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Catalytic tubular reactor

Figure: Catalytic reactor

Many industrial processes, e.g methanol, ammonia and other petrochemicals
Diffusion-Convection-Reaction Process

Tubular reactor systems with catalyst deactivation,
Loss of catalyst activity — Time-varying rates of reaction
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= Parabolic time-varying PDEs
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Crystal Growth Process

Important industrial process utilized for the
production of semi-conductor material in the
electronics and microprocessor industry.
>

Materials produced: Silicon (Si), Germanium (Ge).
Temperature dynamics: Parabolic PDE with

time-varying coefficients
>

Convective transport term is time-varying due to the
motion of the domain boundary.
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» Parabolic partial differential equations (PDEs) with time-varying features represent
an important class of models for reaction-diffusion-convection processes. e.g.

» Tubular and packed bed reactor systems with catalyst deactivation,
domains

» Crystal growth and annealing type processes with time-varying spatial

* Approach:

» These time-dependent features play an important role in the system dynamics,
and therefore must be incorporated into the model based controller design.

» Evolution systems representation

» Operator differential Riccati equation
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> Let Q be a bounded open set of R” with smooth boundary 9.

» Consider the initial and boundary value problem of the form:

—azgt’ D a@eten =f€n i @x[0.T]
2(€,0) = 2(€) i@
azgf: t) — 07 on 00 x [07 T]

» The family of operators A(z) is defined as:

m m

A)zi= =Y ag(&0) 5= ag ag Z + c(€,1)z

ij=1 =1
(i) z(&,1) represents, for example, temperature or concentration, with initial
distribution zo(&).

(i) a;(&,r) describes the heterogeneous thermal conductivity or diffusivity.

(iii) bi(r) is a convective transport coefficient (e.g. time-dependent fluid
superficial velocity).

(iv) ¢(&, 1) is a linearized reaction term (e.g. due to catalyst deactivation).
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» Assumptions:

P1. For each ¢ € [0, T], the operator A(z) is strongly elliptic, i.e.
m
Z ”ij(f’t)"?i"’lj 2 E|T’|27 for n S R"
ij=1

P2. The coefficients (&, 1) € L2([0, T], L*(2)), bi(¢) € C'([0, T]) and a;(&,t) are
sufficiently Holder continuous, i.e.

laij(€,1) — ay(&,5)| < Llt —s|°
fors,r € [0,7], £ € Q and constant L > 0 and 8 € (0, 1].
P3. The function (¢, 1) € L*(Q) satisfies:

1
(/ lf(ﬁ,t)—f(é,S)Isz)zSLIt—slﬁ, 0<s<t<T
Q

> {A(t)}ico,1) forms a family of strongly elliptic operators which admit a family of
eigenfunctions {¢x (1) },c[o,r] With corresponding family of eigenvalues
{Mn(®)}igpo,m-
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the operator A() satisfies:

» Under the properties of: strong ellipticity and continuity of a;;(¢,1), bi(r) and ¢(&, 1),

1. For every ¢ € [0,T], the resolvent R(\; A(r)) exists for all A with ReA < 0 and
there exists a constant L; such that ||[R(X\;A(7))|| < Li/|A;

2. There exists constants L, and 3 € (0, 1] such that
A1) — A()A(T) Y| < Lyt — s|# fors,z,7 € [0, T].

» The initial and boundary value problem is represented as a non-autonomous
evolution system on L?(Q):

EO — awe) + 50,
for0 <s<t<Tandz € L*(Q).

2(s) =z
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» The solution of the nonautonomous evolution system is expressed in the form of

) = U+ [ U6

where U(z, s) is the two-parameter semigroup generated by the operator A(r)
» The operator A(z) is defined as

A1) = Z An()(-

s Yn (1)) Pu (1)

» The operator A(7) : D(A(r)) C L*(Q) — L*(R) is the infinitesimal generator of the
two-parameter semigroup:

n=1

U(t,5)2(s) == D D710 (2(s), hu(s))u (1)

for 0<s<t<T
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» The operator U(1, s) satisfies the following identities:
Al U(t,1) =1,

A2. U(t,s) =U(t,r)U(r,s) for0<s <r<t<T

A3. U(t,s) is continuouson 0 < s <t < T, and:

ou(t,s) au(t,s)
£y =A()U(t,s), and o =
A4 |U(1,5)]] < Ly,
A5. ||A(OU(t,s)|| < Lo(t —s)~!, and
A6. |

|A(1)U(t,5)A(s)~!|| < Ls for constants L; > 0.
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» The finite-time horizon optimal control problem is given as the following:

T
min () =min [ (1C(e(r) + u(r)P) dr + (Qx(), ()
u u 0
where the functional J(u) is minimized over all trajectories of

{ (r) A(D)x(1) + B(1)u(t)
x(0)

o (1)

» IfQ>0,B(-) € C([0,T; £L(U; L*(Q))) and C(-) € C([0, T; £(Y,L*(R))), then the
optimization problem has the unique minimizing solution um;, (r) such that the
optimal pair u™"(r) € C([0, T]; U) and z™"(r) € C'([0, T]; X) N C([0, T]; D(A(z)) are
related by the feedback formula,

w71 () = —B* ()TL(1)zain (1)

» The operator II(r) € L(X) is the strongly continuous, self adjoint, nonnegative
solution of the differential Riccati equation,

11(1) +A* (NIL(1) + TI(DA(r) — TI(NB(B* (NIL(1) + C*()C(1) =0, TI(T) = Q
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Model of temperature dynamics:
0z(&,1) 9%z
o =g o) oo ¢ + 0O

z({,O) = ZO(&)

Oz 0z
8_5(07 t) =0, 8_5(1(07[) =

~ thermal conductivity constant, v(z) is the
boundary velocity, and b(&)u(r) is the
distributed heat input along the length of the
rod.

The material domain is time-varying due to
the motion of the boundary at the
material-fluid interface, £ = I(r).

Control objective: Optimally stabilize the
temperature around some desired nominal
distribution.

Crucible
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The time-varying spatial domain at some time € [0, 7] is denoted Q = (0, /(1))
with 0 < & < I(1) < Imax-

Spatial domain evolution is considered as a sequence of subdomains:
QCQhC---CN

Let ¢(¢,r) denote a family of functions defined on the subdomains ; with:

#(&) for ey
0 for £€Qj€mR

o(&,1) = {

L%(;) forms a family of function spaces which are precompact in L(£2) for all
t € [0, T], (see, Adams, 1975):

LZ(Q]') C LZ(QH_l) c---C LZ(Q)

Enables the use of single inner product (-, -) on L2(£2) for functions defined on
an arbitrary subdomain Q:

(6. B = [ otenote.nde = [ s@a@de+ [ 0de= (0.0)2a)
[m] = = =
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» The PDE operator A(r) is defined as:

0%z 0z
At) := k— —v(t) —
(=g — V05
» The operator A(z) is strongly elliptic for each ¢ € [0, T];

» Foreach 1 € [0, 7] the family of eigenfunctions {x (1)} (0,77 are:

- 3r7 (g MMe)y_ 2
Dn(&,1) = By(t)e? (cos (l(t) 5)
with coefficients:

1
ol v(t)
2

/1) " (%5»
0= \/% (1 " (ﬁ))

> &,(&, 1) are orthonormal to the eigenfunctions: ¢, (¢, 1) = e—"_lv(”%n(g, t) of the
adjoint operator A* (¢, ) for each 7 € [0, T].
» The corresponding family of eigenvalues are:

_ nmm\? 1 v(5)?
An(t) = —K (@) — EI‘L IT
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» The associated family of linear operators A(¢) in L?(Q2) is defined as

A()z=A(§, Nz for  z€ D(A(1))
with domain D(A(r)):
D(A(t)) = {da cL*(Q): ¢, g—ﬁ are a.c., A(t)¢ € L*(R),

99 o9 }

and —(0,71) =0, —({(¢),1) =0

56 (00 =0 5£U0.0

» Initial and boundary value control problem is represented as the nonautonomous
parabolic initial value problem:

;f = A(1)z(r) + B(Hu(1),

z(0) = zo, 0<s<t<T
» The solution of the initial value problem is expressed in terms of the two
parameter semigroup U(z, s),

2(1) = U(t,0)z0 + /01 U(t,7)B(T)u(T)dT
with z(s) € L*(2).
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» The operator A(7) : D(A(r)) C L*(Q2) — L*(2) generates the two-parameter
semigroup U(z,s), 0 < s < < T expressed as:

U(t,s)z(s) = 2 exp {—Ho("ﬂ)z (# - @)

o (002 = 962) } ) b0

» One can note that in the case where the boundary motion ceases and 2 is
constant, i.e. /() = I, v(t) = 0, the expression for U(z, s) becomes:

oo 2
Ut 9)2(s) = 3 exp {—f'ﬂo (7”) = s>} (<(5),6) = T(t — 5)2(s)
n=1

where T(), t > 0 is the Cy-semigroup of operators on L?(2) which is generated
by the standard heat equation.




» Let consider the weighted inner product on L?(), for z;,z; € D(A(t)),

(anaady = [ €026 D2a(6 e
Q
with weight function r(¢, 1) := exp(—(v(¢) /k0)E).
» Note that (¢u, ¢m)r = dum Where 6, = 1if n = m and 0 otherwise.

» The differential Riccati equation can be written under the form:

(&n (1), TLO S (1)1 + (A b (1), TLE) (1) + (b (), LA (1) (1))

—(ILOB()B™ ()IL(t)$n(1), o (1)) r + (C()Pn (1), C(1) (1)) = 0
with <¢n(T)7 H(T)¢M(T)>r = (¢n(T)7 Q¢m(T)>r
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» Inthe case where B(r) = I and C(r) = I the differential Riccati equation becomes
the system of infinitely many ordinary differential equations:
[ (£) + 220 () (1) + 1 = 12, (1) = 0,

Hnn(T) = Q
» The input u;rg'[loﬂ

is determined from the solution of the system of ODEs, and the
optimal state trajectory is the mild solution of the state feedback system
= (A() — B(O)B*(N11(1))z(1), 2(0) =20
and is expressed as:
oo
200 = 3 e a0, 0D n(0) — [
n=1

0

Uty 7) S an () (20 (1), 0 (7)) ()
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Figure: Slab domain length {(r) and boundary
velocity v(t).
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Figure: (Top) Optimal input profile «™"(r)
applied to the slab at input location & = 0.875.
(Bottom) Total open and closed loop system
energy.
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OPTIMAL CONTROL OF A CLASS OF PARABOLIC TIME-VARYING PDES
NUMERICAL RESULTS
§ CLOSED LOOP SYSTEM

6.0

40 |

Figure: Slab temperature evolution in the time-dependent spatial domain with diffusivity
ko = 1.75. Input applied at £ = 0.875.



OPTIMAL CONTROL OF A CLASS OF PARABOLIC TIME-VARYING PDESs
SUMMARY
§ CONCLUDING REMARKS

» The general two-parameter semigroup representation of a class of
nonautonomous parabolic PDE has been presented.

» The optimal control formulation for the infinite-dimensional system representation
is considered.

» A practical example of an crystal growth process is considered with PDE model
defined on time-varying spatial domain.

» The infinite-dimensional system representation of the PDE is determined, and the
explicit two-parameter semigroup expression is provided.

» The corresponding optimal control problem is considered and numerical results
demonstrate the stabilization of the temperature distribution in the
time-dependent region.
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