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INTRODUCTION

§ MOTIVATING EXAMPLES

Catalytic tubular reactor
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Figure: Catalytic reactor

I Many industrial processes, e.g methanol, ammonia and other petrochemicals
I Diffusion-Convection-Reaction Process
I Tubular reactor systems with catalyst deactivation,
I Loss of catalyst activity→ Time-varying rates of reaction

=⇒ Parabolic time-varying PDEs
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INTRODUCTION

§ MOTIVATING EXAMPLES

Crystal Growth Process

I Important industrial process utilized for the
production of semi-conductor material in the
electronics and microprocessor industry.

I Materials produced: Silicon (Si), Germanium (Ge).

I Temperature dynamics: Parabolic PDE with
time-varying coefficients

I Convective transport term is time-varying due to the
motion of the domain boundary. Figure: Crystal Process

diagram
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INTRODUCTION

§ MOTIVATING EXAMPLES

I Parabolic partial differential equations (PDEs) with time-varying features represent
an important class of models for reaction-diffusion-convection processes. e.g.

I Tubular and packed bed reactor systems with catalyst deactivation,

I Crystal growth and annealing type processes with time-varying spatial
domains

I These time-dependent features play an important role in the system dynamics,
and therefore must be incorporated into the model based controller design.

* Approach:

I Evolution systems representation
I Operator differential Riccati equation
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INTRODUCTION

§ RELATED WORKS
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GENERAL MODEL

§ PDE DESCRIPTION

I Let Ω be a bounded open set of Rm with smooth boundary ∂Ω.

I Consider the initial and boundary value problem of the form:

∂z(ξ, t)
∂t

+ A(t)z(ξ, t) = f (ξ, t) in Ω× [0, T]

z(ξ, 0) = z0(ξ) in Ω

∂z(ξ, t)
∂n

= 0, on ∂Ω× [0, T]

I The family of operators A(t) is defined as:

A(t)z := −
m∑

i,j=1

aij(ξ, t)
∂2z
∂ξi∂ξj

+
m∑

i=1

bi(t)
∂z
∂ξi

+ c(ξ, t)z

(i) z(ξ, t) represents, for example, temperature or concentration, with initial
distribution z0(ξ).

(ii) aij(ξ, t) describes the heterogeneous thermal conductivity or diffusivity.
(iii) bi(t) is a convective transport coefficient (e.g. time-dependent fluid

superficial velocity).
(iv) c(ξ, t) is a linearized reaction term (e.g. due to catalyst deactivation).
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GENERAL MODEL

§ PDE OPERATOR PROPERTIES

I Assumptions:

P1. For each t ∈ [0, T], the operator A(t) is strongly elliptic, i.e.

m∑
i,j=1

aij(ξ, t)ηiηj ≥ ε|η|2, for η ∈ Rm

P2. The coefficients c(ξ, t) ∈ L2([0, T], L2(Ω)), bi(t) ∈ C1([0, T]) and aij(ξ, t) are
sufficiently Hölder continuous, i.e.

|aij(ξ, t)− aij(ξ, s)| ≤ L|t − s|β

for s, t ∈ [0, T], ξ ∈ Ω̄ and constant L > 0 and β ∈ (0, 1].
P3. The function f (ξ, t) ∈ L2(Ω) satisfies:(∫

Ω
|f (ξ, t)− f (ξ, s)|2dξ

) 1
2
≤ L|t − s|β , 0 ≤ s < t ≤ T

I {A(t)}t∈[0,T] forms a family of strongly elliptic operators which admit a family of
eigenfunctions {φn(t)}t∈[0,T] with corresponding family of eigenvalues
{λn(t)}t∈[0,T].
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INFINITE-DIMENSIONAL SYSTEM REPRESENTATION

§ NONAUTONOMOUS PARABOLIC EVOLUTION SYSTEM

I Under the properties of: strong ellipticity and continuity of aij(ξ, t), bi(t) and c(ξ, t),
the operator A(t) satisfies:

1. For every t ∈ [0, T], the resolvent R(λ; A(t)) exists for all λ with Reλ ≤ 0 and
there exists a constant L1 such that ‖R(λ; A(t))‖ ≤ L1/|λ|;

2. There exists constants L2 and β ∈ (0, 1] such that
‖(A(t)− A(s))A(τ)−1‖ ≤ L2|t − s|β for s, t, τ ∈ [0, T].

I The initial and boundary value problem is represented as a non-autonomous
evolution system on L2(Ω):

dz(t)
dt

= A(t)z(t) + f (t), z(s) = zs

for 0 ≤ s < t ≤ T and zs ∈ L2(Ω).
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INFINITE-DIMENSIONAL SYSTEM REPRESENTATION

§ TWO-PARAMETER SEMIGROUP

I The solution of the nonautonomous evolution system is expressed in the form of:

z(t) = U(t, s)zs +

∫ t

s
U(t, τ)f (τ)dτ

where U(t, s) is the two-parameter semigroup generated by the operator A(t).

I The operator A(t) is defined as:

A(t) :=
∞∑

n=1

λn(t)〈 · , ψn(t)〉φn(t)

I The operator A(t) : D(A(t)) ⊂ L2(Ω)→ L2(Ω) is the infinitesimal generator of the
two-parameter semigroup:

U(t, s)z(s) :=

∞∑
n=1

eµn(t)−µn(s)〈z(s), ψn(s)〉φn(t), for 0 ≤ s ≤ t ≤ T
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INFINITE-DIMENSIONAL SYSTEM REPRESENTATION

§ TWO-PARAMETER SEMIGROUP

I The operator U(t, s) satisfies the following identities:

A1. U(t, t) = I,

A2. U(t, s) = U(t, r)U(r, s) for 0 ≤ s ≤ r ≤ t ≤ T

A3. U(t, s) is continuous on 0 ≤ s < t ≤ T, and:

∂U(t, s)
∂t

= A(t)U(t, s), and
∂U(t, s)
∂s

= −U(t, s)A(s)

A4. ‖U(t, s)‖ ≤ L1,

A5. ‖A(t)U(t, s)‖ ≤ L2(t − s)−1, and

A6. ‖A(t)U(t, s)A(s)−1‖ ≤ L3 for constants Li > 0.
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INFINITE-DIMENSIONAL SYSTEM REPRESENTATION

§ OPTIMAL CONTROL PROBLEM

I The finite-time horizon optimal control problem is given as the following:

min
u

J(u) = min
u

∫ T

0

(
|C(τ)z(τ)|2 + |u(τ)|2

)
dτ + 〈Qz(T), z(T)〉

where the functional J(u) is minimized over all trajectories of{
ẋ(t) = A(t)x(t) + B(t)u(t)
x(0) = x0

(1)

I If Q ≥ 0, B(·) ∈ C([0, T;L(U; L2(Ω))) and C(·) ∈ C([0, T;L(Y, L2(Ω))), then the
optimization problem has the unique minimizing solution umin(t) such that the
optimal pair umin(t) ∈ C([0, T]; U) and zmin(t) ∈ C1([0, T]; X) ∩ C([0, T]; D(A(t)) are
related by the feedback formula,

umin
t∈[0,T](t) = −B∗(t)Π(t)zmin(t)

I The operator Π(t) ∈ L(X) is the strongly continuous, self adjoint, nonnegative
solution of the differential Riccati equation,

Π̇(t) + A∗(t)Π(t) + Π(t)A(t)−Π(t)B(t)B∗(t)Π(t) + C∗(t)C(t) = 0, Π(T) = Q
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EXAMPLE: CRYSTAL GROWTH PROCESS

§ PROCESS MODEL

I Model of temperature dynamics:

∂z(ξ, t)
∂t

= κ
∂2z
∂ξ2
− v(t)

∂z
∂ξ

+ b(ξ)u(t)

z(ξ, 0) = z0(ξ)

∂z
∂ξ

(0, t) = 0,
∂z
∂ξ

(l(t), t) = 0

I κ thermal conductivity constant, v(t) is the
boundary velocity, and b(ξ)u(t) is the
distributed heat input along the length of the
rod.

I The material domain is time-varying due to
the motion of the boundary at the
material-fluid interface, ξ = l(t).

I Control objective: Optimally stabilize the
temperature around some desired nominal
distribution.

Melt

Crucible

Crystal

ξ = l(t)

w(ξ, t)

ξ = 0

Q(ξ, t)

f(ξ, t)
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EXAMPLE: CRYSTAL GROWTH PROCESS

§ TIME-VARYING SPATIAL DOMAIN AND FUNCTION SPACE DESCRIPTION

I The time-varying spatial domain at some time t ∈ [0, T] is denoted Ω = (0, l(t))
with 0 < ξ < l(t) ≤ lmax.

I Spatial domain evolution is considered as a sequence of subdomains:
Ωj ⊂ Ωj+1 ⊂ · · · ⊂ Ω

I Let φ(ξ, t) denote a family of functions defined on the subdomains Ωj with:

φ(ξ, t) =

{
φ(ξ) for ξ ∈ Ωj

0 for ξ ∈ Ωc
j ∩ R

I L2(Ωj) forms a family of function spaces which are precompact in L2(Ω) for all
t ∈ [0, T], (see, Adams, 1975):

L2(Ωj) ⊂ L2(Ωj+1) ⊂ · · · ⊂ L2(Ω)

I Enables the use of single inner product 〈 · , · 〉 on L2(Ω) for functions defined on
an arbitrary subdomain Ω:

〈φ, φ〉L2(Ω) =

∫
Ω
φ(ξ, t)φ(ξ, t)dξ =

∫
Ω
φ(ξ)φ(ξ)dξ +

∫
Ωc

0 dξ = 〈φ, φ〉L2(Ω)
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EXAMPLE: CRYSTAL GROWTH PROCESS

§ PDE OPERATOR PROPERTIES

I The PDE operator A(t) is defined as:

A(t) := κ
∂2z
∂ξ2
− v(t)

∂z
∂ξ

I The operator A(t) is strongly elliptic for each t ∈ [0, T];

I For each t ∈ [0, T] the family of eigenfunctions {φn(t)}∈[0,T] are:

φn(ξ, t) = Bn(t)e
1
2κ

−1v(t)ξ
(

cos
(

nπ
l(t)

ξ

)
−

1
2
κ−1 v(t)

(nπ/l(t))
sin
(

nπ
l(t)

ξ

))
with coefficients:

Bn(t) =

√
2

l(t)

(
1 +

(
v(t)

2κ (nπ/l(t))

)2
)− 1

2

I φn(ξ, t) are orthonormal to the eigenfunctions: ψn(ξ, t) = e−κ
−1v(t)ξφn(ξ, t) of the

adjoint operator A∗(ξ, t) for each t ∈ [0, T].
I The corresponding family of eigenvalues are:

λn(t) = −κ
(

nπ
l(t)

)2

−
1
2
κ−1 v(t)2

2
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EXAMPLE: CRYSTAL GROWTH PROCESS

§ INFINITE-DIMENSIONAL SYSTEM REPRESENTATION

I The associated family of linear operators A(t) in L2(Ω) is defined as:

A(t)z = A(ξ, t)z for z ∈ D(A(t))

with domain D(A(t)):

D(A(t)) :=

{
φ ∈ L2(Ω) : φ,

∂φ

∂ξ
are a.c., A(t)φ ∈ L2(Ω),

and
∂φ

∂ξ
(0, t) = 0,

∂φ

∂ξ
(l(t), t) = 0

}
I Initial and boundary value control problem is represented as the nonautonomous

parabolic initial value problem:

dz
dt

= A(t)z(t) + B(t)u(t), z(0) = z0, 0 ≤ s ≤ t < T

I The solution of the initial value problem is expressed in terms of the two
parameter semigroup U(t, s),

z(t) = U(t, 0)z0 +

∫ t

0
U(t, τ)B(τ)u(τ)dτ

with z(s) ∈ L2(Ω).
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EXAMPLE: CRYSTAL GROWTH PROCESS

§ INFINITE-DIMENSIONAL SYSTEM REPRESENTATION

I The operator A(t) : D(A(t)) ⊂ L2(Ω)→ L2(Ω) generates the two-parameter
semigroup U(t, s), 0 ≤ s ≤ t ≤ T expressed as:

U(t, s)z(s) =
∞∑

n=1

exp
{
−κ0(nπ)2

(
t

l(t)2
−

s
l(s)2

)

−
1

4κ0

(
tv(t)2 − sv(s)2

)}
〈z(s), ψn(s)〉φn(t)

I One can note that in the case where the boundary motion ceases and Ω is
constant, i.e. l(t) = l, v(t) = 0, the expression for U(t, s) becomes:

U(t, s)z(s) =

∞∑
n=1

exp

{
−κ0

(
nπ
l

)2

(t − s)

}
〈z(s), φ 〉φ = T(t − s)z(s)

where T(t), t ≥ 0 is the C0-semigroup of operators on L2(Ω) which is generated
by the standard heat equation.
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EXAMPLE: CRYSTAL GROWTH PROCESS

§ CONTROLLER FORMULATION

I Let consider the weighted inner product on L2(Ω), for z1, z2 ∈ D(A(t)),

〈 z1, z2 〉r =

∫
Ω

r(ξ, t)z1(ξ, t)z2(ξ, t)dξ

with weight function r(ξ, t) := exp(−(v(t)/κ0)ξ).

I Note that 〈φn, φm〉r = δnm where δnm = 1 if n = m and 0 otherwise.

I The differential Riccati equation can be written under the form:

〈φn(t), Π̇(t)φm(t)〉r + 〈A(t)φn(t),Π(t)φm(t)〉r + 〈φn(t),Π(t)A(t)φm(t)〉r

−〈Π(t)B(t)B∗(t)Π(t)φn(t), φm(t)〉r + 〈C(t)φn(t),C(t)φm(t)〉r = 0

with 〈φn(T),Π(T)φm(T)〉r = 〈φn(T),Qφm(T)〉r.
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EXAMPLE: CRYSTAL GROWTH PROCESS

§ CONTROLLER FORMULATION

I In the case where B(t) = I and C(t) = I the differential Riccati equation becomes
the system of infinitely many ordinary differential equations:

Π̇nn(t) + 2λn(t)Πnn(t) + 1−Π2
nn(t) = 0, Πnn(T) = Q

I The input umin
t∈[0,T]

is determined from the solution of the system of ODEs, and the
optimal state trajectory is the mild solution of the state feedback system

ż = (A(t)− B(t)B∗(t)Π(t))z(t), z(0) = z0

and is expressed as:

z(t) =
∞∑

n=1

eµn(t)〈z0, ψn(0)〉φn(t)−
∫ t

0
U(t, τ)

∑
n

Πnn(t)〈z0(τ), ψn(τ)〉φn(τ)dτ
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NUMERICAL RESULTS

§ HEAT INPUT AND TEMPERATURE DISTRIBUTION
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NUMERICAL RESULTS

§ CLOSED LOOP SYSTEM
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Figure: Slab temperature evolution in the time-dependent spatial domain with diffusivity
κ0 = 1.75. Input applied at ξc = 0.875.
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SUMMARY

§ CONCLUDING REMARKS

I The general two-parameter semigroup representation of a class of
nonautonomous parabolic PDE has been presented.

I The optimal control formulation for the infinite-dimensional system representation
is considered.

I A practical example of an crystal growth process is considered with PDE model
defined on time-varying spatial domain.

I The infinite-dimensional system representation of the PDE is determined, and the
explicit two-parameter semigroup expression is provided.

I The corresponding optimal control problem is considered and numerical results
demonstrate the stabilization of the temperature distribution in the
time-dependent region.
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