OPtimal control of a class of parabolic TIME-VARYING PDEs

James Ng^{a}, llyasse Aksikas ${ }^{\text {a,b }}$, Stevan Dubljevic ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemical \& Materials Engineering, University of Alberta, Canada
${ }^{\text {b }}$ Department of Mathematics, King Abdelaziz University, Jeddah, KS/
$7^{\text {th }}$ Workshop on control of Distributed Parameter Systems
Wuppertal, Germany
July 18-22, 2011

INTRODUCTION

§ Motivating Examples

Catalytic tubular reactor

Figure: Catalytic reactor

- Many industrial processes, e.g methanol, ammonia and other petrochemicals
- Diffusion-Convection-Reaction Process
- Tubular reactor systems with catalyst deactivation,
- Loss of catalyst activity \rightarrow Time-varying rates of reaction
\qquad Parabolic time-varying PDEs

INTRODUCTION

§ Motivating Examples

Crystal Growth Process

- Important industrial process utilized for the production of semi-conductor material in the electronics and microprocessor industry.
- Materials produced: Silicon (Si), Germanium (Ge).
- Temperature dynamics: Parabolic PDE with time-varying coefficients
- Convective transport term is time-varying due to the motion of the domain boundary.

Figure: Crystal Process diagram

INTRODUCTION

§ Motivating Examples

- Parabolic partial differential equations (PDEs) with time-varying features represent an important class of models for reaction-diffusion-convection processes. e.g.
- Tubular and packed bed reactor systems with catalyst deactivation,
- Crystal growth and annealing type processes with time-varying spatial domains
- These time-dependent features play an important role in the system dynamics, and therefore must be incorporated into the model based controller design.
* Approach:
- Evolution systems representation
- Operator differential Riccati equation

INTRODUCTION

§ Related works

Nonautonomous PDEs

- I. Aksikas, J.F. Forbes, and Y. Belhamadia, "Optimal control design for time-varying catalytic reactors: a Riccati equation based approach", Int. J. Control., 2009
- I. Aksikas and J.F. Forbes, "Linear quadratic regulator for time-varying hyperbolic distributed parameter systems", IMA. J. Mathematical Control and Information, 2010.
- P. Acquistapace, F. Flandoli, and B. Terreni, "Initial boundary value problems and optimal control for nonautonomous parabolic systems," SIAM J. Cont. \& Optim., 1991.
- A. Smyshlyaev and M. Krstic, "On control design for PDEs with space-dependent diffusivity and time-dependent reactivity, Automatica, 2005.

PDEs with time-varying spatial domains

- A. Armaou and P. D. Christofides, "Robust control of parabolic PDE systems with time-dependent spatial domains," Automatica, 1999.
- P.K.C.Wang, "Stabilization and control of distributed systems with time-dependent spatial domains," J. Optim. Theor. \& Appl., 1990.

GENERAL MODEL

§ PDE DESCRIPTION

- Let Ω be a bounded open set of \mathbb{R}^{m} with smooth boundary $\partial \Omega$.
- Consider the initial and boundary value problem of the form:

$$
\begin{array}{ll}
\frac{\partial z(\xi, t)}{\partial t}+A(t) z(\xi, t)=f(\xi, t) & \text { in } \quad \Omega \times[0, T] \\
z(\xi, 0)=z_{0}(\xi) & \text { in } \Omega \\
\frac{\partial z(\xi, t)}{\partial n}=0, & \text { on } \quad \partial \Omega \times[0, T]
\end{array}
$$

- The family of operators $A(t)$ is defined as:

$$
A(t) z:=-\sum_{i, j=1}^{m} a_{i j}(\xi, t) \frac{\partial^{2} z}{\partial \xi_{i} \partial \xi_{j}}+\sum_{i=1}^{m} b_{i}(t) \frac{\partial z}{\partial \xi_{i}}+c(\xi, t) z
$$

(i) $z(\xi, t)$ represents, for example, temperature or concentration, with initial distribution $z_{0}(\xi)$.
(ii) $a_{i j}(\xi, t)$ describes the heterogeneous thermal conductivity or diffusivity.
(iii) $b_{i}(t)$ is a convective transport coefficient (e.g. time-dependent fluid superficial velocity).
(iv) $c(\xi, t)$ is a linearized reaction term (e.g. due to catalyst deactivation).

GENERAL MODEL

§ PDE OPERATOR PROPERTIES

- Assumptions:

P1. For each $t \in[0, T]$, the operator $A(t)$ is strongly elliptic, i.e.

$$
\sum_{i, j=1}^{m} a_{i j}(\xi, t) \boldsymbol{\eta}_{i} \boldsymbol{\eta}_{j} \geq \varepsilon|\boldsymbol{\eta}|^{2}, \quad \text { for } \quad \boldsymbol{\eta} \in \mathbb{R}^{m}
$$

P2. The coefficients $c(\xi, t) \in L^{2}\left([0, T], L^{2}(\Omega)\right), b_{i}(t) \in C^{1}([0, T])$ and $a_{i j}(\xi, t)$ are sufficiently Hölder continuous, i.e.

$$
\left|a_{i j}(\xi, t)-a_{i j}(\xi, s)\right| \leq L|t-s|^{\beta}
$$

for $s, t \in[0, T], \xi \in \bar{\Omega}$ and constant $L>0$ and $\beta \in(0,1]$.
P3. The function $f(\xi, t) \in L^{2}(\Omega)$ satisfies:

$$
\left(\int_{\Omega}|f(\xi, t)-f(\xi, s)|^{2} d \xi\right)^{\frac{1}{2}} \leq L|t-s|^{\beta}, \quad 0 \leq s<t \leq T
$$

- $\{A(t)\}_{t \in[0, T]}$ forms a family of strongly elliptic operators which admit a family of eigenfunctions $\left\{\phi_{n}(t)\right\}_{t \in[0, T]}$ with corresponding family of eigenvalues $\left\{\lambda_{n}(t)\right\}_{t \in[0, T]}$.

INFINITE-DIMENSIONAL SYSTEM REPRESENTATION

§ Nonautonomous parabolic evolution system

- Under the properties of: strong ellipticity and continuity of $a_{i j}(\xi, t), b_{i}(t)$ and $c(\xi, t)$, the operator $A(t)$ satisfies:

1. For every $t \in[0, T]$, the resolvent $R(\lambda ; A(t))$ exists for all λ with $\operatorname{Re} \lambda \leq 0$ and there exists a constant L_{1} such that $\|R(\lambda ; A(t))\| \leq L_{1} /|\lambda|$;
2. There exists constants L_{2} and $\beta \in(0,1]$ such that $\left\|(A(t)-A(s)) A(\tau)^{-1}\right\| \leq L_{2}|t-s|^{\beta}$ for $s, t, \tau \in[0, T]$.

- The initial and boundary value problem is represented as a non-autonomous evolution system on $L^{2}(\Omega)$:

$$
\frac{d z(t)}{d t}=A(t) z(t)+f(t), \quad z(s)=z s
$$

for $0 \leq s<t \leq T$ and $z_{s} \in L^{2}(\Omega)$.

INFINITE-DIMENSIONAL SYSTEM REPRESENTATION

§ TWO-PARAMETER SEMIGROUP

- The solution of the nonautonomous evolution system is expressed in the form of:

$$
z(t)=U(t, s) z_{s}+\int_{s}^{t} U(t, \tau) f(\tau) d \tau
$$

where $U(t, s)$ is the two-parameter semigroup generated by the operator $A(t)$.

- The operator $A(t)$ is defined as:

$$
A(t):=\sum_{n=1}^{\infty} \lambda_{n}(t)\left\langle\cdot, \psi_{n}(t)\right\rangle \phi_{n}(t)
$$

- The operator $A(t): D(A(t)) \subset L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is the infinitesimal generator of the two-parameter semigroup:

$$
U(t, s) z(s):=\sum_{n=1}^{\infty} e^{\mu_{n}(t)-\mu_{n}(s)}\left\langle z(s), \psi_{n}(s)\right\rangle \phi_{n}(t), \quad \text { for } \quad 0 \leq s \leq t \leq T
$$

INFINITE-DIMENSIONAL SYSTEM REPRESENTATION

§ TWO-PARAMETER SEMIGROUP

- The operator $U(t, s)$ satisfies the following identities:

A1. $U(t, t)=I$,
A2. $U(t, s)=U(t, r) U(r, s)$ for $0 \leq s \leq r \leq t \leq T$
A3. $U(t, s)$ is continuous on $0 \leq s<t \leq T$, and:

$$
\frac{\partial U(t, s)}{\partial t}=A(t) U(t, s), \quad \text { and } \quad \frac{\partial U(t, s)}{\partial s}=-U(t, s) A(s)
$$

A4. $\|U(t, s)\| \leq L_{1}$,
A5. $\|A(t) U(t, s)\| \leq L_{2}(t-s)^{-1}$, and
A6. $\left\|A(t) U(t, s) A(s)^{-1}\right\| \leq L_{3}$ for constants $L_{i}>0$.

INFINITE-DIMENSIONAL SYSTEM REPRESENTATION

§ OPTIMAL CONTROL PROBLEM

- The finite-time horizon optimal control problem is given as the following:

$$
\min _{u} J(u)=\min _{u} \int_{0}^{T}\left(|C(\tau) z(\tau)|^{2}+|u(\tau)|^{2}\right) d \tau+\langle Q z(T), z(T)\rangle
$$

where the functional $J(u)$ is minimized over all trajectories of

$$
\begin{cases}\dot{x}(t) & =A(t) x(t)+B(t) u(t) \tag{1}\\ x(0) & =x_{0}\end{cases}
$$

- If $Q \geq 0, B(\cdot) \in C\left(\left[0, T ; \mathcal{L}\left(U ; L^{2}(\Omega)\right)\right)\right.$ and $C(\cdot) \in C\left(\left[0, T ; \mathcal{L}\left(Y, L^{2}(\Omega)\right)\right)\right.$, then the optimization problem has the unique minimizing solution $u_{\text {min }}(t)$ such that the optimal pair $u^{\min }(t) \in C([0, T] ; U)$ and $z^{\min }(t) \in C^{1}([0, T] ; X) \cap C([0, T] ; D(A(t))$ are related by the feedback formula,

$$
u_{t \in[0, T]}^{\min }(t)=-B^{*}(t) \Pi(t) z_{\min }(t)
$$

- The operator $\Pi(t) \in L(X)$ is the strongly continuous, self adjoint, nonnegative solution of the differential Riccati equation,

$$
\dot{\Pi}(t)+A^{*}(t) \Pi(t)+\Pi(t) A(t)-\Pi(t) B(t) B^{*}(t) \Pi(t)+C^{*}(t) C(t)=0, \quad \Pi(T)=Q
$$

Example: Crystal Growth Process

§ Process model

- Model of temperature dynamics:

$$
\begin{gathered}
\frac{\partial z(\xi, t)}{\partial t}=\kappa \frac{\partial^{2} z}{\partial \xi^{2}}-v(t) \frac{\partial z}{\partial \xi}+b(\xi) u(t) \\
z(\xi, 0)=z_{0}(\xi) \\
\frac{\partial z}{\partial \xi}(0, t)=0, \quad \frac{\partial z}{\partial \xi}(l(t), t)=0
\end{gathered}
$$

- κ thermal conductivity constant, $v(t)$ is the boundary velocity, and $b(\xi) u(t)$ is the distributed heat input along the length of the rod.
- The material domain is time-varying due to the motion of the boundary at the material-fluid interface, $\xi=l(t)$.
- Control objective: Optimally stabilize the
 temperature around some desired nominal distribution.

Example: Crystal Growth Process

§ TIme-VARYING SPATIAL DOMAIN AND FUNCTION SPACE DESCRIPTION

- The time-varying spatial domain at some time $t \in[0, T]$ is denoted $\Omega=(0, l(t))$ with $0<\xi<l(t) \leq l_{\text {max }}$.
- Spatial domain evolution is considered as a sequence of subdomains: $\Omega_{j} \subset \Omega_{j+1} \subset \cdots \subset \Omega$
- Let $\phi(\xi, t)$ denote a family of functions defined on the subdomains Ω_{j} with:

$$
\phi(\xi, t)=\left\{\begin{array}{cll}
\phi(\xi) & \text { for } & \xi \in \Omega_{j} \\
0 & \text { for } & \xi \in \Omega_{j}^{c} \cap \mathbb{R}
\end{array}\right.
$$

- $L^{2}\left(\Omega_{j}\right)$ forms a family of function spaces which are precompact in $L^{2}(\boldsymbol{\Omega})$ for all $t \in[0, T]$, (see, Adams, 1975):

$$
L^{2}\left(\Omega_{j}\right) \subset L^{2}\left(\Omega_{j+1}\right) \subset \cdots \subset L^{2}(\boldsymbol{\Omega})
$$

- Enables the use of single inner product $\langle\cdot, \cdot\rangle$ on $L^{2}(\boldsymbol{\Omega})$ for functions defined on an arbitrary subdomain Ω :

$$
\langle\phi, \phi\rangle_{L^{2}(\Omega)}=\int_{\Omega} \phi(\xi, t) \phi(\xi, t) d \xi=\int_{\Omega} \phi(\xi) \phi(\xi) d \xi+\int_{\Omega^{c}} 0 d \xi=\langle\phi, \phi\rangle_{L^{2}(\Omega)}
$$

Example: Crystal Growth Process

§ PDE OPERATOR PROPERTIES

- The PDE operator $A(t)$ is defined as:

$$
A(t):=\kappa \frac{\partial^{2} z}{\partial \xi^{2}}-v(t) \frac{\partial z}{\partial \xi}
$$

- The operator $A(t)$ is strongly elliptic for each $t \in[0, T]$;
- For each $t \in[0, T]$ the family of eigenfunctions $\left\{\phi_{n}(t)\right\}_{\in[0, T]}$ are:

$$
\phi_{n}(\xi, t)=B_{n}(t) e^{\frac{1}{2} \kappa^{-1} v(t) \xi}\left(\cos \left(\frac{n \pi}{l(t)} \xi\right)-\frac{1}{2} \kappa^{-1} \frac{v(t)}{(n \pi / l(t))} \sin \left(\frac{n \pi}{l(t)} \xi\right)\right)
$$

with coefficients:

$$
B_{n}(t)=\sqrt{\frac{2}{l(t)}}\left(1+\left(\frac{v(t)}{2 \kappa(n \pi / l(t))}\right)^{2}\right)^{-\frac{1}{2}}
$$

- $\phi_{n}(\xi, t)$ are orthonormal to the eigenfunctions: $\psi_{n}(\xi, t)=e^{-\kappa^{-1} v(t) \xi} \phi_{n}(\xi, t)$ of the adjoint operator $A^{*}(\xi, t)$ for each $t \in[0, T]$.
- The corresponding family of eigenvalues are:

$$
\lambda_{n}(t)=-\kappa\left(\frac{n \pi}{l(t)}\right)^{2}-\frac{1}{2} \kappa^{-1} \frac{v(t)^{2}}{2}
$$

Example: Crystal Growth Process

§ INFINITE-DIMENSIONAL SYSTEM REPRESENTATION

- The associated family of linear operators $A(t)$ in $L^{2}(\boldsymbol{\Omega})$ is defined as:

$$
A(t) z=A(\xi, t) z \quad \text { for } \quad z \in D(A(t))
$$

with domain $D(A(t))$:

$$
\begin{array}{r}
D(A(t)):=\left\{\phi \in L^{2}(\boldsymbol{\Omega}): \phi, \frac{\partial \phi}{\partial \xi} \text { are a.c., } A(t) \phi \in L^{2}(\boldsymbol{\Omega})\right. \\
\text { and } \left.\frac{\partial \phi}{\partial \xi}(0, t)=0, \frac{\partial \phi}{\partial \xi}(l(t), t)=0\right\}
\end{array}
$$

- Initial and boundary value control problem is represented as the nonautonomous parabolic initial value problem:

$$
\frac{d z}{d t}=A(t) z(t)+B(t) u(t), \quad z(0)=z_{0}, \quad 0 \leq s \leq t<T
$$

- The solution of the initial value problem is expressed in terms of the two parameter semigroup $U(t, s)$,

$$
z(t)=U(t, 0) z_{0}+\int_{0}^{t} U(t, \tau) B(\tau) u(\tau) d \tau
$$

with $z(s) \in L^{2}(\boldsymbol{\Omega})$.

Example: Crystal Growth Process

§ INFINITE-DIMENSIONAL SYSTEM REPRESENTATION

- The operator $A(t): D(A(t)) \subset L^{2}(\boldsymbol{\Omega}) \rightarrow L^{2}(\boldsymbol{\Omega})$ generates the two-parameter semigroup $U(t, s), 0 \leq s \leq t \leq T$ expressed as:

$$
\begin{aligned}
& U(t, s) z(s)=\sum_{n=1}^{\infty} \exp \left\{-\kappa_{0}(n \pi)^{2}\left(\frac{t}{l(t)^{2}}-\frac{s}{l(s)^{2}}\right)\right. \\
&\left.-\frac{1}{4 \kappa_{0}}\left(t v(t)^{2}-s v(s)^{2}\right)\right\}\left\langle z(s), \psi_{n}(s)\right\rangle \phi_{n}(t)
\end{aligned}
$$

- One can note that in the case where the boundary motion ceases and Ω is constant, i.e. $l(t)=l, v(t)=0$, the expression for $U(t, s)$ becomes:

$$
U(t, s) z(s)=\sum_{n=1}^{\infty} \exp \left\{-\kappa_{0}\left(\frac{n \pi}{l}\right)^{2}(t-s)\right\}\langle z(s), \phi\rangle \phi=T(t-s) z(s)
$$

where $T(t), t \geq 0$ is the C_{0}-semigroup of operators on $L^{2}(\Omega)$ which is generated by the standard heat equation.

Example: Crystal Growth Process

§ CONTROLLER FORMULATION

- Let consider the weighted inner product on $L^{2}(\Omega)$, for $z_{1}, z_{2} \in D(A(t))$,

$$
\left\langle z_{1}, z_{2}\right\rangle_{r}=\int_{\Omega} r(\xi, t) z_{1}(\xi, t) z_{2}(\xi, t) d \xi
$$

with weight function $r(\xi, t):=\exp \left(-\left(v(t) / \kappa_{0}\right) \xi\right)$.

- Note that $\left\langle\phi_{n}, \phi_{m}\right\rangle_{r}=\delta_{n m}$ where $\delta_{n m}=1$ if $n=m$ and 0 otherwise.
- The differential Riccati equation can be written under the form:

$$
\begin{aligned}
& \quad\left\langle\phi_{n}(t), \dot{\Pi}(t) \phi_{m}(t)\right\rangle_{r}+\left\langle A(t) \phi_{n}(t), \Pi(t) \phi_{m}(t)\right\rangle_{r}+\left\langle\phi_{n}(t), \Pi(t) A(t) \phi_{m}(t)\right\rangle_{r} \\
& -\left\langle\Pi(t) B(t) B^{*}(t) \Pi(t) \phi_{n}(t), \phi_{m}(t)\right\rangle_{r}+\left\langle C(t) \phi_{n}(t), C(t) \phi_{m}(t)\right\rangle_{r}=0 \\
& \text { with }\left\langle\phi_{n}(T), \Pi(T) \phi_{m}(T)\right\rangle_{r}=\left\langle\phi_{n}(T), Q \phi_{m}(T)\right\rangle_{r} .
\end{aligned}
$$

Example: Crystal Growth Process

§ CONTROLLER FORMULATION

- In the case where $B(t)=I$ and $C(t)=I$ the differential Riccati equation becomes the system of infinitely many ordinary differential equations:

$$
\dot{\Pi}_{n n}(t)+2 \lambda_{n}(t) \Pi_{n n}(t)+1-\Pi_{n n}^{2}(t)=0, \quad \Pi_{n n}(T)=Q
$$

- The input $u_{t \in[0, T]}^{\min }$ is determined from the solution of the system of ODEs, and the optimal state trajectory is the mild solution of the state feedback system

$$
\dot{z}=\left(A(t)-B(t) B^{*}(t) \Pi(t)\right) z(t), \quad z(0)=z_{0}
$$

and is expressed as:

$$
z(t)=\sum_{n=1}^{\infty} e^{\mu_{n}(t)}\left\langle z_{0}, \psi_{n}(0)\right\rangle \phi_{n}(t)-\int_{0}^{t} U(t, \tau) \sum_{n} \Pi_{n n}(t)\left\langle z_{0}(\tau), \psi_{n}(\tau)\right\rangle \phi_{n}(\tau) d \tau
$$

Numerical results

§ HEAT input and temperature distribution

Figure: Slab domain length $l(t)$ and boundary velocity $v(t)$.

Figure: (Top) Optimal input profile $u^{\min }(t)$ applied to the slab at input location $\xi_{c}=0.875$. (Bottom) Total open and closed loop system energy.

Numerical results

§ Closed loop system

Figure: Slab temperature evolution in the time-dependent spatial domain with diffusivity $\kappa_{0}=1.75$. Input applied at $\xi_{c}=0.875$.

Summary

§ CONCLUDING REMARKS

- The general two-parameter semigroup representation of a class of nonautonomous parabolic PDE has been presented.
- The optimal control formulation for the infinite-dimensional system representation is considered.
- A practical example of an crystal growth process is considered with PDE model defined on time-varying spatial domain.
- The infinite-dimensional system representation of the PDE is determined, and the explicit two-parameter semigroup expression is provided.
- The corresponding optimal control problem is considered and numerical results demonstrate the stabilization of the temperature distribution in the time-dependent region.

