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LQR Riccati equation

Matrix Riccati equation result

Let A ∈ Cn×n, B ∈ Cm×n, C ∈ Cn×p. If (A,B) is stabilizable and
(A,C) is detectable, then ∃ a unique stabilizing solution P ∈ Cn×n of

A∗P + PA− PBB∗P + C∗C = 0.

Stabilizing solution: P = P∗ ≥ 0 and A− BB∗P is stable.

Fundamental question

Let A be a complex Banach algebra, with an involution ·†. When will
the following LQR Riccati equation have a unique exponentially
stabilizing solution P ∈ An×n?

A†P + PA− PBB†P + C†C = 0.

Stabilizing solution: P = P† and A− BB†P is exponentially stable,
i.e., the semigroup eAt on An×n is exponentially stable⇐⇒

sup{Re λ : λ ∈ σ(A)} < 0.
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A positive result

An example of a Banach algebra with an involution is L(Z), where Z
is a Hilbert space and the involution is the adjoint operation. It is not
commutative in general, but it does have nice algebraic properties.

LQR Riccati equation

Suppose that Z is a Hilbert space and A, B, C ∈ L(Z). If (A,B) is
exponentially stabilizable and (A,C) is exponentially detectable, then
there exists a unique nonnegative solution P ∈ L(Z), P = P∗ ≥ 0 of
the LQR control Riccati equation

A∗P + PA− PBB∗P + C∗C = 0.

There also exists a unique nonnegative solution Q ∈ L(Z),
Q = Q∗ ≥ 0 of the LQR filter Riccati equation

AQ + QA∗ − QC∗CQ + BB∗ = 0.

Moreover, A− BB∗P and A− QCC∗ generate exponentially stable
semigroups.
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Complex Banach algebra A with an involution

A complex Banach space with a multiplication operation:

a, b ∈ A =⇒ ab ∈ A

a(bc) = (ab)c,

‖ab‖ ≤ ‖a‖‖b‖.

Involution is a map from A to itself: a→ a† with the properties:

(a + b)† = a† + b†,

(αb)† = αb†,

(ab)† = a†b†,

(a†)† = a.

Commutative complex Banach algebra:

ab = ba for all a, b ∈ A.
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Example (Even-Weighted Wiener algebra Wα(T))

Let α = (αn)n∈Z be any sequence of positive real numbers satisfying

αn+m ≤ αnαm, α−n = αn (even).

Wα(T) :=
{

f : f (z) =
∑
n∈Z

fnzn , z ∈ T = unit circle

and ‖f‖Wα(T) :=
∑
n∈Z

αn|fn| <∞
}
,

with pointwise operations.

Wα(T) is a unital commutative Banach
algebra contained in the commutative Banach algebra L∞(T) with
possible involutions:

f †(z) := f (z) =
∑
n∈Z

fnzn,

and f∼(z) := f (1/z)∗ =
∑
n∈Z

fnz−n.
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Motivation: Spatially Invariant Systems

Consider the subalgebra of bounded convolution operators
T : `2 → `2 given by

(Tx)l =
∑
r∈Z

Tr−lxr.

Spatially invariant systems : Σ(A,B,C) with state space `2(Z;Cn).
A,B,C are matrices whose entries are convolution operators and
A,B,C ∈ L(`2(Z;Cn)), a Banach algebra with the involution the
adjoint operation ·∗.

Under the Fourier transform F : `2(Z;Cn)→ L2(T;Cn). So the study
of spatially invariant systems Σ(A,B,C) is transformed to the study
of the isometrically isomorphic systems
Σ(FAF−1,FBF−1,FCF−1):=Σ(Â, B̂, Ĉ) on L2(T;Cn). Since Â, B̂, Ĉ
are multiplication operators on L∞(T;Cn) they are much easier to
handle mathematically.
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Example

Take Â = 0, B̂(z) = 10− z− 1/z, Ĉ = 1. The LQR Riccati equation
on L2(T) is

Â(z)∗P̂(z) + P̂(z)Â(z)− P̂(z)B̂(z)B̂(z)∗P̂(z) + Ĉ(z)∗Ĉ(z) = 0.

This can be solved algebraically for each z ∈ T to obtain the unique
positive solution

P̂(z) =
1

10− z− 1/z

=
1

4
√

6

∑
k∈Z

δ−|k|zk,

where δ = 5 +
√

24.



Control of Platoon-type spatially invariant systems

Discrete spatially invariant operators are in
L(`2(Z;Cn)) ' L(L2(T;Cn)) = L∞(T;Cn×n).

Existence of Riccati solutions

If (Â(z), B̂(z), Ĉ(z)) is stabilizable and detectable for all z ∈ T the
Riccati equation has a unique s.a stabilizing solution.

Even for simple examples P̂(z) =
∑

r∈Z przr ∈ L∞(T).
But for an implementable control law you need to truncate and the
truncation should be a good approximation of P̂, i.e.,∑

r∈T αrpr <∞ for some (αr) or P̂ must be in a Wiener algebra
Wα(T) ⊂ L∞(T).

Moreover, the larger the weights αr, the better the approximation will
be; for example, an exponential weight αr = e|r| would be perfect.
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If (Â(z), B̂(z), Ĉ(z)) is stabilizable and detectable for all z ∈ T the
Riccati equation has a unique s.a stabilizing solution.

Even for simple examples P̂(z) =
∑

r∈Z przr ∈ L∞(T).
But for an implementable control law you need to truncate and the
truncation should be a good approximation of P̂, i.e.,∑

r∈T αrpr <∞ for some (αr) or P̂ must be in a Wiener algebra
Wα(T) ⊂ L∞(T).

Moreover, the larger the weights αr, the better the approximation will
be; for example, an exponential weight αr = e|r| would be perfect.



Control of Platoon-type spatially invariant systems

Discrete spatially invariant operators are in
L(`2(Z;Cn)) ' L(L2(T;Cn)) = L∞(T;Cn×n).

Existence of Riccati solutions
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Gelfand Representation Theorem for commutative
Banach algebras

Every commutative Banach algebra is isomorphic to an algebra of
continuous functions on its maximal ideal space M(A) (a compact
Hausdorff space, equipped with the weak * topology). The Gelfand
transform is a map ·̌ : A→ C given by

ǎ(ϕ) = ϕ(a), ∀ϕ ∈ M(A), ∀a ∈ A.

Example (The commutative Banach algebra Wα(T))

This has the maximal ideal space which is isomorphic to the annulus
around T:

A(ρ) = {z ∈ C : 1/ρ ≤ |z| ≤ ρ}, ρ = inf
n>0

n
√
αn = lim

n→∞
n
√
αn.

For f (z) =
∑

k∈Z fkzk for z ∈ T the Gelfand transform is

f̌ (z) =
∑
k∈Z

fkzk for z ∈ A(ρ), the whole annulus .
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Claim by Chris Byrnes, CDC 1980

The idea was to note that the Gelfand transforms (Ǎ(ϕ), B̌(ϕ)), Č(ϕ))
are just complex matrices and so consider the isomorphic
finite-dimensional Riccati equation for each ϕ

Ǎ(ϕ)∗P̌(ϕ)+P̌(ϕ)Ǎ(ϕ)−P̌(ϕ))B̌(ϕ)B̌(ϕ)∗P̌(ϕ))+Č(ϕ))∗Č(ϕ)) = 0.

Theorem
Suppose that A be a commutative, unital, complex Banach algebra,
with an involution ·†. Denote by Ǎ the Gelfand transform.
Let A ∈ An×n, B ∈ An×m, C ∈ Ap×n be such that for all ϕ ∈ M(A),
(Ǎ(ϕ), B̌(ϕ)) is controllable and (Ǎ(ϕ), Č(ϕ)) is observable. Then
there exists a solution P ∈ An×n such that

A†P + PA− PBB†P + C†C = 0, (1)

and A− BB†P is asymptotically stable.

FALSE: The involution ·† needs to match the complex conjugate.



Claim by Chris Byrnes, CDC 1980

The idea was to note that the Gelfand transforms (Ǎ(ϕ), B̌(ϕ)), Č(ϕ))
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New result by Amol Sasane (special case of SIAM 2011 paper)
Let A be a commutative, unital, complex, semisimple Banach algebra.
Suppose that A ∈ An×n, B ∈ An×m, C ∈ Ap×n satisfy the following
for all ϕ ∈ M(A),

(A1) ˇ(A†)(ϕ) = (Ǎ(ϕ))∗, ˇ(B†)(ϕ) = (B̌(ϕ))∗, ˇ(C†)(ϕ) = (Č(ϕ))∗.

(A2) (Ǎ(ϕ), B̌(ϕ)) is stabilizable,

(A3) (Ǎ(ϕ), Č(ϕ)) is detectable.

Then there exists a P ∈ An×n such that

A†P + PA− PBB†P + C†C = 0,

A− BB†P is exponentially stable, and P† = P.

Note: condition (A1) on the involution: it needs to match complex
conjugation: In general
f †(z) := f (z)h 6= f (z)∗, f∼(z) := f (1/z)∗ 6= f (z)∗.

Banach algebras satisfying (A1) = symmetric Banach algebras.
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Suppose that A ∈ An×n, B ∈ An×m, C ∈ Ap×n satisfy the following
for all ϕ ∈ M(A),

(A1) ˇ(A†)(ϕ) = (Ǎ(ϕ))∗, ˇ(B†)(ϕ) = (B̌(ϕ))∗, ˇ(C†)(ϕ) = (Č(ϕ))∗.

(A2) (Ǎ(ϕ), B̌(ϕ)) is stabilizable,

(A3) (Ǎ(ϕ), Č(ϕ)) is detectable.

Then there exists a P ∈ An×n such that

A†P + PA− PBB†P + C†C = 0,

A− BB†P is exponentially stable, and P† = P.
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Example (Symmetric even-weighted Wiener algebras)
Gelfand-Raikov-Shilov condition on the weights αn:

ρ = inf
n>0

n
√
αn = lim

n→∞
n
√
αn = 1.

Exponential weights do not satisfy this condition, but weights with
ρ = 1 are subexponential weights:

αn = eα|n|
β
, α > 0, 0 ≤ β < 1.

When the Gelfand-Raikov-Shilov condition is satisfied, the annulus
A(ρ) degenerates to the circle T, and for the Banach algebra Wα(T)
the involution ·∼ reduces to

f∼(z) := f (z)∗ (z ∈ T), forf ∈ Wα(T).

With this involution Wα(T) is a symmetric Banach algebra.
Thus for matrices A,B,C with entries from Wα(T) their involution is
the usual Hermitian adjoint operation: A∼(z) = A(z)∗ and assumption
(A1) is always satisfied.
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LQR control of spatially invariant systems
The Sasane result solves the approximation problem of LQR
controllers for spatially invariant systems for subexponential decay,
but does not allow for exponential decay.

Claim by Motee and Jadbabaie, IEEE 2008
They considered LQR control of a general class of spatially
distributed systems. These include the platoon type spatially invariant
systems whose operators have components in the even-weighted
algebras Wα(T). In particular, Wτ (T) with the exponential weights
αn = eτ |n|.
Theorem: spatially invariant scalar case
If A,B,C ∈ Wτ (T) and the LQR Riccati equation

A∗P + PA− PBB∗P + C∗C = 0.

has a unique positive definite solution P ∈ L(L2(T)), then
P ∈ Wτ (T).

Counterexample: Ruth Curtain, IEEE 2008.
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The noncommutative case
Spatially distributed systems correspond to noncommutative Banach
algebras. Bunce 1985 proved a positive result for C∗-algebras, but
these are very rare and do not cover the spatially distributed case.

Recent result (Curtain 2011)
Suppose that A is a unital symmetric Banach algebra and

A is a Banach *-subalgebra of L(Z), where Z is a Hilbert space;

A has the inverse-closed property :
D ∈ A, D−1 ∈ L(Z) =⇒ D−1 ∈ A;

‖A‖A ≥ M‖A‖L(Z).
If A,B,C ∈ A and (A,B,C) is exponentially stabilizable and
detectable wrt Z, then P ∈ A, where P ∈ L(Z) is the unique
nonnegative solution to the control Riccati equations:

A∗P + PA− PBB∗P + C∗C = 0.

With recent results by Gröchenig & Leinert (2006) this result covers
the spatially distributed LQR problem posed by Motee & Jadbabaie.
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Curious

An essential step in the proof uses the following result from Curtain
& Opmeer MCSS, 2006:
Let P,Q be the self-adjoint solutions to the control and filter Riccati
equations

A∗P + PA− PBB∗P + C∗C = 0

QA + QA∗ − QC∗CQ + B∗B = 0.

Then the solution to the following Lyapunov equation

(A− BB∗P)X + X(A− BB∗P)∗ = −BB∗

is X = P(I + PQ)−1.



Conclusions

For commutative, unital, complex, semisimple Banach
algebras we have an elegant result for the LQR Riccati
equation; in particular, for symmetric algebras.
Application to platoon-type spatially invariant systems:
design of implementable control laws.
Similar techniques can be used to obtain algebraic
properties of other Riccati equations, including H∞,
positive-real and bounded-real type equations.
Recent results: algebraic properties of the LQR Riccati
equation for inverse-closed noncommutative algebras.
The results have direct applications to spatially
distributed systems.
Generalization to the algebraic properties of the LQR
Riccati equation when A is an unbounded operator on
A but it generates a semigroup on A.
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