations
- added complexity when vehicle dynamics are accounted for

address the design complexity:

- consider simpler structure of controller or filter
- minimal design complexity and computational requirements
- link vehicle motion to performance of controller/filter

main contribution:

- actuating/sensing devices affixed on vehicles that are capable of moving throughout the interior of spatial domain
- can dispense control signal/obtain process information at any point within spatial domain

ヘロト 人間 ト イヨト イヨト

э.

• vehicle motion dictated by controller/filter performance

Mobile actuators Mobile sensors

Outline

- Problem statement
 - Mobile actuators
 - Mobile sensors

3 Guidance of moving collocated actuators/sensors

- 4 Numerical results
 - 1D diffusion equation
 - 2D diffusion equation

5 Conclusions

伺き くきき くきき

Mobile actuators Mobile sensors

We consider the state regulation of the diffusion PDE

$$\frac{\partial x(t,\xi)}{\partial t} = a \frac{\partial^2 x(t,\xi)}{\partial \xi^2} + b(\xi)u(t),$$

$$x(t,0) = x(t,\ell) = 0, \quad x(0,\xi) = x_0(\xi),$$
(1)

• for
$$\xi \in \Omega = [0, \ell]$$
 and $t \in \mathbb{R}^+$

- b(ξ): spatial distribution of actuating device
- *u*(*t*): associated control signal
- $b(\xi) = \delta(\xi \theta)$: spatial delta function with centroid at $\theta \in \Omega$
- moving actuator: centroid is time varying $b(\xi; \theta(t)) = \delta(\xi \theta(t))$

Mobile actuators Mobile sensors

control tasks

- how to choose the controller architecture
- I how to choose the actuator guidance
 - a way to address the first task is to use a static output feedback in which case a sensing device is collocated to the actuating device
 - controller structure takes the form

$$u(t) = -\kappa x(t, \theta(t)) = -\kappa \int_0^\ell \delta(\xi - \theta(t)) x(t, \xi) \, d\xi \tag{2}$$

- $\kappa > 0$ is the feedback (scalar) gain
- $x(t, \theta)$ is interpreted as the value of the state at the spatial location $\theta(t)$

Mobile actuators Mobile sensors

closed loop system is re-written as

$$\Sigma_{1} \begin{cases} \frac{\partial x(t,\xi)}{\partial t} = a \frac{\partial^{2} x(t,\xi)}{\partial \xi^{2}} + \delta(\xi - \theta(t)) u(t), \\ x(t,0) = x(t,\ell) = 0, \\ x(0,\xi) = x_{0}(\xi), \\ u(t) = -\kappa \int_{0}^{\ell} \delta(\xi - \theta(t)) x(t,\xi) d\xi. \end{cases}$$

addressing the second task

- derivation of the variation of $\theta(t)$
- include dynamics of the mobile actuator

Mobile actuators Mobile sensors

2nd order dynamics of the mobile actuator are assumed

$$m\ddot{\theta}(t) + d\dot{\theta}(t) + k\theta(t) = f(t), \qquad \theta(0) = \theta_0, \dot{\theta}(0) = 0, \qquad (3)$$

- $\theta(t)$ denotes the position of the mobile actuator
- f(t) denotes the control force

• □ ▶ • • □ ▶ • □ ▶ • □ ▶ •

Mobile actuators Mobile sensors

redefine control objective

incorporating the vehicle dynamics, it translates to choosing the control force input f(t) so that the following system is stable

$$\Sigma_{2} \begin{cases} \frac{\partial x(t,\xi)}{\partial t} = a \frac{\partial^{2} x(t,\xi)}{\partial \xi^{2}} + \delta(\xi - \theta(t)) u(t), \\ x(t,0) = x(t,\ell) = 0, \ x(0,\xi) = x_{0}(\xi), \\ u(t) = -\kappa \int_{0}^{\ell} \delta(\xi - \theta(t)) x(t,\xi) \ d\xi, \\ m\ddot{\theta}(t) + d\dot{\theta}(t) + k\theta(t) = f(t), \quad \theta(0) = \theta_{0}, \ \dot{\theta}(0) = 0. \end{cases}$$

• □ ▶ • @ ▶ • B ▶ • B ▶

Mobile actuators Mobile sensors

Outline

- Problem statement
 - Mobile actuators
 - Mobile sensors

3 Guidance of moving collocated actuators/sensors

- A Numerical results
 - 1D diffusion equation
 - 2D diffusion equation

5 Conclusions

伺き くきき くきき

Mobile actuators Mobile sensors

We consider the state estimation of the diffusion PDE

$$\begin{aligned} \frac{\partial x(t,\xi)}{\partial t} &= a \frac{\partial^2 x(t,\xi)}{\partial \xi^2}, \\ x(t,0) &= x(t,\ell) = 0, \quad x(0,\xi) = x_0(\xi), \end{aligned}$$
(4)
$$y(t) &= \int_0^L c(\xi) x(t,\xi) \, \mathrm{d}\xi \end{aligned}$$

- for $\xi \in \Omega = [0, \ell]$ and $t \in \mathbb{R}^+$
- c(ξ): spatial distribution of sensing device
- $c(\xi) = \delta(\xi \theta)$: spatial delta function with centroid at $\theta \in \Omega$
- moving sensor: centroid is time varying $c(\xi; \theta(t)) = \delta(\xi \theta(t))$

Mobile actuators Mobile sensors

filter tasks

- how to choose the filter architecture
- I how to choose the sensor guidance
 - a way to address the first task is to use a collocated output injection
 - filter structure takes the form

$$\frac{\partial \widehat{x}(t,\xi)}{\partial t} = a \frac{\partial^2 \widehat{x}(t,\xi)}{\partial \xi^2} - \kappa \delta(\xi - \theta(t)) \left(\widehat{y}(t) - y(t) \right),$$

$$\widehat{x}(t,0) = \widehat{x}(t,\ell) = 0, \quad \widehat{x}(0,\xi) = \widehat{x}_0(\xi) \neq x_0(\xi),$$

$$\widehat{y}(t) = \int_0^L \delta(\xi - \theta(t)) \widehat{x}(t,\xi) \, \mathrm{d}\xi = \widehat{x}(t,\theta(t))$$
(5)

- $\kappa >$ 0 is the filter (scalar) gain
- $x(t, \theta)$ is interpreted as the value of the state at the spatial location $\theta(t)$

イロト イ理ト イヨト イヨト

consider the state error
$$e(t,\xi)=x(t,\xi)-\widehat{x}(t,\xi)$$
 –error system is

$$\Sigma_{3} \begin{cases} \frac{\partial e(t,\xi)}{\partial t} = a \frac{\partial^{2} e(t,\xi)}{\partial \xi^{2}} - \kappa \delta(\xi - \theta(t)) \varepsilon(t), \\ e(t,0) = e(t,L) = 0, \\ e(0,\xi) = e_{0}(\xi) \neq 0, \\ \varepsilon(t) = \int_{0}^{L} \delta(\xi - \theta(t)) e(t,\xi) d\xi = \widehat{x}(t,\theta(t)) \end{cases}$$

addressing the second task

- derivation of the variation of $\theta(t)$
- Include dynamics of the mobile sensor

(日)

3

Mobile actuators Mobile sensors

2nd order dynamics of the mobile sensor are assumed

$$m\ddot{\theta}(t) + d\dot{\theta}(t) + k\theta(t) = f(t), \quad \theta(0) = \theta_0, \ \dot{\theta}(0) = 0, \tag{6}$$

- $\theta(t)$ denotes the position of the mobile actuator
- f(t) denotes the control force

イロト イポト イヨト イヨト

Mobile actuators Mobile sensors

redefine filter objective

incorporating the vehicle dynamics, it translates to choosing the control force input f(t) so that the following error system is stable

$$\Sigma_{4} \begin{cases} \frac{\partial e(t,\xi)}{\partial t} = a \frac{\partial^{2} e(t,\xi)}{\partial \xi^{2}} + \delta(\xi - \theta(t)) \varepsilon(t), \\ e(t,0) = e(t,\ell) = 0, \ e(0,\xi) = e_{0}(\xi), \\ \varepsilon(t) = -\kappa \int_{0}^{\ell} \delta(\xi - \theta(t)) e(t,\xi) d\xi, \\ m\ddot{\theta}(t) + d\dot{\theta}(t) + k\theta(t) = f(t), \ \theta(0) = \theta_{0}, \ \dot{\theta}(0) = 0. \end{cases}$$

bring the system in abstract form

$$\dot{x}(t) = \mathcal{A}x(t) + \mathcal{B}(\theta(t))u(t)$$
$$= \left(\mathcal{A} - \mathcal{B}(\theta(t))\kappa\mathcal{B}^*(\theta(t))\right) = \mathcal{A}_{cl}(\theta(t))x(t)$$

• Guidance based on Lyapunov function V(t):

$$V(t) = -\frac{1}{2} \langle x(t), \mathcal{A}_{cl}(\theta(t)) x(t) \rangle + \frac{1}{2} m \dot{\theta}^2(t) + \frac{1}{2} k \theta^2(t).$$

• resulting process performance-based vehicle control

$$f(t) = -x(t, \theta)x_{\xi}(t, \theta) - \gamma \dot{\theta}(t), \quad \gamma \ge 0$$

イロト イ理ト イヨト イヨト

closed loop equations for above choice of the Lyapunov function

$$\Sigma_{cl} \begin{cases} \frac{\partial x(t,\xi)}{\partial t} = a \frac{\partial^2 x(t,\xi)}{\partial \xi^2} + \delta(\xi - \theta(t))u(t), \\ x(t,0) = x(t,\ell) = 0, \\ x(0,\xi) = x_0(\xi), \\ u(t) = -\kappa \int_0^\ell \delta(\xi - \theta(t))x(t,\xi) d\xi, \\ m\ddot{\theta}(t) + d\dot{\theta}(t) + k\theta(t) = f(t), \quad \theta(0) = \theta_0, \ \dot{\theta}(0) = 0 \\ f(t) = -x(t,\theta)x_{\xi}(t,\theta) - \gamma\dot{\theta}(t), \ \gamma \ge 0. \end{cases}$$

イロト イ理ト イヨト イヨト

3

Remark

The vehicle control force f(t) requires the signals $x(t,\theta)$, $x_{\xi}(t,\theta)$ and $\dot{\theta}(t)$. The signal $x(t,\theta)$ is the output $y(t;\theta(t))$ and $x_{\xi}(t,\theta)$ is the spatial derivative of the output $y(t;\theta(t))$. For compact notation, we adopt $y_{\xi}(t;\theta(t)) = x_{\xi}(t,\theta(t))$ with the understanding that

$$y_{\xi}(t; \theta(t)) = \frac{\partial x(t, \xi)}{\partial \xi} \Big|_{\xi=\theta(t)}$$

Finally, it is assumed that the vehicle knows its own state $(\theta, \dot{\theta})$ and therefore the velocity $\dot{\theta}(t)$ is assumed to be available. Then using the above notation, the expression for the control force can be compactly written as

 $f(t) = -\gamma(t; \theta(t))\gamma_{\xi}(t; \theta(t)) - \gamma \dot{\theta}(t),$

and which requires 3 scalar signals $y(t; \theta(t)), y_{\xi}(t; \theta(t)), \dot{\theta}(t)$ to be realized

Lemma

Consider the system (4) with the control law (2). Assume that the vehicle dynamics that describe the motion of the actuator centroid $\theta(t)$ are described by (6) and that the vehicle knows its own state $(\theta, \dot{\theta})$. Then the proposed Lyapunov-based vehicle+actuator guidance law $f_l(t)$ renders the system Σ_2 stable.

Remark

Similar results can be obtained for the moving sensor in the filter case.

- 4 個 ト 4 ヨ ト 4 ヨ ト

Σ

Remark (case of multiple moving actuators (N agents))

$$\begin{cases} \frac{\partial x(t,\xi)}{\partial t} = a \frac{\partial^2 x(t,\xi)}{\partial \xi^2} + \sum_{i=1}^N \delta(\xi - \theta_i(t)) u_i(t), \\ x(t,0) = x(t,\ell) = 0, \\ x(0,\xi) = x_0(\xi), \\ u_i(t) = -\sum_{i=1}^N \kappa_{ij} \int_0^\ell \delta(\xi - \theta_i(t)) x(t,\xi) d\xi, \quad i = 1, ..., N \\ m_i \ddot{\theta}_i(t) + d_i \dot{\theta}_i(t) + k_i \theta_i(t) = f_i(t), \quad \theta_i(0) = \theta_{0i}, \ \dot{\theta}_i(0) = 0 \\ f_i(t) = -x_{\xi}(t,\theta_i) \sum_{i=1}^N \kappa_{ij} x(t,\theta_j(t)) - \sum_{i=1}^N \gamma_{ij} \dot{\theta}_j(t) \\ = x_{\xi}(t,\theta_i) u_i(t) - \sum_{i=1}^N \gamma_{ij} \dot{\theta}_j(t) \end{cases}$$

ヘロト 人間 とくほ とくほとう

æ

Remark (case of adaptive feedback gain-*N* agents)

$$\begin{cases} \frac{\partial x(t,\xi)}{\partial t} = a \frac{\partial^2 x(t,\xi)}{\partial \xi^2} + \sum_{i=1}^N \delta(\xi - \theta_i(t)) u_i(t), \\ x(t,0) = x(t,\ell) = 0, \\ x(0,\xi) = x_0(\xi), \\ u_i(t) = -\sum_{i=1}^N \kappa_{ij}(t) \int_0^\ell \delta(\xi - \theta_i(t)) x(t,\xi) d\xi, \ i = 1, \dots, N \\ m_i \ddot{\theta}_i(t) + d_i \dot{\theta}_i(t) + k_i \theta_i(t) = f_i(t), \ \theta_i(0) = \theta_{0i}, \ \dot{\theta}_i(0) = 0 \\ f_i(t) = x_{\xi}(t,\theta_i) u_i(t) - \sum_{i=1}^N \gamma_{ij} \dot{\theta}_j(t), \ i = 1, \dots, N \\ \dot{\kappa}_{ij}(t) = -y_i(t) y_j(t), \ i, j = 1, \dots, N \end{cases}$$

2

イロト イ理ト イヨト イヨト

Remark (2D case)

$$\begin{cases} \left. \frac{\partial x(t,\xi,\psi)}{\partial t} = a\left(\frac{\partial^2 x(t,\xi,\psi)}{\partial \xi^2} + \frac{\partial^2 x(t,\xi,\psi)}{\partial \psi^2}\right) + \sum_{i=1}^N b_i(\xi,\psi)u_i(t), \\ x(t,\cdot,\cdot) \right|_{\partial\Omega} = 0, \quad x(0,\xi,\psi) = x_0(\xi,\psi), \\ u_i(t) = -\sum_{j=1}^N \kappa_{ij}(t) \int_0^{L_\xi} \int_0^{L_\psi} b_i(\xi,\psi)x(t,\xi,\psi) d\psi d\xi = -\sum_{j=1}^N \kappa_{ij}(t)y_j(t), \\ b_i(\xi,\psi) = \delta(\xi - \xi_i(t))\delta(\psi - \psi_i(t)), \\ \dot{q}_i(t) = S(q_i)v_i(t), \quad q_i(t) = (\xi_i(t),\psi_i(t),\theta_i(t)) \\ M_i\dot{v}_i(t) = B_i\tau_i(t), \qquad i = 1, \dots, N. \end{cases}$$

Remark (2D case)

- generalized coordinates vector $q_i(t)$ consisting of horizontal distance $\xi_i(t)$, vertical distance $\psi_i(t)$ and orientation $\theta_i(t)$
- $v_i(t) = (v_i(t), \omega_i(t)): v_i(t)$ and $\omega_i(t)$ the linear and angular velocities
- $S(q_i)$: mobile base coordinates $v_i(t)$ to Cartesian coordinates $q_i(t)$

$$S(q_i) = \begin{bmatrix} \cos(heta_i) & -d\sin(heta_i) \\ \sin(heta_i) & d\cos(heta_i) \\ 0 & 1 \end{bmatrix}$$

• (vehicle guidance): $\lambda > 0$ a guidance gain, $K = K^T = \{\kappa_{ij}\} > 0$

$$\boldsymbol{\tau}_{i}(t) = \lambda B_{i}^{-1} S^{T}(\boldsymbol{q}_{i}) \left(\Psi_{i}(t) u_{i}(t) \right) - B_{i}^{-1} \sum_{j=1}^{N} \gamma_{ij} v_{j}(t), \quad \Psi_{i}(t) \triangleq \begin{bmatrix} x_{\xi}(t, \xi_{i}, \Psi_{i}) \\ x_{\psi}(t, \xi_{i}, \Psi_{i}) \\ 0 \end{bmatrix}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

1D diffusion equation 2D diffusion equation

Outline

- Problem statement
 - Mobile actuators
 - Mobile sensors

3 Guidance of moving collocated actuators/sensors

- 4 Numerical results
 - ID diffusion equation
 - 2D diffusion equation

5 Conclusions

伺き くきき くきき

1D diffusion equation 2D diffusion equation

- PDE with 80 linear elements in $\Omega = [0, 1]$ and $x(0, \xi) = \sin(\pi \xi/L)e^{-7\xi^2}$
- coefficient of spatial operator: a = 0.005
- moving source was taken as a spatial delta function with constant intensity and a moving centroid ξ_s(t)

$$d(t,\xi) = 2 \times 10^{-3} \delta(\xi - \xi_s(t)), \ \xi_s(t) = 0.3 \ell(\cos(\frac{2\pi t}{t_f}) + 2).$$

- vehicle parameters $m = 1, k = 1, d = \sqrt{2}$ with $\theta(0) = 0.25\ell, \dot{\theta}(0) = 0$
- static feedback gain was chosen as $\kappa = 100$
- implemented $f(t) = \alpha y(t; \theta(t)) y_{\xi}(t; \theta(t)) \gamma \dot{\theta}(t), \alpha = 1, \gamma = 0.05 d$
- closed loop system was simulated in the time interval $[t_0, t_f] = [0, 20]s$

1D diffusion equation 2D diffusion equation

Conclusions

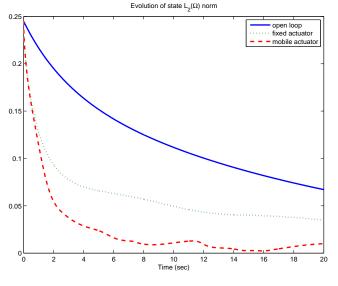


 Figure: Evolution of L₂(Ω) norms.
 P<</td>
 P<</td>
 E
 <</td>
 S
 <</td>
 <</td>

 M. A. Demetriou
 mobile actuator/sensor networks

1D diffusion equation 2D diffusion equation

Introduction-motivation Problem statement Guidance of moving collocated actuators/sensors Numerical results

Conclusions

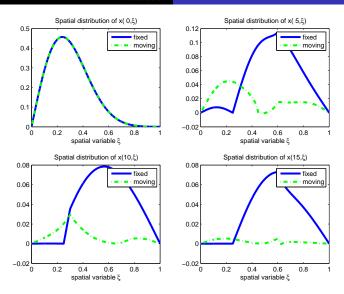


Figure: Closed loop state vs spatial variable at different time instances = V 2

1D diffusion equation 2D diffusion equation

Conclusions

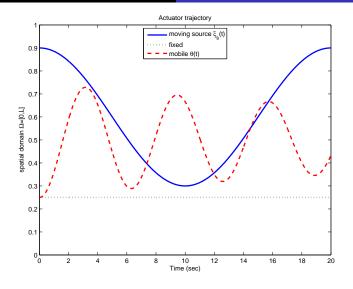


Figure: Evolution of actuator and disturbance trajectories.

1D diffusion equation 2D diffusion equation

Outline

4

- Problem statement
 - Mobile actuators
 - Mobile sensors

3 Guidance of moving collocated actuators/sensors

Numerical results

- 1D diffusion equation
- 2D diffusion equation

5 Conclusions

伺き くきき くきき

1D diffusion equation 2D diffusion equation

- FEM scheme, 30 elements/direction, $[0, L_{\xi}] \times [0, L_{\psi}] = [0, 100] \times [0, 60]$
- I.C. $x(0,\xi,\psi) = 25 \times 10^4 \left(\frac{\xi}{L_{\xi}}\right)^3 \left(1 \frac{\xi}{L_{\xi}}\right)^3 \left(\frac{\psi}{L_{\psi}}\right)^3 \left(1 \frac{\psi}{L_{\psi}}\right)^3$
- coefficient of spatial operator: a = 10
- terrain vehicle with m = 9, l = 0.624, R = 0.1, r = 0.05 and d = 0.01
- $\xi_1(0) = 0.312L_{\xi}, \psi_1(0) = 0.123L_{\Psi}, \theta_1(0) = \pi, v_1(0) = (4,0)$
- adaptive feedback gain, I.C. $\kappa_1(0)=10^9,$ guidance gain $\lambda=0.01$
- a "moving" disturbance was included as an added input, given by

$$d(t,\xi,\psi) = 10^{-2}\delta(\xi-\xi_s(t))\delta(\psi-\psi_s(t)),$$

• spatial distribution of the moving source: 2D delta function

$$\xi_{s}(t) = L_{\xi}\left[0.5 - 0.45\sin\left(\frac{5\pi t}{t_{f}}\right)\right], \quad \psi_{s}(t) = L_{\Psi}\left[0.5 - 0.45\cos\left(\frac{3\pi t}{t_{f}}\right)\right],$$

• C.L. system simulated on time interval $[t_0, t_f] = [0, 30]$

伺き くきき くきき

1D diffusion equation 2D diffusion equation

Evolution of state L₂ norm

Conclusions

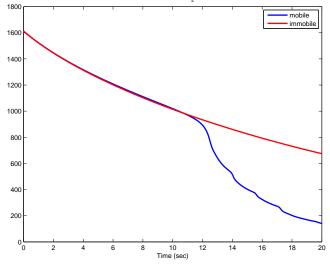
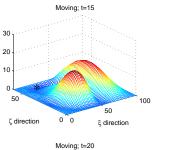


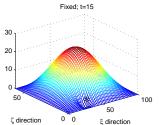
Figure: Comparison of mobile vs fixed actuator/sensor pair: Evolution of L2 norm. = 000

M. A. Demetriou mobile actuator/sensor networks

Conclusions

1D diffusion equation 2D diffusion equation





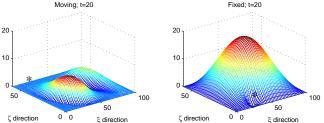


Figure: Comparison of mobile vs fixed actuator/sensor pair: Spatial state distribution.

Introduction-motivation Problem statement Guidance of moving collocated actuators/sensors

1D diffusion equation 2D diffusion equation

Numerical results

Conclusions

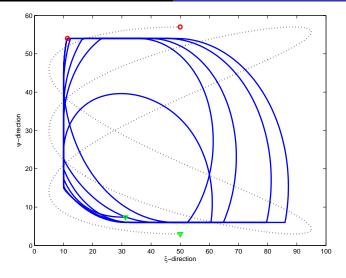


Figure: Mobile actuator/sensor trajectory (blue solid); moving source trajectory (black dotted). Start position ♡; end position ○.

- proposed a stability-based scheme for the guidance of a mobile actuator used for performance enhancement of a class of PDEs
- Lyapunov-based scheme included the mobile agent dynamics
- analytical expression for the motion of the centroid of the moving actuators/sensors
- use of multiple mobile actuators/multiple sensors
- motion coordination of multiple vehicles with collision avoidance modifications and localization algorithms for estimating the state of each vehicle

通 ト イ ヨ ト イ ヨ ト