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 Computational efforts on electromagnetic interrogation  

     methodology  (inverse scattering problems) 

 

 Counter-interrogation and counter-counter-interrogation  

     methodology (evader/interrogator capabilities) 

 

  Formulation as a static two-player evasion-pursuit  

      non-cooperative games with uncertainty (a probability  

       based inverse problem framework -- Prohorov Metric  

       Framework) 

 

 Dynamic evasion-pursuit in a Markov diffusion  

     process/semigroup control framework  

 

 Relaxed controllers, Preisach hysteresis, mixing distributions in statistical  

      inverse problems  

 

 

 

 

Static and Dynamic Two-Player Evasion-
Pursuit Non-cooperative Games with 

Uncertainty  
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Computations for time-harmonic, transverse magnetic (      )  

mode: Maxwell’s reduces to Helmholtz for  
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No coating: 

Optimization of 

complex dielectric 

permittivity 

Complete 

optimization 

RADAR CROSS SECTION OF AN AIRFOIL 
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REFLECTED FIELD FOR UNCOATED “CRUISE MISSILE” 

15  

REFLECTED FIELD FOR COATED “CRUISE MISSILE” 

USING DESIGN INTERROGATING FREQUENCY f=1 GHz 

REFLECTED FIELD FOR COATED “CRUISE MISSILE” 

USING  INTERROGATING FREQUENCY f=.6GHz 
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Evader and interrogator must each try to confuse the 

other by introducing uncertainty in their design and  

interrogating  strategies; several approaches 

1. “mixed strategies” —   two player static games with  

 probabilistic strategy formulations 

2. formulation of reflection intensities as Markov process 

with controlled dynamics 

CONCLUSIONS I: 
WITH INFORMATION ON INTERROGATING FREQUENCIES, EVADER  

CAN DESIGN TO WIN; LOW TECH USE OF COUNTER INTERROGATION  

OR INFO ON DESIGN OF COATINGS IS READILY OVERCOME--  

INTERROGATOR WINS! 

 

DESIGN AND INTERROGATION BASED ON PLANAR REFECTION  

 COEFFICIENTS MAY BE ADEQUATE (AS OPPOSED TO MUCH MORE  

COMPUTATIONALLY INTENSIVE FAR FIELD FEM FORMULATION) 

FOR REAL-TIME COUNTER-COUNTER-INTERROGATION 

CONCLUSIONS II: 
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Counter- and Counter-counter Interrogation as 

Static Zero-Sum Two Player Game (evader-interrogator) 
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     Formulation using Markov Diffusion Dynamics with Control  
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DYNAMIC EVASION-INTERROGATION GAMES  
H.T. B., S. Hu, K.Ito and S. Grove Muccio,  Dynamic electromagnetic evasion- 

pursuit games with uncertainty, CRSC TR10-13, NCSU, August, 2010; Numerical 

Mathematics: Theory, Methods and Applications,  4 (2011), 399--418. 
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conditional density for  

amplitude of reflections 

adaptive (feedback) 

control via changes in 

dielectric surfaces of 

target 

Varying strategies: 

Normal-Gamma-Beta 
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conditional density for  

amplitude of reflections 

adaptive (feedback) 

control via changes in 

dielectric surfaces of 

target 

Varying strategies: 

Beta-Gamma-Beta 
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Motivation: distributional or generalized controls-extending  static 

theory of [BGIT] where uncertainty in controls is embodied in 

probability measures on static control parameters such as dielectric 

permittivities and interrogating frequencies--rich literature on 

closure theorems--calculus of variations and optimal control --

distinguished contributors such as Young (1937), McShane 

(‘40,’67), Filippov(’62), and Warga(’62-’72)--some variational and 

control problems (and especially in two player differential games-

see for example discussions Elliott(’73) and the counter example of 

Berkovitz („64) ) been known since  years of L.C. Young that one 

must often introduce generalized or relaxed controls  (also called 

sliding regimes  or chattering controls) in order to obtain well 

posed optimization problems-- In anticipation two player dynamical 

games where both evader and interrogator have time dependent 

controllers,  use generalized controls for evader (also introduces 

uncertainty in evader controls as well as uncertainty in 

interrogation frequencies via SDE dynamics) 



HTB and Shuhua Hu, A zero-sum  electromagnetic 

evader-interrogator differential game with 

uncertainty, CRSC-TR11-04, N.C. State University, 

Raleigh, NC, February, 2011;  Applicable Analysis, 

submitted. 



Relaxed Controls  

(sliding regimes, chattering controls) 

L.C.Young (1937,1938)--generalized curves in calculus of 

variations, 

E.J McShane (1940,1967)--relaxed controls in variational  

problems, control, 

A.F.Filippov (1962)--sliding regimes in optimal control 

J.Warga, (1962,1967,..)--relaxed curves and controls- 

approximation to “original” controls 

Idea: Problems lack “closure” in ordinary function spaces (Re: 

Sobolev spaces and “weak” solutions, distributions of Schwartz 

for PDE) 
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Convexifies and “generalizes” problem---obtain 

closure, and hence existence! 

Corresponding trajectories are called “relaxed” 

trajectories or “generalized” trajectories (in which 

family of “ordinary” trajectories are embedded) 

Existence (inf = min) of optimal controls in a  

wider class of functions— 

McShane: Under not too restrictive assumptions, 

inf actually attained by generalized control that  

happens to be ordinary! 

Warga: Knowledge of minimizing generalized 

curve permits approximation by nearby ordinary 

curve!  



PREISACH HYSTERESIS 

1) Smart materials 

           SMA, piezoelectric, magnetostrictive 

2)   Viscoelastic materials 

           Rubber, polymers, living tissue 

3) Electromagnetics 

           Polarization, conductivity 

Example: Stress-strain in shape memory alloys, rubber, tissue 





loading 

unloading 



These ideas are the basis of SMA control efforts in: 

 

H.T.Banks and A.J.Kurdila, Hysteretic control 

influence operators representing smart material  

actuators: Identification and approximation, Proc. 

Conf. Decision and Control, Kobe, Japan, Dec,  

1996, p.3711-3716. 

H.T.Banks, A.J.Kurdila and G.Webb, Math. Prob. 

in Engr.,3(1997),p.287-328. 

H.T.Banks, A.J.Kurdila and G.Webb, J. Intell. Mat. 

Sys.&Structures,8(1997),p.536-550. 
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