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Indirect damping for coupled systems

indirect stabilization

a conservative system

Ω ⊂ Rn bounded the wave equation

∂2
t v −∆v = 0 in Ω× R ,

v = 0 on ∂Ω× R ,

describes a conservative system: the energy of a solution

E(u(t)) =
1
2

∫
Ω

(
|Du(t , x)|2 + |∂tu(t , x)|2

)
dx

is constant in t
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indirect stabilization

a dissipative system

the damped wave equation

∂2
t u −∆u + ∂tu = 0 in Ω× R ,

u = 0 on ∂Ω× R ,

is exponentially stable as t →∞

E(u(t)) ≤ E(u(0))ec(1−t) (c > 0)
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indirect stabilization

a weakly coupled system

consider the coupling through zero order terms{
∂2

t u −∆u + ∂tu + αv = 0
∂2

t v −∆v + αu = 0
in Ω× R

u = 0 = v on ∂Ω× R

any kind of stability for α 6= 0?
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indirect stabilization

lack of exponential stability
recast {

∂2
t u −∆u + ∂tu + αv = 0
∂2

t v −∆v + αu = 0
in Ω× R

as an evolution equation in H = [H1
0 (Ω)× L2(Ω)]2

u
u′

v
v ′


′

=

(
L1 K
K L2

)
u
u′

v
v ′

 =: L


u
u′

v
v ′

 ,

I L1,L2 generators of C0-semigroups on H1
0 (Ω)× L2(Ω)

I K compact operator in H1
0 (Ω)× L2(Ω)
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indirect stabilization

lack of exponential stability (ctnd)


u
u′

v
v ′


′

=

(
L1 K
K L2

)
u
u′

v
v ′

 =: L


u
u′

v
v ′

 ,

I ω0(L) = type of the semigroup generated by L
I ωess(L) = essential growth bound

(blind to compact perturbations)

ω0(L) ≥ ωess(L) = ωess

(
L1 K
0 L2

)
≥ ωess(L2) = 0 .

⇒ system cannot be exponentially stable
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abstract set-up

a system of second order evolutions equations

in a separable Hilbert space H{
u′′ + A1u + Bu′ + αv = 0
v ′′ + A2v + αu = 0

(H1) Ai : D(Ai) ⊂ H → H (i = 1,2) are densely defined closed
linear operators such that

Ai = A∗i , 〈Aiu,u〉 ≥ ωi |u|2 (ω1, ω2 > 0)

(H2) B is a bounded linear operator on H such that

B = B∗ , 〈Bu,u〉 ≥ β|u|2 (β > 0)

(H3) 0 < |α| < √ω1ω2
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abstract set-up

energies

energies associated to A1,A2

Ei(u,p) =
1
2

(
|A1/2

i u|2 + |p|2
)

total energy of the system U = (u,p, v ,q)

E(U) := E1(u,p) + E2(v ,q) + α〈u, v〉

assumptions yield

I |u|2 ≤ 2
ωi

Ei(u,p)

I E(U) ≥ ν(α)
[
E1(u,p) + E2(v ,q)

]
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abstract set-up

reduction to a first order system

H = D(A1/2
1 )× H × D(A1/2

2 )× H

(U|Û) = 〈A1/2
1 u,A1/2

1 û〉+ 〈p, p̂〉

+〈A1/2
2 v ,A1/2

2 v̂〉+ 〈q, q̂〉+ α〈u, v̂〉+ α〈v , û〉

system takes the equivalent form{
U ′(t) = AU(t)
U(0) = U0 := (u0,u1, v0, v1) .

with A : D(A) ⊂ H → H defined by{
D(A) = D(A1)× D(A1/2

1 )× D(A2)× D(A1/2
2 )

AU = (p,−A1u − Bp − αv ,q,−A2v − αu)
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Indirect damping for coupled systems

standard boundary conditions

a first stability result

Theorem (ACK 2002)
Assume, for some integer j ≥ 2,

|A1u| ≤ c|Aj/2
2 u| ∀u ∈ D(Aj/2

2 ) (ACK )

I U0 ∈ D(Anj) (some n ≥ 1)⇒ E(U(t)) ≤ cn

tn

nj∑
k=0

E(U(k)(0))

I ∀U0 ∈ H, E(U(t))→ 0 as t →∞

observe

(ACK ) ⇐⇒ D(Aj/2
2 ) ⊂ D(A1) & |A1A−j/2

2 u| ≤ c|u|
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dt
E(U(t)) = −|B1/2u′(t)|2 (U0 ∈ D(A))

I multipliers of the form A2−j
2 v and A1−j

2 A1u
I an abstract decay lemma
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standard boundary conditions

abstract decay lemma

I A : D(A) ⊂ H → H generator of a C0-semigroup
I L : H → [0,+∞) continuous function∫ T

0
L(etAx)dt ≤ c

K∑
k=0

L(Akx)

⇒ ∀n ≥ 1, ∀x ∈ D(AnK ), ∀0 ≤ s ≤ T∫ T

s
L(etAx)

(t − s)n−1

(n − 1)!
dt ≤ cn(1 + K )n−1

nK∑
k=0

L(esAAkx)

I L(etAx) ≤ L(esAx)⇒ L(etAx) ≤ cn(1 + K )n−1 n!

tn

nK∑
k=0

L(Akx)
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Indirect damping for coupled systems

standard boundary conditions

example 1: Dirichlet boundary conditions

Ω ⊂ Rn bounded Γ = ∂Ω{
∂2

t u −∆u + ∂tu + αv = 0
∂2

t v −∆v + αu = 0
in Ω× (0,+∞)

with boundary conditions

u(·, t) = 0 = v(·, t) on Γ ∀t > 0

in this example A1 = A = A2 with

D(A) = H2(Ω) ∩ H1
0 (Ω) , Au = −∆u

so that (ACK ) : |A1u| ≤ c|Aj/2
2 u| holds with j = 2
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standard boundary conditions

example 1: conclusion
{
∂2

t u −∆u + ∂tu + αv = 0
∂2

t v −∆v + αu = 0
in Ω× (0,+∞)

u(·, t) = 0 = v(·, t) on Γ ∀t > 0{
u(x ,0) = u0(x) , u′(x ,0) = u1(x)
v(x ,0) = v0(x) , v ′(x ,0) = v1(x)

x ∈ Ω

conclusion: for 0 < |α| < CΩ∫
Ω

(
|∂tu|2 + |∇u|2 + |∂tv |2 + |∇v |2

)
dx

≤ c
t

(
‖u0‖22,Ω + ‖u1‖21,Ω + ‖v0‖22,Ω + ‖v1‖21,Ω

)
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standard boundary conditions

example 2: hybrid boundary conditions

Let α ∈ R and consider the problem{
∂2

t u −∆u + ∂tu + αv = 0
∂2

t v −∆v + αu = 0
in Ω× (0,+∞)

with boundary conditions(
∂u
∂ν

+ u
)

(·, t) = 0 on Γ

v(·, t) = 0 on Γ
∀t > 0
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Indirect damping for coupled systems

standard boundary conditions

ACK does not apply

D(A1) =

{
u ∈ H2(Ω) :

∂u
∂ν

+ u = 0 on Γ

}
, A1u = −∆u

D(A2) = H2(Ω) ∩ H1
0 (Ω) , A2v = −∆v

Lemma (ACG)
D(Ak/2

2 ) is not included in D(A1) for any k ≥ 2

Proof.
(k = 2) v0 :

{
(−∆)2v = 1
v0 = 0 = ∆v0 on Γ

v1 := −∆v0

D(A2) ⊂ D(A1) ⇒ ∂v0

∂ν |Γ
= 0 ⇒

∫
Ω

v1dx = 0

⇒
∫

Ω
|∇v1|2dx =

∫
Ω

(−∆v1)v1dx = 0 but −∆v1 = 1
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Indirect damping for coupled systems

hybrid boundary conditions

second stability result
Theorem (ACG 2011)
Assume

D(A2) ⊂ D(A1/2
1 ) & |A1/2

1 u| ≤ c|A2u| ∀u ∈ D(A2) (ACG)

Then

I U0 ∈ D(A4n) (some n ≥ 1)⇒ E(U(t)) ≤ cn

tn

4n∑
k=0

E(U(k)(0))

I ∀U0 ∈ H, E(U(t))→ 0 as t →∞

observe

(ACG) ⇐⇒ |〈A1u, v〉| ≤ c|A2v |〈A1u,u〉1/2
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hybrid boundary conditions

main tools

proof uses
I energy dissipation

d
dt
E(U(t)) = −|B1/2u′(t)|2 (U0 ∈ D(A))

I multipliers of the form A−1
1 v and A−1

2 u
I abstract decay lemma
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hybrid boundary conditions

use interpolation

I polynomial decay estimates improved for

U0 ∈ (H,D(A4n))θ,2 for some n ≥ 1 , 0 < θ < 1

I since A generates a C0-semigroup of contractions,

D(Am) = (H,D(Ak ))θ,2

if θk = m for some 0 < θ < 1 and k , m ∈ N
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hybrid boundary conditions

ACG with data in interpolation spaces

assume

D(A2) ⊂ D(A1/2
1 ) & |A1/2

1 u| ≤ c|A2u| (ACG)

let n ≥ 1 , 0 < θ < 1 then

I U0 ∈ (H,D(A4n))θ,2 =⇒ ‖U(t)‖2H ≤
cn,θ

tnθ ‖U0‖2(H,D(A4n))θ,2

I U0 ∈ D(An) =⇒ E(U(t)) ≤ cn

tn/4

n∑
k=0

E(U(k)(0))
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Indirect damping for coupled systems

hybrid boundary conditions

example 2: ACG applies
the energy of the solution to the boundary-value problem{

∂2
t u −∆u + ∂tu + αv = 0
∂2

t v −∆v + αu = 0
in Ω× (0,+∞)

(
∂u
∂ν

+ u
)

(·, t) = 0 on Γ

v(·, t) = 0 on Γ
∀t > 0

satisfies, for 0 < |α| < CΩ,

E1(u(t),u′(t)) + E2(v(t), v ′(t))

≤ c
t1/4

(
|A1u0|2 + |A1/2

1 u1|2 + |A2v0|2 + |A1/2
2 v1|2

)
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hybrid boundary conditions

proof

I recall

D(A1) =

{
u ∈ H2(Ω) :

∂u
∂ν

+ u = 0 on Γ

}
, A1u = −∆u

D(A2) = H2(Ω) ∩ H1
0 (Ω) , A2v = −∆v

I to obtain, for all u ∈ D(A1), v ∈ D(A2),

|〈A1u, v〉| =

∣∣∣∣∫
Ω

∇u∇v dx
∣∣∣∣ ≤ c 〈A1u,u〉1/2 |A2v |

since 〈A1u,u〉 =
∫

Ω
|∇u|2 dx +

∫
Γ
|u|2 dS

I yields (ACG): D(A2) ⊂ D(A1/2
1 ) & |A1/2

1 u| ≤ c|A2u|
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concluding remarks

application
consider boundary-value problem{

∂2
t u + ∆2u + ∂tu + αv = 0
∂2

t v −∆v + αu = 0
in Ω× (0,+∞)

∆u(·, t) = 0 =
∂∆u
∂ν

(·, t) and v(·, t) = 0 on Γ

then, for 0 < |α| < C3/2
Ω , energy decays at polynomial rate

E1(u(t),u′(t)) + E2(v(t), v ′(t))

≤ c
t1/4

(
‖u0‖24,Ω + ‖u1‖22,Ω + ‖v0‖22,Ω + ‖v1‖21,Ω

)
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concluding remarks

different coupling parameters

for general α1, α2 ∈ R consider{
u′′(t) + A1u(t) + Bu′(t) + α1v(t) = 0
v ′′(t) + A2v(t) + α2u(t) = 0 .

I above results can be generalized replacing (H3) with
0 < α1α2 < ω1ω2

I E(U) := α2E1(u,p) + α1E2(v ,q) + α1α2〈u, v〉

I d
dt E(U(t)) = −α2|B1/2u′(t)|2

I cannot take α1α2 = 0
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concluding remarks

why not α1 = 0?

I let A1 = A2 =: A
with positive eigenvalues ωk → +∞ and eigenspaces (Zk )k≥1

I B = 2βI, with 0 < β <
√
ω1, and set λk =

√
ωk − β2

I the equation u′′(t) + Au(t) + 2βu′(t) = 0 with initial conditions

u(0) = u0 =
∑
k≥1

u0
k , u′(0) = u1 =

∑
k≥1

u1
k , ui

k ∈ Zk

admits the solution

u(t) = e−βt
∑
k≥1

[
u0

k cos(λk t) +
u1

k + βu0
k

λk
sin(λk t)

]
I u(t) ∈ Z1 for u0 ∈ Z1 and u1 ∈ Z1
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concluding remarks

on the other hand, the solution to

v ′′(t) + Av(t) + αu(t) = 0 (1)

is given by v(t) = v1(t) + v2(t) ∈ Z1 + Z⊥1 where{
v ′′1 (t) + ω1v1(t) + αu(t) = 0
v ′′2 (t) + Av2(t) = 0

thus, the energy

E(v2(t), v ′2(t)) =
1
2
(
|v ′2(t)|2 + 〈Av2(t), v2(t)〉

)
= const

hence, v0 /∈ Z1, v1 /∈ Z1 ensure that the system is not stabilizable
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concluding remarks

open problems

I study localized damping with hybrid boundary conditions
I consider boundary control with hybrid boundary conditions
I obtain similar decay rates for problems in exterior domains

Thank you for your attention
Danke!
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