
GNU Nana
Improved support for assertions and logging in C and C++

last updated 13 September 1999 for version 2.5

P.J.Maker (pjm@gnu.org)

Copyright c© 1996, 1997, 1998, 1999 P.J.Maker, Quoll Systems Pty Ltd.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Chapter 1: Introduction 1

1 Introduction

Nana is a library that provides support for assertion checking and logging in a space and time
efficient manner. The aim is to put common good practice1 into a library that can be reused rather
than writing this stuff every time you begin a new project.

In addition assertion checking and logging code can be implemented using a debugger rather
than as inline code with a large saving in code space.

Nana aims to solve the following problems:

1. Avoid the two executables problem (one with asserts in and another without any).

The code space and time costs of having assertion checking and detailed logging code in a
program can be high. Normally people construct two versions of the program, one with checking
code for testing and one without checking code for production use.

With nana one version of the executable can be built for both testing and release since debugger
based checking has negligible space and time impact.

2. Configurable: the nana library is designed to be reconfigured by the user according to their
needs. For example we can:

• Modify the behavior on assertion failure, e.g. to attempt a system restart rather than just
shutting down.

• Selectively enable and disable assertion checking and logging both at compile and run
time.

• Send the logging information off to various locations, e.g.

− Users terminal

− A file for later checking.

− Another process, e.g. a plotting program or a program that verifies that the system
is behaving itself.

− A circular buffer in memory.

This is an old embedded systems trick and is very useful for production systems. The
time cost of logging into memory is not large and when your production system in
the field has problems you can then see what was happening in the minutes before its
unfortunate demise rather than asking some user what was happening before it died.

3. Time and space efficient.

For example the GNU ‘assert.h’ implementation uses 53 bytes for ‘assert(i>=0)’ on a i386.
The nana version using the i386 ‘stp’ instruction on assert fail uses 10 bytes. If you’re willing to
accept the time penalty this can be reduced to 0 or 1 byte by using debugger based assertions.

4. Support for formal methods.

• Before and after state (e.g. x,x’ in the Z notation).

Specifications are often written in terms of the state of variables before and after an oper-
ation. For example the ‘isempty’ operation on a stack should leave the stack unchanged.
To verify this in nana we could use:

bool isempty(){ /* true iff stack is empty */
DS($s = s); /* copy s into $s in the debugger */
...; /* code to do the operation */
DI($s == s); /* verify that s hasn’t been changed */

1 Which is unfortunately quite uncommon in the authors experience.

2 GNU Nana: improved support for assertions and logging in C and C++

}

These ‘$..’ variables are called convenience variables and are implemented by gdb. They
have a global scope and are dynamically typed and initialised automatically to 0.

In addition a C only version of before and after state is provided. For example:

bool isempty() { /* true iff stack is empty */
ID(int olds); /* declare variable to hold old value */
IS(olds = s); /* copy s into $s in the debugger */
...; /* code to do the operation */
I(olds == s); /* verify that s hasn’t been changed */

}

• Support for Predicate Calculus.

Nana provides some support for universal (forall) and existential (exists one or more)
quantification. For example to specify that the string v contains only lower case letters
we could use:

I(A(char *p = v, *p != ’\0’, p++, islower(*p)));

These macros can be nested and used as normal boolean values in control constructs as
well as assertions. Unfortunately they depend on the GNU CC statement value extensions
and so are not portable. The following macros are defined in ‘Q.h’:

A For all values the expression must be true.

E There exists one or more values for which the expression is true.

E1 There exists a single value for which the expression is true.

C Returns the number of times the expression is true.

S Returns the sum of the expressions.

P Returns the product of the expressions.

• A C/C++ based shortform generator similar to Eiffel which can produce a HTML summary
of your code.

The shortform of a program consists of the function headers together with their precon-
ditions2 and postconditions3

• Performance measurement.

A small package which measures the time and space overhead of code fragments is pro-
vided. This is used to analyse the space/time requirements of the nana library and could
be used for other types of measurement.

• Verifying timing.

As well as using nana to verify timings with assertions using a hardware supported timer
you can also a simulator (e.g. the PSIM power pc simulator by Cagney) with gdb. These
simulators can model time and provide a register called ‘$cycles’ which represents the
current cycle count of the program. This can be used to check that timing constraints are
being meet.

2 Precondition: a boolean expression which must be true if the operation is to succeed. For
example the ‘sort(int *v, int n)’ might have have precondition that ‘v != NULL && n >= 0’.

3 Postcondition: a boolean expression that must be true if the operation is correct (and the
precondition was true on entry).

Chapter 1: Introduction 3

void process_events() {
for(;;){

DS($start = $cycles);
switch(get_event()){
case TOO_HOT:

...;
DI($cycles - $start <= 120);
break;

case TOO_COLD:
...;
DI($cycles - $start <= 240);
break;

}
}

}

The intended audience for Nana includes:

• Software Engineers.

• Formal methods community.

• Real time programmers.

• System testers.

• People teaching programming.

1.1 Related work

The Nana project was inspired by some other projects, in particular:

• Anna - Anna stands for "Annotated Ada" where the programmer inserts various assertions
into the code which can be automatically validated. To quote from the WWW Virtual Library
entry on Anna:

Anna is a language for formally specifying the intended behaviour of Ada programs.
It extends Ada with various different kinds of specification constructs from ones
as simple as assertions, to as complex as algebraic specifications. A tool set has
been implemented at Stanford for Anna, including:

1. standard DIANA extension packages, parsers, pretty-printers;

2. a semantic checker;

3. a specification analyser;

4. an annotation transformer; and

5. a special debugger that allows program debugging based on formal specifica-
tions

All tools have been developed in Ada and are therefore extremely portable. Anna
has thus been ported to many platforms. For more information send e-mail to
"anna-request@anna.stanford.edu". Before down loading the huge Anna release,
you may wish to copy and read some Anna LaTeX reports.

Anna is available from: ftp://anna.stanford.edu/pub/anna

4 GNU Nana: improved support for assertions and logging in C and C++

• Eiffel - the Eiffel programming language provides support in the language flexible assertion
checking. To quote from the Eiffel page in WWW Virtual library:

Eiffel is a pure object-oriented language featuring multiple inheritance, polymor-
phism, static typing and dynamic binding, genericity (constrained and uncon-
strained), a disciplined exception mechanism, systematic use of assertions to pro-
mote programming by contract, and deferred classes for high-level design and
analysis.

• APP - Annotation PreProcessor. The APP was written by David S. Rosenblum and provides
assertion checking functions for C and C++. It is implemented using a preprocessor wrapper
around the C preprocessor and supports quantifiers and before/after state.

See "A Practical Approach to Programming with Assertions" in Vol 21, No. 1, January
1995 of IEEE Transactions on Software Engineering for an interesting paper describing APP.
Unfortunately the APP tool doesn’t seem to be freely available (I’m willing to be corrected
on this). Note that any similarity between my examples and David’s are due to morphic
resonance.

• ADL - the Assertion Definition Language.

To quote from http://www.sunlabs.com/research/adl/:

ADL (Assertion Definition Language) is a specification language for programming
interfaces. It can be used to describe the programmer’s interface to any C-callable
function, library or system call.

The Practical Specification Language.

ADL is the world’s most practical specification language because:

• Even partial specifications are useful

• Test programs can be automatically generated from ADL specifications

• Specifications are external to the implementation of the interface, so that they
are vendor-independent.

An Automated Test Generator.

An ADL specification is not just a paper document. It can be compiled by ADLT
(the ADL translator). ADLT generates:

• Header files, that can be used in an implementation

• Test programs, that ensure that any implementation meets the specification

• Natural-language documentation, derived directly from the specification

ADLT can be used:

As a test generator, to create tests for existing software or for existing standards As
a development tool, to ensure that documentation, software, and tests are aligned,
and to enable concurrent work on all three aspects of software production.

Nana is essentially a poor mans implementation of some of these ideas which works for C and
C++. Ideally in the best of all possible worlds you might want to look at Eiffel or in the military
world Ada and Anna. If you use TCL/TK you might also be interested in Jon Cook’s ‘AsserTCL’
package.

1.2 Assert.h considered harmful

Most C programmers become familiar with assertions from the the assert.h header. As such
its a very good thing and has a nice simple implementation. However it is also inefficient and leads
some people to the conclusion that assertion checking is an expensive luxury.

Chapter 1: Introduction 5

The implementation of assert.h as distributed with gcc looks like the following (after a bit of
editing):

ifndef NDEBUG
define _assert(ex) {if (!(ex)) \

{(void)fprintf(stderr, \
"Assertion failed: file \"%s\", line %d\n", \
__FILE__, __LINE__);exit(1);}}

define assert(ex) _assert(ex)
else
define _assert(ex)
define assert(ex)
endif

There are are two main problems with this:

1. Code space overhead: each call to ‘assert’ generates 2 function calls with 4 and 1 arguments
plus strings for error messages. If assert.h had library code support we could make the
implementation much more space efficient, e.g. by calling a single function on error detection.

2. The default behaviour simply prints a message and dies, ideally you like to be able to use a
debugger to determine why the assertion failed. Even if you run this under the debugger you
can’t observe the failures of variables are an assert failure because the process exits rather than
aborting back to the debugger.

Of course everyone merely rewrites their own ‘assert’ macro so these are not significant objec-
tions. The only problem is if the author uses the libraries without modification.

1.3 Scope of this document

This document aims to both describe the library and provide a tutorial in its use. Further work
is required, particularly on the tutorial sections. If anyone has any suggestions please send them
to me.

6 GNU Nana: improved support for assertions and logging in C and C++

Chapter 2: Installing the Nana library 7

2 Installing the Nana library

Nana uses the normal GNU install method in the same way as ‘gcc’ and ‘gdb’. To install nana
in the default location ‘/usr/local/{bin,lib,include}’ you would use:

% gzcat nana-1.10.tar.gz | tar xvf -
% cd nana-1.10
% ./configure
% make
% make install
% make check
% make check-mail
% make subscribe

If you wish to produce space and time efficient code then replace the ‘./configure’ with:

% I_DEFAULT=fast ./configure

If you are using a Pentium compatiable CPU which supports the ‘RDTSC’ instruction you may
wish to enable cycle level timing in ‘cycles.h’ by using:

% ./configure --enable-rdtsc

The check-mail and subscribe targets both send e-mail. If you need to change the mailer used
try something like:

% make MAILER=elm subscribe

Note: we need to install nana before running the ‘make check’ target. The ‘check-mail’ target
sends the test report via e-mail to the ‘gnuware@cs.ntu.edu.au’.

Of course things are never that simple. If you want to install Nana in a different location or
change the behaviour on error detection see Section 2.3 [Configure], page 8.

Each of the sub-directories nana can be compiled and installed separately, e.g. if you don’t need
the documentation you can just compile and install from the ‘src’ sub-directory after doing the
configure statement.

Note that some of the subdirectories contain code that you may wish to install, improve or
inspect. In particular:

• ‘emacs’ – a protype emacs mode for browsing log files.

• ‘examples’ – some small examples.

• ‘gdb’ – some tools for use with gdb, in particular a statement level trace utility and some gdb
patches.

• ‘perf’ – a tool for measuring space/time of code fragments.

• ‘shortform’ – a shortform generator which produces a HTML summary of your codes interface.

• ‘tcl’ – a prototype TCL driver. We actually have a few more TCL tools in the works so if
you’re interested contact the author.

8 GNU Nana: improved support for assertions and logging in C and C++

2.1 Required Software

The following software is possibly required to run nana.

gcc-2.7.2
Nana makes use of two GNU extensions in its library so you really should be using ‘gcc’.
Some of the code can be used with any C compiler, though it may not be worth the
bother. The dependencies on gcc are in ‘Q.h’ which uses the statement value extension
and in ‘L.h’ which uses the variable number of arguments extension to ‘cpp’.

gdb-4.16+
A recent version of ‘gdb’ is worthwhile, some early 4.?? versions had problems set-
ting a large number of breakpoints. Note that ‘gdb-4.17’ is available and has a few
improvement which are useful for some parts of this package including the tools in
‘gdb’.

gmake The ‘configure’ script and ‘Makefiles’ are generated using the ‘automake’ and
‘autoconf’ programs. They should be reasonably portable but if you have problems try
using GNU make. For example on some old DEC boxes we have had strange behaviour
using the system make.

For a listing of porting results including software versions see:
‘http://www.cs.ntu.edu.au/homepages/pjm/nana-bug/’

2.2 Optional Software

In addition to the required software you might also be interested in:

• ‘http://www.cs.tu-bs.de/softech/ddd/’ – a smart frontend for gdb which can display dy-
namic data structures such as linked lists, etc.

• ‘ftp://ftp.ci.com.au/pub/psim/’ – a cycle level simulator for the PowerPC. A fine piece of
work.

2.3 Configure

Nana uses a standard GNU autoconf generated configure script. The configure script checks
the setup on your machine and then generates the appropriate Makefiles. Some of the things checked
by configure include:

1. Which compiler, compiler flags and libraries to use, e.g. you might need to include a -lposix
flag to the linker to build programs on your machine.

2. Which header (.h) files are available on this machine, e.g. is unistd.h available on this machine.

3. Where to install programs, header file, man pages, etc.

In addition ‘configure’ uses the host architecture and operating system to generate the
‘nana-config.h’ file. This file contains some macro definitions which define how nana works
on particular operating systems and hardware architectures.

Chapter 2: Installing the Nana library 9

For example on ‘i386’ machines we would use the ‘asm("hlt")’ instruction whenever an asser-
tion fails, on a ‘sparc’ we would use ‘asm("unimp")’. Otherwise we would default to a plain C call
to ‘abort()’ If ‘configure’ does not recognise your machine it uses plain C code.

You may wish to change these defaults on installation, one method is to edit a local copy of the
‘nana-config.h’ file. Alternately you can define the code yourself in the call to ‘configure’. For
example to redefine the action we take when an error is detected by the I macro we can use:

I_DEFAULT_HANDLER="restart_system()" ./configure

As well as simple calls to routines various other bits of information are passed off to the
‘I_DEFAULT_HANDLER’ such as the expression that failure and a failure code. For example:

% I_DEFAULT_HANDLER="restart(line,file,param)" ./configure

The default for ‘I_DEFAULT_HANDLER’ calls a function which prints a message and then dumps
core. Different behaviour on failure can be organised by setting the ‘I_DEFAULT’ to ‘fast’, i.e. plain
core dump or ‘verbose’ which prints an error messsage and then does the core dump.

% I_DEFAULT=fast ./configure

For nana the following examples may be useful:

1. ./configure

Accept the default values for everything. In particular the files will be installed in:
‘/usr/local/{bin,include,lib,man,info}’

2. ./configure --prefix=~project/tools

Install the files into:
‘~project/tools/{bin,include,lib,man,info}’

3. ./configure --bindir=~project/bin --libdir=~/project/lib \
--includedir=~/project/headers --infodir=/usr/local/info \
--mandir=~/project/doc

The install directory for program (‘bin’), etc can all be set with command line arguments to
‘configure’.

4. CC=xacc LIBS=-lposix ./configure sun3

If the defaults chosen by ‘configure’ are not correct you can override them by setting variables
such as CC before calling ‘configure’. The ‘sun3’ argument is used to identify the machine we
are running on and may be necessary on some machines.

5. ./configure --help

And of course when in doubt ask for help.

For even more details see the file ‘INSTALL.con’ which contains the generic instructions for use
with ‘autoconf’ generated ‘configure’ scripts.

10 GNU Nana: improved support for assertions and logging in C and C++

2.4 Variables for ./configure

The configure program uses the following shell variables to change various defaults. Another
method is simply to edit the ‘nana-config.h’ file. Most of these values should be auto detected,
so you can ignore this section until your need to save a few bytes of store by using ‘asm("hlt")’
instead of a call to ‘abort()’.

DI_MAKE_VALID_BREAKPOINT
This text is inserted when the ‘DI.h’ library needs to set a breakpoint in the generated
code. It should ideally update all variables which being kept in registers etc so that
gdb gets the correct values for each variable.

Possible values include:

1. ‘asm("nop")’ – a single ‘nop’ instruction to set the breakpoint at.

This is the default.

2. ‘_vi = 0’ – where ‘_vi’ is a global volatile int.

3. ‘_vi = (exprn)’ – where exprn is the expression we are checking for this assertion.

4. ‘/* nothing */’ – nothing at all, this means the breakpoint will be set at the start
of the next statement which works most of the time. However for some examples
this will do the wrong thing.

DL_MAKE_VALID_BREAKPOINT
Used for the same purpose as ‘DI_MAKE_VALID_BREAKPOINT’ for ‘DL.h’. It also defaults
to ‘asm("nop")’.

I_DEFAULT_HANDLER
The code called when ‘I.h’ detects an error.

asm("hlt")
Some machines use a ‘hlt’ instruction.

asm("unimp")
And other machines use a ‘unimp’ instruction.

abort() Or we could use a call to ‘abort’ which is at least standard C. On some
machines this is significantly larger than a single ‘hlt’ instruction.

restart()
Or a call to a function which attempts to restart the system.

ALWAYS_INCLUDE_MALLOC
This is a dodgey for some versions of Linux which don’t seem to include ‘malloc’ when
you include ‘stdio.h’ and use ‘print’. This causes problems for ‘gdb’ since it uses
‘malloc’ in the executable to implement parts of its functionality.

This kludge should be removed!

GDB This is the pathname of the version of GDB you wish to use. For example
on my FreeBSD box we have gdb-4.16 installed in ‘/usr/bin’ and gdb-4.17 in
‘/usr/local/bin/’ to optimise confusion. If you wish nana to use 4.17 try something
like:

GDB=/usr/local/bin/gdb ./configure

2.5 Supported Platforms

Nana has been tested on the following platforms:

Chapter 2: Installing the Nana library 11

1. i386-unknown-linux, gcc-2.7.0, gdb-4.16

2. sparc-sun-sunos4.1.4, gcc-2.7.2.f.1, gdb-4.16

3. sparc-sun-solaris2.3, gcc-2.7.2, gdb-4.16

4. alpha-dec-osf3.2, gcc-2.7.2, gdb-4.16

5. mips-sgi-irix5.3, gcc-2.7.0, gdb-4.16

6. powerpc-ibm-aix3.2.5, gcc-2.6.3, gdb-4.16

The ‘alpha-dec-osf3.2’, ‘mips-sgi-irix5.3’ and ‘powerpc-ibm-aix3.2.5’ implementations
have problems when you compile with ‘-O2’ or ‘-O3’ optimisation. This causes some errors in
the the debugger based assertion and logging code since variables can be removed or changed by
optimisation. At ‘-O’ everything passes. Regardless of optimisation the C based checking code
passes all tests on these platforms.

If you use nana on a new platform please send the report file to me via the ‘make check-mail’
command. A machine generated list of this information is available at:

‘http://www.cs.ntu.edu.au/homepages/gnuware/nana’

(Warning this page is out of date and may be fixed shortly)

2.6 Supported Debuggers

Currently Nana works with the GNU GDB debugger which is available on a wide range of
platforms including embedded systems and even provides support for remote debugging. Porting
to any reasonable debugger with conditional breakpoints and commands is not very difficult.

As an example of an unreasonable debugger, Nana has been ported to work with the Microsoft
CodeView debugger. The port is small (60 lines of code) but suffers from a problem with variable
scoping in CodeView. If a breakpoint is set at a point in the code the expressions are not evaluated
from that particular scope. For example setting a breakpoint in the function f cannot access a
variable local to f directly. CodeView has a unique (expletive deleted) scope operator which you
must use to set the scope ‘{...}’. This makes the interface somewhat less than beautiful.

Another good thing about CodeView is to try a debug command which prints a message which
contains a single open ‘{’. This of course causes it to hang and was the main problem during the
porting to CodeView which took a whole day.1

If anyone is interested I may release the CodeView implementation, please contact me if you
are interested. Of course a better bet is probably to move to the ‘gdbserver’ system. I think ‘gdb’
has been released as a native even for some Microsoft operating systems.

Other debuggers like DBX don’t seem to be worth the trouble since gdb works on those machines.
A redesign of the nana internals may also be useful if we decide portability between debuggers is
actually useful.

1 And about 60 reset cycles where the machine went off into hyperspace.

12 GNU Nana: improved support for assertions and logging in C and C++

2.7 Known Problems

Nana has the following known features (or perhaps problems):

1. Nana macros which use the debugger such as DI or DL should be on lines by themselves. If
you mix code and nana macros on the same line you will get errors, e.g:

main(){
int x;
x = 5; x--; DI(x == 4);

}

This doesn’t work since breakpoints are set at line boundaries rather than statement ones. Of
course anyone who writes code like this deserves whatever happens to them.

2. Optimisation can remove variables so that debugger based assertions (‘DI.h’) do not work cor-
rectly. As usual the interaction between the debugger and the compiler is rather complicated.
This may not be a problem if the appropriate compile-time flags are selected, e.g. ‘-O0 and
-O1’ work on most platforms.

3. The ‘Q.h’ macros depend on the statement value extension to GNU CC so if you wish to use
them you must use GCC. This can be fixed for C++ in a possibly useful manner, I can’t see
any solution for C.

4. The logging macros depend on the Var Args extension provided by the GNU C Preprocessor.2

We could (probably will) implement a fix for this based on the tricks in the C FAQ. Unfor-
tunately these tricks are not pretty. For now interested users could simply replace their CPP
with the GNU CPP if they wished to stay with non-standard compilers.

5. The ‘Q.h’ macros do not work in the debugger since ‘gdb’ does support the statement expression
extension.

6. Multiline expressions do not work as expected in the debugger since you need to use a blackslash
as an escape at the end of the line. For example:

DI(x +
10 > 30);

A few backslashes may solve this particular problem.

7. Problems with the ‘configure’ script.

The ‘configure’ script automatically detects the target operating system and architecture
and then generates ‘nana-config.h’. If the options selected in ‘nana-config.h’ are incorrect
they can be edited by hand and installed in the usual include directory. The easiest method
is simply to delete all macros in ‘nana-config.h’ since the system defaults to more portable
(and less efficient) implementations. If you wish to do this from the configure script you can
try giving a unsupported machine type, e.g.

% ./configure pdp11-dec-ultrix

8. Some users have reported problems with the configure script detecting vsnprintf. If
configure doesn’t find it and it does exist then simply define it in ‘nana-config.h’ as per
the previous question.

If vsnprintf really doesn’t exist then get a new C library, possibly the GNU libc.

9. The use of vsprintf opens a security hole since no bounds checking is done by it. Nana
attempts to use vsnprintf which is safe when it exists but it will resort to vsprintf if it can’t
find vsnprintf. All careful people should make sure that they have a library with vsnprintf.

10. Qstl.h doesn’t work since the STL library has not been installed along with C++. This can
of course be fixed by installing STL. See:

‘http://www.stl.org’

2 This allows a variable number of arguments to C preprocessor macros.

Chapter 2: Installing the Nana library 13

11. STL header file errors due to nana.

The C++ STL header files for version 3.0 at least must be included before the Q.h file.

The problem is caused by the STL files using S as a template argument. Of course Q.h uses S
for summing a series. As usual namespace pollution strikes again.

(Thanks to Han Holl for this particular problem).

12. If you try to use the debugger based macros such as DI.h or DL.h on code that has not been
compiled with -g then misery follows.

(Thanks to Eugen Dedu for this one)

2.8 Bug Reports

If you think you have found a bug in the Nana library, please investigate it and report it.

• Please make sure that the bug is really in the Nana library.

• You have to send us a test case that makes it possible for us to reproduce the bug.

• You also have to explain what is wrong; if you get a crash, or if the results printed are not
good and in that case, in what way. Make sure that the bug report includes all information
you would need to fix this kind of bug for someone else.

If your bug report is good, we will do our best to help you to get a corrected version of the
library; if the bug report is poor, we won’t do anything about it (apart from asking you to send
better bug reports).

Send your bug report to:
‘nana-bug@cs.ntu.edu.au’

Copies of bug reports will be kept at:
‘http://www.cs.ntu.edu.au/homepages/pjm/nana-bug/’

2.9 New Versions

New versions of nana will be made available at:
‘ftp://ftp.cs.ntu.edu.au/pub/nana/’

If you wish to be informed about new releases of nana then subscribe to the nana mailing list.
Send a message containing ‘subscribe’ <your e-mail address> to:

‘mailto:nana-request@it.ntu.edu.au’.

A hypermail archive of this list is kept at:
‘http://www.cs.ntu.edu.au/hypermail/nana-archive’

If you wish to send a message to the list send it to ‘mailto:nana@it.ntu.edu.au’.

14 GNU Nana: improved support for assertions and logging in C and C++

Chapter 3: Invoking Nana 15

3 Invoking Nana

The functions defined by Nana are implemented either as pure C code or as a set of commands
which are generated for the debugger. To use the C based support for assertion checking you would
use something like:

#include <nana.h> /* this file includes the other nana .h files */

int floor_sqrt(int i) { /* returns floor(sqrt(i) */
int answer;
I(i >= 0); /* assert(i >= 0) if i -ve then exit */
...; /* code to calculate sqrt(i) */
L("floor_sqrt(%d) == %d\n",

i, answer); /* logs a printf style message */
}

To compile and link the previous code you may need to use the ‘-Ipath’ or ‘-lnana’ flags with
the compiler. For example:

% gcc toy.c -lnana

If the nana headers have been installed in a strange location you may need to do something like:

% gcc -I<strange location>/include toy.c -L<strange location>/lib -lnana

The next example uses the debugger versions of ‘L’ and ‘I’. If the code is run under the debugger
these checks will occur, otherwise they take up a negligible amount of space and time.

#include <nana.h> /* this includes the other nana .h files */

int floor_sqrt(int i){
int answer;
DI(i >= 0); /* assert(i >= 0) if i -ve then exit */
...; /* code to calculate sqrt(i) */
DL("floor_sqrt(%d) == %d\n", i, answer); /* logs a printf style message */

}

To generate the debugger commands from the C source we just run the ‘nana’ filter over the
program and then execute the commands under gdb using the ‘source’ command. You also need
to compile the program with the ‘-g’ option so the debugger works. So something like:

% gcc -g sqrt.c
% nana sqrt.c >sqrt.gdb
% gdb a.out
(gdb) source sqrt.gdb
breakpoint insert: ...
(gdb) run
...
(gdb) quit

16 GNU Nana: improved support for assertions and logging in C and C++

Note that any C preprocessor flags which you use must be passed off to the ‘nana’ command.
The best way to do this of course is in a Makefile. Something like the following works for GNU
Make:

%.nana: %.c
nana $(CFLAGS) $< >$@

The ‘nana’ filter can also be run over multiple source files in a single run if thats more convenient.

For convenience a number of other simple scripts are provided, in particular to:

nana-run Run a program under the debugger without prompting, etc. For example:

% nana-run a.out -x main.gdb
output from program

nana-clg Compiles the program, generates the debugger commands and the runs the program
using ‘nana-run’. For example:

% nana-clg -O3 main.c
output from program

You can change the compiler invoked by ‘nana-clg’ by redefining the ‘NANACC’ envi-
ronment variable. For example:

% NANACC=g++ nana-clg -O3 main.cc

The installation also ‘nana-c++lg’ which compiles your code using a GNU C++ com-
piler.

nana-trace
Generates a line by line trace of the execution of a program using GDB. For example:

% nana-trace a.out
54 printf("main()\n");
55 x = distance(5,-5);
distance (i=5, j=-5) at test.c:47
47 i = -i;
48 j = -j;
...

The arguments to ‘nana-trace’ are passed directly to GDB. If you wish display vari-
ables or call procedures on each line then could use something like:

% nana-trace -x mycommands.gdb a.out

Where the ‘mycommands.gdb’ contains the GDB commands such as ‘display x’ which
causes ‘x’ to be printed every time the debugger gets control of the program.

Chapter 4: Interface 17

4 Interface

This section describes the details of the interface to nana library.

All of the files can be included multiple times without ill–effect since they use the C preprocessor
to make sure the header declarations are only seen the first by the compiler. Each of the files can
also be included individually.

If any of the following routines have an internal problem (e.g. malloc fails due to lack of memory)
they will call the ‘nana_error’ function defined in ‘nana_error.c’. By default this function prints
a message and dumps core using ‘abort’. If you wish to override this behaviour you should define
your own handler before linking in the nana library.

4.1 nana.h: the main header file

The ‘nana.h’ file includes most of the other files in the library. In particular it ‘#include’s’
the following files:

I.h

DI.h

L.h

DL.h

Q.h

GDB.h

4.2 WITHOUT NANA: disabling all nana code for portability.

If you wish to disable all nana code you can ‘#define’ the ‘WITHOUT_NANA’ macro. This selects
versions of the macros defined in ‘I.h’,‘L.h’, etc which map to ‘/* empty */’.

So if you are using nana for your development but don’t wish to force your customers to use it
you can add an option to your ‘configure’ script to define/undefine ‘WITHOUT_NANA’. In addition
you will need to distribute copies of the nana header files with your package to get the stubs.

Note that the ‘L.h’ and ‘DL.h’ macros use the macro variable number of arguments extension
provided by GNU C. If you wish your code to be portable you should use the macros ‘VL((..))’,
etc rather than ‘L(..)’ to avoid problems with non GNU C preprocessors which only take a fixed
number of arguments.

18 GNU Nana: improved support for assertions and logging in C and C++

4.3 I.h: C based invariant checking

This implements the C based invariant checking code and is a replacement for ‘assert.h’. The
first two macros are the normal user interface; the remainder are used for configuring the behaviour
on failure, etc.

Macrovoid I (bool exprn)
The exprn should always be true if the program is correct. If the exprn is false a
message will be printed, followed by core dump.1

Checking can be enabled and disabled by using the I LEVEL and I DEFAULT GUARD
macros. See the definitions below for these macros for further details.

Note that exprn should have no side-effects2 since disabling checking shouldn’t change
your programs behaviour.

I(z != 0);
x = y / z;

Macrovoid N (bool exprn)
The opposite of ‘I’, i.e. the expression must never ever be true if the program is working
properly. It is equivelant to I(!(e)) and exists as a piece of syntactic sugar which may
be helpful for complicated boolean expressions.

char* strdup(char *s) {
N(s == NULL);
...;

}

Macroint I LEVEL
The ‘I_LEVEL’ macro is used to globally enable and disable checking by the macros in
this file. It can take on one of three values:

0 Disable all checking. Regardless of anything else no code will be generated
for I, N, etc.

1 Enable checking only if the corresponding guard condition is true. The
guard condition can be used to enable and disable checking at compile and
run time.

2 Enable all checking regardless of guard conditions.

I_LEVEL defaults to 1.

Macrobool I DEFAULT GUARD
The I_DEFAULT_GUARD is used to selectively enable or disable checking at compile or
run time.

1 If you don’t want a core dump then look at stopping the core dumps with ulimit rather than
changing the handler.

2 Side-effects include such operations as input/output or assignments, e.g. ‘x++’.

Chapter 4: Interface 19

I_DEFAULT_GUARD defaults to TRUE, i.e. always enabled.

A user would typically define I_DEFAULT_GUARD to be global or local variable which is
used to turn checking on or off at run–time. For example:

#define I_DEFAULT_GUARD i_guard > 0

extern int i_guard;

Macrotext I DEFAULT PARAMS
This is passed off to the I_DEFAULT_HANDLER and defaults to nothing, it is just some
text and is intended to pass failure codes (e.g. IEH303) or requests (e.g. HW_DEAD)
information off to the handler.

I_DEFAULT_PARAMS defaults to nothing.

Macrovoid I DEFAULT HANDLER (char *exprn, char *file, int line,
param)

When an error is detected the I_DEFAULT_HANDLER will be called to handle the error.
The arguments are:

exprn A string representation of the expression that has failed, e.g. "I(i>=0)".

file The file that this error occurred in, i.e. __FILE__.

line The line number for the error, i.e. __LINE__.

param An optional parameter which can be passed across which defaults to I_
DEFAULT_PARAMS. This can be used to pass failure codes or other informa-
tion from the checking code to the handler.

All of the remaining macros are used to individually override the default values defined above.
Normally these macros would be used in a system wide header file to define macros appropriate for
the application. For example you might use ‘IH’ to define different checking macros for hardware
and software faults.

Macrovoid I (bool e)
Macrovoid IG (bool e, bool g)
Macrovoid IH (bool e, Macro h)
Macrovoid IP (bool e, Text p)
Macrovoid IGH (bool e, bool g, Macro h)
Macrovoid IGP (bool e, bool g, Text p)
Macrovoid IHP (bool e, Macro h, Text p)
Macrovoid IGHP (bool e, bool g, Macro h, Text p)
Macrovoid N (bool e)
Macrovoid NG (bool e, bool g)
Macrovoid NH (bool e, Macro h)
Macrovoid NP (bool e, Text p)
Macrovoid NGH (bool e, bool g, Macro h)
Macrovoid NGP (bool e, bool g, Text p)
Macrovoid NHP (bool e, Macro h, Text p)
Macrovoid NGHP (bool e, bool g, Macro h, Text p)

20 GNU Nana: improved support for assertions and logging in C and C++

We also provide support for referring to previous values of variables in postconditions. The ID
macro is used to create variables to save the old state in. The IS and ISG macros are to set these
values.

Macrovoid ID (Text decln)
Macrovoid IS (Text assignment)
Macrovoid ISG (Text decln, bool g)

For example:

void ex(int &r) {
ID(int oldr = r); /* save parameter */
g(r);
I(oldr == r); /* check r is unchanged */
while(more()) {

IS(oldr = r); /* assign r to oldr */
h(r);
I(oldr == r * r);

}
}

4.4 DI.h: debugger based invariant checking

This implements the debugger based invariant checking code. The first two macros are the
normal user interface; the remainder are used for configuring the behaviour on failure, etc. Note
that these macros have no effect unless you run your program under the debugger and read in the
commands generated by the ‘nana’ command. You also need to compile the program with the ‘-g’
option.

Macrovoid DI (bool exprn)
The exprn should always be true if the program is working. If it is true then nothing
happens otherwise the code given by ‘DI_DEFAULT_HANDLER’ will be called which by
default prints a message and dies just like ‘assert.h’.

The checking using DI can be enabled and disabled by using the DI LEVEL and
DI DEFAULT GUARD macros. See the definitions below for these macros for further
details.

Note that exprn should have no side-effects3 since disabling the checking shouldn’t
change your programs behaviour.

Macrovoid DN (bool exprn)
The opposite of ‘DI’, i.e. the expression must never ever be true if the program is
working properly. It is equivelant to I(!(e)) and exists as piece of syntactic sugar
which is helpful for complicated boolean expressions.

3 Side-effects include operations like input/output or assignments.

Chapter 4: Interface 21

Macroint DI LEVEL
The ‘DI_LEVEL’ macro is used to globally enable and disable checking, in particular it
can take on one of three values:

0 Disable all checking. Regardless of anything else no code will be generated
for DI, DN, etc.

1 Enable checking only if the corresponding guard condition is true. The
guard condition can be used to enable and disable checking at compile and
run time.

2 Enable all checking regardless of guard conditions, etc.

DI_LEVEL defaults to 1.

Macrobool DI DEFAULT GUARD
The DI_DEFAULT_GUARD is used to selectively enable or disable checking at compile or
run time.

DI_DEFAULT_GUARD defaults to TRUE, i.e. always enabled.

A user would typically define DI_DEFAULT_GUARD to be global or local variable which
is used to turn checking on or off at run–time. For example:

#define DI_DEFAULT_GUARD (i_guard)

extern int i_guard;

Macrotext DI DEFAULT PARAMS
This is passed off to the DI_DEFAULT_HANDLER and defaults to nothing, it is just some
text and is intended to pass failure codes (e.g. IEH303) or requests (e.g. HW_DEAD)
information off to the handler.

DI_DEFAULT_PARAMS defaults to nothing.

Macrovoid DI DEFAULT HANDLER (char *exprn, char *file, int line,
param)

When an error is detected the DI_DEFAULT_HANDLER will be called to handle the error.
The arguments are:

exprn A string representation of the expression that has failed, e.g. "I(i>=0)".

file The file that this error occurred in, i.e. __FILE__.

line The line number for the error, i.e. __LINE__.

param An optional parameter which can be passed across which defaults to DI_
DEFAULT_PARAMS. This can be used to pass failure codes or other informa-
tion from the checking code to the handler.

22 GNU Nana: improved support for assertions and logging in C and C++

Macrovoid DI MAKE VALID BREAKPOINT (exprn e)
This macro is used to ensure that a breakpoint can be set at the location we are checking
using DI, etc. It defaults to asm("nop") and can be redefined by the user.

Macrovoid DI (bool e)
Macrovoid DIG (bool e, bool g)
Macrovoid DIH (bool e, Macro h)
Macrovoid DIP (bool e, Text p)
Macrovoid DIGH (bool e, bool g, Macro h)
Macrovoid DIGP (bool e, bool g, Text p)
Macrovoid DIHP (bool e, Macro h, Text p)
Macrovoid DIGHP (bool e, bool g, Macro h, Text p)
Macrovoid DN (bool e)
Macrovoid DNG (bool e, bool g)
Macrovoid DNH (bool e, Macro h)
Macrovoid DNP (bool e, Text p)
Macrovoid DNGH (bool e, bool g, Macro h)
Macrovoid DNGP (bool e, bool g, Text p)
Macrovoid DNHP (bool e, Macro h, Text p)
Macrovoid DNGHP (bool e, bool g, Macro h, Text p)

All of these macros are used to individually override the default values defined above.
Normally these macros would be used in a system wide header file to define macros
appropriate for the application.

Macrovoid DS (e)
Macrovoid DSG (e, g)

These macros are used to assign values to convenience variables in the debugger. Con-
venience variables are dynamically typed, global in scope and initialised to 0. They
start with a single $ and can be used be used for saving the state of program or for
counting events. The ‘DS’ macro executes e under the same rules as DI. The ‘DSG’
macro executes e only if the the expression g is true.

Note that ‘DS’ and ‘DSG’ can also be used for modifying C variables and calling functions.

4.5 L.h: support for printf style logging

These routines are used to provide logging functions. Messages can be divided into classes and
separately enabled and disabled.

Macrovoid L (args...)
Used to log a message in a similar way to printf.

Defaults to a using fprintf on stderr.

Chapter 4: Interface 23

Macrovoid LG (bool guard, args...)
Macrovoid LH (function handler, args...)
Macrovoid LP (text param, args...)
Macrovoid LGP (bool guard, text param, args...)
Macrovoid LHP (function handler, text param, args...)
Macrovoid LGHP (bool guard, function handler, text param, args...)

And all of the special functions.

The macros such as ‘L’ depend on the GNU CC variable number of arguments to macros ex-
tension. If you wish to compile your code on other systems you might wish to use the following
variations on ‘L’, etc.

Macrovoid VL ((args...))
Macrovoid VLG ((bool guard, args...))
Macrovoid VLH ((function handler, args...))
Macrovoid VLP ((text param, args...))
Macrovoid VLGP ((bool guard, text param, args...))
Macrovoid VLHP ((function handler, text param, args...))
Macrovoid VLGHP ((bool guard, function handler, text param, args...))

Each of these macros calls the corresponding function from the previous group, i.e. by
default ‘VLG’ is the same as a call to ‘LG’. If you define ‘WITHOUT_NANA’ all these macros
are translated to ‘/* empty */’.

Thus you can have nana under GCC whilst the code is still portable to other compilers.
However debugging information will not be available on other platforms.

Note: the argument list is surrounded by two sets of brackets. For example:

VL(("haze in darwin = %d\n", 3.4));

Macrovoid L LEVEL
Used to enable and disable logging independently of guard expressions.

2 Always print message

1 Print message only if the guard expression is true.

0 Never print any messages.

Defaults to 1.

Macrotext L DEFAULT HANDLER
The default handler for printing which is simply the name of the logging function or
macro.

Defaults to fprintf

Macrobool L DEFAULT GUARD
The default guard condition for logging.

24 GNU Nana: improved support for assertions and logging in C and C++

Defaults to TRUE.

Macrotext L DEFAULT PARAMS
The default parameter passed off to the logging function or macro.

Defaults to stderr

Macrovoid L SHOW TIME
If defined then display the time in front of each message.

Macrochar* L SHOW TIME FORMAT
A format string for the time stamp in the log. By default it prints the time out in
seconds.

Macrovalue L SHOW TIME NOW
The name of a function that returns the time for the time stamp. This defaults to the
‘now’ function from ‘now.h’.

4.6 L buffer.h: a circular buffer for logging.

A traditional embedded systems trick is to log messages to a circular buffer in core. This has
the following benefits:

1. Speed – writing to a in core buffer is much faster than spitting out messages to a file on disk.
It is often fast enough to leave at least most of the messages in the final product.

2. Field debugging – what the ... was the user doing before the system crashed. Oh lets ask
them, I’m sure they’ll give us a good problem report.

Typestruct L BUFFER
Used to define buffer variables, it is similar to ‘FILE*’ type in ‘stdio.h’. To create an
instance use ‘L_buffer_create’.

FunctionL_BUFFER* L buffer create (size_t size)
FunctionL_BUFFER* L buffer delete (L_BUFFER *b)

These are used to create or delete a buffer which can contain size characters.

L_BUFFER *lbuffer;

lbuffer = L_buffer_create(32*1024); /* create a 32K buffer */
...;
L_buffer_delete(lbuffer); /* and delete it after use */

Functionvoid L buffer wraparound (L_BUFFER *b, int w)
A buffer created by ‘L_buffer_create’ is set up so that the new messages will
overwrite the older messages in the buffer. If you wish to disable this overwriting,

Chapter 4: Interface 25

e.g. to keep the first 32K bytes of your system startup messages you should use
‘L_buffer_wraparound’. For example:

L_BUFFER *lb = L_buffer_create(32*1024);
L_buffer_wraparound(lb, 0); /* disable wraparound */

Functionvoid L buffer printf (L_BUFFER *b, const char *fmt, ...)
Functionvoid L buffer puts (L_BUFFER *b, const char *str)
Functionvoid L buffer putchar (L_BUFFER *b, char ch)

These are the routines which do that actual printing to the buffer.

L_buffer_printf(lbuffer, "U: user input %c\n", c);
L_buffer_puts(lbuffer, "warning: its too hot");
L_buffer_putchar(lbuffer, ’*’);

Note: a null pointer passed to the ‘L_buffer_puts’ function prints as ‘(null)’.4

Functionvoid L buffer clear (L_BUFFER *b)
Clear the log, i.e. remove all messages and start again.

Functionvoid L buffer dump (L_BUFFER *b, FILE *fp)
Dump the contents of the log *b to the file descriptor *fp. Typically *fp would be
‘stderr’.

Note that this does not change the contents of the buffer. This is important since we
may have a hardware or software problem part of the way through the dump operation
and you don’t want to loose anything.

To reset the buffer after a successful dump use ‘L_buffer_clear’.

The output of ‘L_buffer_dump’ consists of a starting message followed by the contents
of the log. If a character in the log is not printable we print it out in hex on a line by
itself.

* L_buffer_dump =
log message
and another
* non-printable character 0x1
more log messages
* end of dump

You also need to be able to integrate these functions into your design. See ‘examples/ott.c’ for
a complicated example. Here we will provide a simplified version which implements a new logging
macro called ‘LFAST’ which does a ‘printf’ to the ‘log_buffer’. If you want to have all messages
going to a ‘L_BUFFER’ then you can redefine ‘L_DEFAULT_HANDLER’.

/* project.h - the project wide include file */

4 This was suggested by Phil Blecker.

26 GNU Nana: improved support for assertions and logging in C and C++

#include <nana.h>
#include <L_buffer.h>

/* LFAST(char *, ...) - log a message to the log_buffer */
/* ##f translates as the rest of the arguments to LFAST */

#define LFAST(f...) LHP(L_buffer_printf,log_buffer,##f)

extern L_BUFFER *log_buffer; /* the log buffer */

The main program merely creates the log buffer and eventually calls ‘L_buffer_dump’ to print
out the buffer when the system dies.

/* main.c - initialise the system and start things */

#include <project.h>

L_BUFFER *log_buffer;

main() {
log_buffer = L_buffer_create(16000);
if(log_buffer == NULL) { /* not enough store */

...
}
LFAST("system starting at %f\n", now());
...;

}

void fatal_error() { /* called on fatal errors */
FILE *f = fopen("project.errors","w");
L_buffer_dump(b, stderr); /* print log to stderr */
L_buffer_dump(b, f); /* print log to file */

}

4.7 L times.h: recording events and times.

This component is used to record events and times with a lower time and space overhead than
the ‘L_buffer.h’ component. Instead of using a ‘printf’ style string we simply record the time
and a pointer to a string identifying the event in a circular buffer.

Note 0: the string arguments should not be modified after a call since we record pointers to the
strings rather than the strings themselves.

Note 1: there is no printf style formatting, e.g. ‘%d’ in this package.

Typestruct L TIMES
Used to define buffers, it is similar to ‘FILE*’ type in ‘stdio.h’. To create an instance
use ‘L_times_create’.

Chapter 4: Interface 27

FunctionL_TIMES* L times create (int size)
FunctionL_TIMES* L times delete (L_BUFFER *b)

These are used to create or delete a buffer which can contain size messages.

Functionvoid L times wraparound (L_TIMES *b, int w)
A buffer created by ‘L_times_create’ is set up so that the new messages will overwrite
the oldest messages in the buffer. If you wish to disable this overwriting, e.g. to keep
the first few messages messages you could use ‘L_times_wraparound(b,0)’.

Functionvoid L times add (L_BUFFER *b, char *m, NANA_TIME t)
Add an event identified by message m at time t to b. The type NANA TIME defaults
to ‘double’.

Functionvoid L times dump (L_TIMES *b, FILE *fd)
Dump the contents of the buffer out.

Functionvoid L times clear (L_TIMES *b)
Clear all the messages from b.

4.8 DL.h: support for printf style logging

These routines are used to provide logging functions. Messages can be divided into classes and
separately enabled and disabled. Note that these macros have no effect unless you run your program
under the debugger and read in the commands generated by the ‘nana’ command. You also need
to compile the program with the ‘-g’ option.

Macrovoid DL (args...)
Used to log a message.

Defaults to a using fprintf on stderr.

Macrovoid DLG (bool guard, args...)
Macrovoid DLH (function handler, args...)
Macrovoid DLP (text param, args...)
Macrovoid DLGP (bool guard, text param, args...)
Macrovoid DLHP (function handler, args...)
Macrovoid DLGHP (bool guard, function handler, args...)

And all of the special functions.

The macros such as ‘DL’ depend on the GNU CC variable number of arguments to macros
extension. If you wish to compile your code on other systems you might wish to use the following
variations on ‘DL’, etc.

28 GNU Nana: improved support for assertions and logging in C and C++

Macrovoid VDL ((args...))
Macrovoid VDLG ((bool guard, args...))
Macrovoid VDLH ((function handler, args...))
Macrovoid VDLP ((text param, args...))
Macrovoid VDLGP ((bool guard, text param, args...))
Macrovoid VDLHP ((function handler, args...))
Macrovoid VDLGHP ((bool guard, function handler, args...))

Each of these macros calls the corresponding function from the previous group, i.e. by
default ‘VDL’ is equivelant to a call to ‘DL’. If ‘WITHOUT_NANA’ is defined then the call
too ‘VDL’ is equivelant to ‘/* empty */’.

Thus you can have debugging under GCC whilst the code is still portable to other
compilers. However debugging information will not be available on other platforms.

Note: the argument list is surrounded by two sets of brackets. For example:

VDL(("haze in darwin = %d\n", 3.4));

Macroint DL LEVEL
Used to enable and disable logging independently of guard expressions.

2 Always print message

1 Print message only if the guard expression is true.

0 Never print any messages.

Defaults to 1.

Macrotext DL DEFAULT HANDLER
The default handler for printing which is simply the name of the printing function.

Defaults to printf

Macrobool DL DEFAULT GUARD
Defaults to TRUE.

Macrotext DL DEFAULT PARAMS
Defaults to stderr

Macroflag DL SHOW TIME
Each message can be given an individual time stamp by defining DL_SHOW_TIME. This
causes the _L_gettime routine to be called before each message which generates the
timestamp. A default version is provided by the nana library.

Chapter 4: Interface 29

4.9 GDB.h: sending plain gdb commands to the debugger

‘GDB.h’ provides macros for generating user specified commands in the output of the ‘nana’
command. They are not included by default in the ‘nana.h’ file. Note that these macros have no
effect unless you run your program under the debugger and read in the commands generated by
the ‘nana’ command. You also need to compile the program with the ‘-g’ option.

Macrovoid GDB (command)
Emit a single line command when running this file through ‘nana’. Note that each line
must be passed off separately to the ‘GDB’ macro.

This could be used to set debugger options or to define procedures inside ‘gdb’, e.g.

GDB(define checkstack);
GDB(if 0 <= n && n <= 10);
GDB(print "stack ok");
GDB(else);
GDB(print "stack corrupted");
GDB(end);
GDB(end);

Macrovoid GDBCALL (command)
Causes a single gdb command to be executed whenever control passes through this line
of code. After the user’s command is executed control automatically returns to the
program.

GDBCALL(set memory_check = 1)

These macros could used for instrumenting code or setting up test harnesses, e.g.

GDB(set $siocall = 0);
GDB(set $sioerr = 0);

void sio_driver() {
GDBCALL(set $siocall++)
if(SIO_REQ & 0x010) {

GDBCALL(set $sioerr++);
...

}
}

4.10 Q.h: support for quantifiers

‘Q.h’ provides support for the quantifiers of predicate logic. For example to check that all
elements in a data structure have some property we would use universal (forall, upside down A)
quantification. To check that one or more values in a data structure have some property we would
use existential (exists, back the front E) quantification. For example:

30 GNU Nana: improved support for assertions and logging in C and C++

/* all values in a[] must be between 0 and 10 */
I(A(int i = 0, i < n_array, i++, 0 <= a[i] && a[i] <= 10));

/* there exists a value in linked list l which is smaller than 10 */
I(E(node *p = l, p != NULL, p = p->next, p->data <= 10));

The first three arguments to ‘A’ and ‘E’ are similar to a C ‘for’ loop which iterates over the
values we wish to check. The final argument is the expression that must be true.

The only minor difference from the C ‘for’ loop is that variables may be declared at the start
of the loop, even if you are using C rather than C++ which already supports this.5

The ‘Q.h’ macros can also be nested and used anywhere a boolean value is required. For example:

if(A(int i = 0, i < MAXX, i++,
A(int j = 0, j < MAXY, j++,

m[i][j] == (i == j ? 1 : 0)))) {
/* identity matrix, i.e. all 0’s except for 1’s on */
/* the diagonal */
...

} else {
/* not an identity matrix */
...

}

The results from these macros can also be combined using boolean operations, e.g.

/* the values in a[i] are either ALL positive or ALL negative */
I(A(int i = 0, i < MAX, i++, a[i] >= 0)

||
A(int i = 0, i < MAX, i++, a[i] < 0));

Portability: note the macros in this file require the GNU CC/C++ statement expression extension
of GCC to work. If you’re not using GNU CC then for now you are out of luck. At some time in
the future we may implement a method which will work for standard C++, standard C is a bit of
a challenge.

Portability: unfortunately these macros do not work for the ‘DI’ and ‘DL’ macros since the
statement expression extension has not been implemented in GDB.

Macrobool A (init,condition,next,exprn)
For all values generated by ‘for(int;condition;next)’ the exprn must be true.

I(A(int i = 0, i < MAX, i++, a[i] >= 0)); /* all a[i] are +ve */

5 ANSI C does not allow variable declarations at the beginning of loops unlike C++. The ‘Q.h’
macros get around this by starting each loop with a new scope.

Chapter 4: Interface 31

Macrobool E (init,condition,next,exprn)
There exists at least one value for exprn generated by ‘for (int;condition;next)’ which
is true.

/* one or more a[i] >= 0 */
I(E(int i = 0, i < MAX, i++, a[i] >= 0));

Macrolong C (init,condition,next,exprn)
Returns the number of times the exprn is true over the values generated by
‘for(int;condition;next)’.

/* 3 elements of a[] are +ve */
I(C(int i = 0, i < MAX, i++, a[i] >= 0) == 3);

Macrobool E1 (init,condition,next,exprn)
There exists only one value generated by ‘for(int;condition;next)’ for which the exprn
is true.

/* a single elements of a[] is +ve */
I(E1(int i = 0, i < MAX, i++, a[i] >= 0));

Macrotypeof(exprn) S (init,condition,next,exprn)
Sum the values generated by exprn for all values given by ‘for(int;condition;next)’.
The type of the value returned is given by the type of the exprn.6

/* sum of a[] is 10 */
I(S(int i = 0, i < MAX, i++, a[i]) == 10);

/* sum of all +ve numbers in a[] is 10 */
I(S(int i = 0, i < MAX, i++, a[i] >= 0 ? a[i] : 0) == 10);

Macrotypeof(exprn) P (init,condition,next,exprn)
Returns the product of the values generated by exprn for all values given by
‘for(int;condition;next)’. The type returned is the type of the expression.

/* product of all the values in a[] is 10 */
I(P(int i = 0, i < MAX, i++, a[i]) == 10);

/* a = x^y i.e. x*x..*x y times */
I(P(int i = 0, i < y, i++, x) == a);

6 This uses yet another GNU CC extension, however since we are already using statement expres-
sions we might as well use ‘typeof’ as well.

32 GNU Nana: improved support for assertions and logging in C and C++

4.11 Qstl.h: quantifiers for STL containers.

The Standard Template Library (STL) is a library for C++ that makes extensive use of templates
to implement the standard container classes and much more. Each of the container classes provides
an interface to iterate over all the objects in the container, e.g.

// MAP is an associate array from location(lat,long) onto the name.
typedef map<location,string,locationlt> MAP;

void print_map_names(MAP& m) { // print out all the names in the map
for(MAP::iterator i = m.begin(); i != m.end(); ++i) {

cout << (*i).second << "\n";
}

}

‘Qstl.h’ provides the same facilities as ‘Q.h’ but uses the standard STL iterator protocol shown
above. The names in ‘Qstl.h’ are generated by appending a ‘O’ (O not zero!) to the names in
‘Q.h’. In particular:

Macrobool AO (name,container,predicate)
For all values in the container class the predicate must be true. The predicate refers to
individual values using name. See the STL documentation for more details. Another
way of putting this is forall name in container the predicate must be true.

map<int,char *,ltint> m;
// all keys (or indexes) into m are positive
I(AO(i, m, (*i).first >= 0));

Macrobool EO (name,container,predicate)
There exists one or more values in the container class for which the predicate is true.

map<int,char,ltint> m;

// one or more characters in m are ’$’
I(EO(i, m, (*i).second == ’$’));

Macrobool E1O (name,container,predicate)
There exists one value in the container for which the predicate is true.

map<int,char,ltint> m;

// one characters in m is a ’$’
I(E1O(i, m, (*i).second == ’$’));

Macroint CO (name,container,predicate)
Returns the number of times the predicate was true for all values in the container.

Chapter 4: Interface 33

map<int,char,ltint> m;
int nalpha;
// count the number of alphabetic chars in the map
nalpha = CO(i, m, isalpha((*i).second));

Macrotypeof(exprn) SO (name,container,exprn)
Sum the exprn for all values in the container.

map<int,float,ltint> m;
float sum;
// sum all the values in m
sum = SO(i, m, (*i).second);

Macrotypeof(exprn) PO (name,container,exprn)
Take the product of the exprn for all values in the container.

map<int,float,ltint> m;
float product;
// multiply all the values in m
product = PO(i, m, (*i).second);

4.12 now.h: measuring time

The ‘now.h’ file provides some simple time measurement routines. It is not included in ‘nana.h’
so you must include this file separately.

It uses the ‘gettimeofday’ system call and has an accuracy of between 1us and 10ms depending
on the operating system and hardware configuration.

See the IPM package if you require better measurement tools.7

Functiondouble now ()
Returns the time in seconds since the beginning of time as defined by your system. If
you call ‘now_reset’ the time will start again at 0.

Functiondouble now reset ()
Reset the times returned by ‘now’ to 0.

Functiondouble now delta (double *dp)
Returns the elapsed time between *dp and now(). It then sets *dp to now, thus giving
a delta time between particular events.

7 In the fullness of time, we may integrate these routines in here.

34 GNU Nana: improved support for assertions and logging in C and C++

t = now();
for(;;) {

...; /* code that must finish in 50ms */
I(now_delta(&t) <= 0.050);

}

4.13 cycles.h: access to CPU cycle counting registers.

Some modern CPU’s provide user accessible registers or special intstructions which can access
a counter driven directly by the CPU clock. The ‘cycles.h’ library provides access to these
instructions together with some calibration and utility routines.

Currently we only provide support for Pentium/Cyrix machines using the ‘RDTSC’ instruction. If
you want to use these routines you need to run the ‘configure’ script with the ‘--enable-rdtsc’
option. Other machine architectures will be supported as time goes on.

typedefCYCLES long long
The CPU cycle measurement type, typically a 64 bit unsigned integer.

MacroCYCLES cycles ()
Returns the current value for the cycle counter.

FunctionCYCLES cycles per second (double t, int n)
Returns an estimate of the number of cycles per second using the ‘now.h’ library.
The measurement is taken n times using a measurement period of t seconds for each
measurement. The minimum and maximum values for the measurement are set by
each call to ‘cycles_per_second’ and are available from the next two functions.

FunctionCYCLES cycles per second min ()
FunctionCYCLES cycles per second max ()

Return the minimum or maximum of the measurements carried out by the previous
call to ‘cycles_per_second’.

Functiondouble cycles diff (CYCLES start, CYCLES stop)
Returns the time difference between start and stop cycles in seconds as a double. As
usual there are a few requirements:

• ‘cycles_per_second’ must be called before hand to calibrate the cycle time with
the real time clock.

• start must be less than or equal to stop. Note we do not handle wraparound
currently since the counters start at 0 and are 64 bits long and so will not overflow
in a reasonable period.8

• The difference between the start and stop times should be able to be represented
in a ‘double’, lest overflow and misery follow.

• CPU clocks tend to vary a bit with temperature etc, trust this and die.

8 Famous last words I know but: (2^64)/(1e9*60*60*24*365) = 584 yrs.

Chapter 4: Interface 35

4.13.1 RDTSC: cycle timing for Pentium, Cyrix, etc

The RDTSC instruction is used for cycle timing on Pentiums and other compatible CPUs such
as the Cyrix chip set. Note that this instruction does not exist on earlier CPUs in the series.

We could of course try to discover the CPU type at compile or run time and then use the
appropriate instruction. This has all sorts of problems, e.g. if we compile on a i586 does that mean
it will be run on the same CPU (no of course not....).

For now we use the ‘--enable-rdtsc’ option for ‘./configure’.

4.14 eiffel.h: eiffel type assertions

Eiffel is a very nice language which provides the assertion checking facilities of nana inside the
language itself. The ‘eiffel.h’ library is intended to provide a similar setup to Eiffel in the C++
language.

4.14.1 EIFFEL CHECK: enabling and disabling checking.

Assertion checking is controlled by the EIFFEL CHECK macro which can take on any of the
following values:

CHECK_NO Disable all checking.

CHECK_REQUIRE
Check the preconditions for each method.

CHECK_ENSURE
And also check the postconditions.

CHECK_INVARIANT
And also check the class invariant before and after each method is called. The pro-
grammer should provide a class method called ‘invariant’ which returns ‘true’ if the
object is consistent, ‘false’ otherwise.

CHECK_LOOP
And also check the loop invariants.

CHECK_ALL
And also check any assertions using the ‘CHECK’ instruction.

Note that the default value for EIFFEL_CHECK is CHECK_REQUIRE, i.e. check preconditions only.

A typical compile flag to the compile might be:

% g++ -c -DEIFFEL_CHECK=CHECK_ALL play.cc

36 GNU Nana: improved support for assertions and logging in C and C++

4.14.2 DOEND: adding DO ... END

At the suggestion of Bertrand Meyer (Eiffel’s author) the DO and END macros have been added
to ‘eiffel.h’. Note that these are only available if you define the EIFFEL_DOEND macro. To use
these macros each of your methods should use DO ... END as their outermost brackets. For example:

// compiled with EIFFEL_DOEND defined
void Stack::push(int n)
DO // checks the class invariant + {

...
END // check the class invariant + }

If you do not define the EIFFEL_DOEND macro then ‘eiffel.h’ reverts to its old behaviour where
‘REQUIRE’ and ‘ENSURE’ also check the class invariant. Thus to check the class invariant when you
are not using DO and END you would need to call REQUIRE and ENSURE, for example:

// compile with EIFFEL_DOEND undefined (i.e. old behaviour)
void Stack::push(int n)
{
REQUIRE(true); // checks the invariant as well as the precondition

ENSURE(true); // checks the invariant as well as the postcondition
}

As for which one to option to pick, Bertrand Meyer is in favour of the DO ... END solution.

4.14.3 REQUIRE, ENSURE, CHECK, etc.

Here are the individual checking macros:

Macrovoid REQUIRE (exprn)
Called at the beginning of each method to check its precondition (requirements). For
example:

void Stack::push(int n) {
REQUIRE(!full()); // stack has space for push
...

}

If EIFFEL_DOEND is not defined this also checks the class invariant.

Macrovoid ENSURE (exprn)
Called at the end of each method. This checks the postcondition for a method and the
class invariant.

void Stack::push(int n) {
...
ENSURE(!empty()); // it can’t be empty after a push!

Chapter 4: Interface 37

}

If EIFFEL_DOEND is not defined this also checks the class invariant.

Macrovoid INVARIANT (exprn)
Used to check a loop invariant.

Macrovoid CHECK (exprn)
Used for any other inline assertions. For example:

CHECK(z != 0);
x = y / z;

And finally a small example:

#include <eiffel.h>

class example {
int nobjects;
map<location,string,locationlt> layer;

public:
bool invariant(); // is this object consistent
void changeit(location l);

};

bool example::invariant() {
return AO(i,layer,valid_location((*i).first)) &&

nobjects >= 0;
}

void example::changeit(string n, location l) {
REQUIRE(E1O(i,layer,(*i).second == n));
...;
while(..) {

INVARIANT(...);
...
INVARIANT(...);

}
...
CHECK(x == 5);
...
ENSURE(layer[l] == n);

}

Note that the invariant checking macro ‘example::invariant’ is called automatically on func-
tion entry/exit using the ‘REQUIRE’ and ‘ENSURE’ macros if ‘EIFFEL_CHECK’ is not defined.

38 GNU Nana: improved support for assertions and logging in C and C++

4.15 assert.h: a drop in replacement for assert.h

A drop in replacement for ‘assert.h’ is provided in the ‘src’ directory. It is not installed by
default. If you wish to use it then you need to copy it to your include directory by hand.

This might be of use if you are already using ‘assert.h’ and wish to save some code space since
the nana implementation is more space efficient.

Calls to ‘assert’ are translated to calls to ‘I’ and can be disabled by defining ‘NDEBUG’.

4.16 calls.h: checking/printing many objects/facts.

The ‘calls’ module implements a simple list of functions which can be modified and executed
at run-time. It is similar in spirit to the ANSI C ‘atexit’ function. It is intended to be used for:

• Checking the consistency of the components in your system.

For example each module could register a self checking function which uses the rest of the nana
library. All of these functions would then be called using ‘calls.h’ to check that the entire
system is consistent.

• Printing out the state of your program in a readable format.

Typetypedef FUNC
A pointer to a ‘void’ function which takes a single ‘void*’ argument. The ‘void *’
argument is intended to be used to pass information such as arguments or pointers to
objects (e.g. ‘this’ in C++). All of the checking/printing functions must be of this
type, e.g.

void print_object(void *f) {
...;

}

Typestruct CALL
This structure represents a single call to a function, i.e. a function pointer (‘FUNC’) and
the ‘void*’ argument.

CALL *head = 0;

Functionvoid calls add (CALL **head, FUNC fp, *arg)
Adds a call to function ‘fp’ with argument ‘arg’ to the list pointed to by ‘head’.

CALL *global_checks = 0;

calls_add(&global_checks,complex_ok,(void *)x);

Functionvoid calls exec (CALL **head, FUNC fp, void *arg)
Execute all/some of the calls in the list given by ‘head’. The arguments ‘fp’ and ‘arg’
must both match for each individual call. The null pointer (‘0’) matches anything

Chapter 4: Interface 39

whilst any other value requires an exact match between the ‘CALL’ and the arguments
to ‘calls_exec’. For example:

calls_exec(&l,0,0); /* execute all functions in l */
calls_exec(&l,complex_print,0); /* calls complex_print(*) in l */
calls_exec(&l,0,(void*) &b); /* calls *(&b) in l */
calls_exec(&l,f,(void*) &b); /* calls f(&b) in l */

Functionvoid calls delete (CALL **head, FUNC fp, void *arg)
Delete all/some of the calls in the list given by ‘head’. The arguments ‘fp’ and ‘arg’
must both match for each individual call. The null pointer (‘0’) matches anything
whilst any other value requires an exact match between the ‘CALL’ and the arguments
to ‘calls_delete’. For example:

calls_delete(&l,0,0); /* delete all functions in l */
calls_delete(&l,complex_print,0); /* delete complex_print(*) in l */
calls_delete(&l,0,(void*) &b); /* delete *(&b) in l */
calls_delete(&l,f,(void*) &b); /* delete f(&b) in l */

Note: that calls are added to the head of the list rather than the tail. This means that the most
recently added call will be executed first (as in a stack).

40 GNU Nana: improved support for assertions and logging in C and C++

Chapter 5: Nana Shortform Generator. 41

5 Nana Shortform Generator.

The Eiffel language provides a shortform of a class which consists of the exported methods and
their pre and post conditions. The private part of the class such as the code is hidden in this form
leaving only:

1. Arguments and return values for methods.

2. ‘REQUIRE’ and ‘ENSURE’ calls which specify the precondition and postconditions of each method.

This is useful to provide a summary of what the code does and how to use it rather than how
it works.

Nana provides a similar service which can be used to generated a HTML version of the short
form of your program automatically. The code for this is kept in ‘shortform’. Do a ‘make example’
to build an example document.1

Consider the following program:

/* smallex.c - a small example */

#include <stdio.h>
#include <math.h>
#include <eiffel.h>

void sort(int *v, int n) {
int i;
REQUIRE(v != NULL &&

0 <= n);

for(i = 0; < n; i++) { /* at last, an O(n) sort! */
v[i] = i;

}
/* And no, this isn’t what most people think of as sorting */

ENSURE(A(int i = 0, i < n - 1, i++,
v[i] <= v[i+1]));

}

Its short form can be generated by using the ‘nana-sfg’2 program which generates:

% nana-sfg smallex.c
...
#include <stdio.h>
#include <math.h>
#include <eiffel.h>

1 Note you need to install the GLOBAL package first. This is installed by default on FreeBSD
systems. If you do not have the GLOBAL package read on.

2 The name ‘nana-sfg’ stands for either Nana Short Form Generator or Nana Science Fiction
Generator. Personally I prefer the later derivation.

42 GNU Nana: improved support for assertions and logging in C and C++

...
void sort(int *v, int n) {
...
REQUIRE(v != NULL &&

n >= 0);
...
ENSURE(A(int i = 0, i < n, i++,

v[i] <= v[i+1]));
}
%

The ‘nana-sfg’ program is a small AWK program which processes its arguments into shortform
and always writes to the standard output. If it is passed no arguments it works as a normal UNIX
filter reading from the standard input.

It is suggested that a copy of ‘nana-sfg’ be kept in each projects ‘bin’ directory so that it
can be modified for local taste. The user will probably wish to modify the rules for short form
generation. For example you might add rules such as:

/^\/\// { emit(); } # print out C++ comments in column 1
/^\/*\+/,/*\// { emit(); } # print out multi-line /*+ ... */ comments

Of course for a real project you need to run ‘nana-sfg’ over the entire source tree. To do this
you can use the ‘nana-sfdir’ program.

% nana-sfdir

This command simply creates a copy of the source tree in the current directory under ‘NANASF’
using the ‘nana-sfg’ program. You can then run a source code to HTML translator over the
‘NANASF’ directory. Currently we are using the GLOBAL package which was written by Shigio
Yamaguchi which available from:

• ‘http://wafu.netgate.net/tama/unix/global.html’ – the GLOBAL homepage.

• ‘ftp://ftp.cs.ntu.edu/pub/nana/global-2.24.tar.gz’ – a local (well for Darwin at least)
copy of the GLOBAL package.

The alert reader will perhaps be asking themselves why we did not simply modify GLOBAL.
Well that was the original idea, however after a bit of thinking it seemed better to separate the
generation of the short form of the code from the generation of the HTML. This gives us the
ability to use other translators and other tools. It also simplifies the interaction between nana and
GLOBAL. For information on other translators see:

• ‘http://www.zib.de/Visual/software/doc++/index.html’ – DOC++ homepage.

• ‘http://www.webnz.com/webnz/robert/cpp_site.html#Documentation’ – an index of other
translation tools (e.g. to LaTeX).

Chapter 6: Nana Performance Measurement 43

6 Nana Performance Measurement

A tool is provided for measuring code/time requirements for arbitrary code fragments. This is
kept in the ‘perf’ directory and is not built by default. If you wish to use this tool use the following
targets:

% cd perf
% make perf

The output is ‘perf.tex’, ‘perf.dvi’ and ‘perf/index.html’.

Note that the measurement requires the following:

• GNU CC – it uses the GNU address of label extension to calculate the size in bytes of a code
fragment.

• Time is measured using the nana ‘now()’ function.

• LaTeX – to generate the document from ‘perf.tex’.

• LaTeX2HTML – to generate a HTML version of ‘perf.tex’.

As an indication of the values you can expect here is part of the results for ‘make perf’ on a
200Mhz Cyrix MMX (i386) chip which runs at about 200 BogoMips under FreeBSD 2.2.6 with ‘-O’.

‘assert(i >= 2);’ 28 bytes, 19ns.

‘TRAD_assert(i >= 2);’ 47 bytes, 20ns.1

‘I(i >= 2);’ 9 bytes, 18ns.

‘DI(i >= 2);’ 1 byte, 147.4us.

‘I(A(int i=0, i!=10, i++, a[i]>=0));’ 28 bytes, 287ns.

‘d = now();’ 8 bytes, 3.1us.

‘printf("helloworld\n");’ 13 bytes, 9.1us.

‘L("helloworld\n");’ 18 bytes, 8.9us.

‘DL("helloworld\n");’ 1 byte, 26.4us.

Note that these measurements were on a system that was configured with ‘I_DEFAULT=fast
./configure’. The default output of ‘./configure’ produces nice error messages at the cost of
increased code space.

1 This is the traditional assert which uses ‘fprintf’ and ‘exit’ in a macro. The BSD ‘assert’
macro used in FreeBSD is a bit smarter and calls a function to do the message printing and
exiting. Note that the real cost of this function is even higher since we are only measuring the
code space requirements, not the space required for the message strings.

44 GNU Nana: improved support for assertions and logging in C and C++

Chapter 7: Tracing tools 45

7 Tracing tools

A few tools for execution tracing and logging are available in the ‘gdb’ directory and are installed
by default. They are simple shell scripts and may be of some use in testing/development. Note
that ‘gdb-4.17’ may be required on some machines for this stuff to work properly.

7.1 Statement level tracing

The ‘nana-trace’ executes a program and generates a message for each line of code executed
(a statement trace). The statement level trace is useful for things such as:

• Understanding code.

• Measuring test coverage.

• Comparing runs of the code when regression testing, e.g. verifying that change X only changes
the behaviour of program P for test case Z.

For example the ‘make ex-trace’ command in ‘gdb’ generates:

% make ex-trace
gcc -g test.c
sh ./nana-trace a.out
47 setbuf(stdout, NULL); /* disable buffering */
49 printf("** main()\n");
** main()
50 printf("** 1: %d\n", distance(1,-5));
distance (i=1, j=-5) at test.c:43
43 return abs(i - j);
abs (i=6) at test.c:35
35 if(i >= 0) {
36 return i;
40 }
distance (i=1, j=-5) at test.c:44
44 }
** 1: 6
main () at test.c:51
51 printf("** 2: %d\n", distance(twice(1),-5));
twice (i=1) at test.c:29
29 i = i * 2;
31 return i ;
32 }
distance (i=2, j=-5) at test.c:43
43 return abs(i - j);
abs (i=7) at test.c:35
35 if(i >= 0) {
36 return i;
40 }
distance (i=2, j=-5) at test.c:44
44 }
** 2: 7

46 GNU Nana: improved support for assertions and logging in C and C++

main () at test.c:52
52 printf("** 3: %d\n", distance(3,-5));
distance (i=3, j=-5) at test.c:43
43 return abs(i - j);
abs (i=8) at test.c:35
35 if(i >= 0) {
36 return i;
40 }
distance (i=3, j=-5) at test.c:44
44 }
** 3: 8
main () at test.c:53
53 }

7.2 Library tracing

On most UNIX machines there exists a tool for tracing the system calls executed by a program.
If you haven’t used one of these tools (e.g. ktrace) then now is a good time to learn. Being able to
trace the User/Kernel interface is an excellent way to understand complex applications.

The ‘nana-libtrace’ facility generalises this idea to provide a GDB based function call tracer
for all functions in which are defined in a particular library. For example the ‘make ex-libtrace’
command in the ‘gdb’ directory produces a trace of all calls to ‘libc’.

• ‘nana-libtrace a.out’ – reads a list of function names one per line from the standard input
and writes the corresponding gdb(1) script to the standard output. Note that all functions
specified in the input must exist in the executable for them to be passed through to the output.
This may require compilation of your program with ‘-static’ linking.1 For example:

% gcc -g -static test.c -lm
% ./nana-libtrace a.out >test.gdb
printf
write
% cat test.gdb
break printf
command $bpnum
silent
where 1
cont
end
break write
command $bpnum
silent
where 1
cont
end
% nana-run a.out -x test.gdb

1 If possible we should replace the call to ‘nm’ with a call to something which can print all the
symbols for a dynamically linked library. Unfortunately GDB gets upset if you try to set a
breakpoint for a function that does not exist. I suppose we could use gdb to print the symbol
list out.

Chapter 7: Tracing tools 47

Breakpoint 1 at 0x1483: file /usr/.../libc/stdio/printf.c, line 65.
Breakpoint 2 at 0x8c78
#0 printf (fmt=0x1116 "** main()\n")

at /usr/src/lib/libc/../libc/stdio/printf.c:65
#0 0x8c78 in write ()
** main()
#0 printf (fmt=0x1121 "** 1: %d\n")

at /usr/src/lib/libc/../libc/stdio/printf.c:65
#0 0x8c78 in write ()
** 1: 6
#0 printf (fmt=0x112b "** 2: %d\n")

at /usr/src/lib/libc/../libc/stdio/printf.c:65
#0 0x8c78 in write ()
** 2: 7
#0 printf (fmt=0x1135 "** 3: %d\n")

at /usr/src/lib/libc/../libc/stdio/printf.c:65
#0 0x8c78 in write ()
** 3: 8

Program exited with code 010.

• ‘nana-libtrace a.out /usr/lib/libc.a’ – trace all calls to ‘libc’ from ‘a.out’. A subset of
the output is given below:

#0 printf (fmt=0x1135 "** 3: %d\n")
at /usr/src/lib/libc/../libc/stdio/printf.c:65

#0 vfprintf (fp=0xa1d4, fmt0=0x1135 "** 3: %d\n", ap=0xefbfd888 "\b")
at /usr/src/lib/libc/../libc/stdio/vfprintf.c:428

#0 vfprintf (fp=0xefbfd5b8, fmt0=0x1135 "** 3: %d\n", ap=0xefbfd888 "\b")
at /usr/src/lib/libc/../libc/stdio/vfprintf.c:428

#0 __sfvwrite (fp=0xefbfd5b8, uio=0xefbfd184)
at /usr/src/lib/libc/../libc/stdio/fvwrite.c:68

#0 0x8ff8 in memcpy ()
#0 0x8ff8 in memcpy ()
#0 __sfvwrite (fp=0xefbfd5b8, uio=0xefbfd184)

at /usr/src/lib/libc/../libc/stdio/fvwrite.c:68
#0 0x8ff8 in memcpy ()
#0 fflush (fp=0xefbfd5b8) at /usr/src/lib/libc/../libc/stdio/fflush.c:60
#0 __sflush (fp=0xefbfd5b8) at /usr/src/lib/libc/../libc/stdio/fflush.c:84
#0 __swrite (cookie=0xa1d4, buf=0xefbfd1b8 "** 3: 8\nain()\n", n=8)

at /usr/src/lib/libc/../libc/stdio/stdio.c:78
#0 0x8c78 in write ()
** 3: 8

Note that your library code must be compiled with ‘-g’ to put in the debugging information
if you wish to have the arguments displayed symbolically. This is fairly easy on most systems,
e.g on FreeBSD you edit the global compile options ‘/etc/make.conf’ and rebuild/install the
entire system.

Ideally we would also like to be able to trace only entry calls and not internal calls to libc. This
can be done by inserting a counter which is incremented on call and decremented on return.
We print the trace messages iff the counter is 1. This extension (perhaps to GNU libc) may
be written if people are interested.

48 GNU Nana: improved support for assertions and logging in C and C++

Chapter 8: Using Nana 49

8 Using Nana

This chapter is intended to provide some hopefully useful examples of Nana. If any of the users
of this library would be so kind as to contribute a section on their usage I would be obliged.

This section is under development

8.1 Simplest example

As a nice simple, indeed trivial example consider the following:

1. Include ‘nana.h’ in your project wide include file.

2. Use ‘I’ to check invariants in your code. In particular all functions or methods should be
required to check their pre and post conditions.

3. Use ‘DL’ to print debugging messages in your code. This means that debugging messages only
occur when you run the program under the debugger.1

8.2 Syslog

‘syslog’ is a comprehensive logging system written by Eric Allman which is available on most
UNIX systems. It provides facilities for sorting messages by source or severity and mechanisms for
sending messages off to files, terminals or other machines. See chapter 12 of the "UNIX System
Administration Handbook (2nd Edition)" by Nemeth, Snyder, Seebass and Hein for an excellent
tutorial on ‘syslog’.

The rules used by ‘syslog’ are normally defined in ‘/etc/syslog.conf’. Each line specifies the
destination for messages with particular sources and priorities. For example:

log mail messages at priority info to mailinfo
mail.info /var/log/mailinfo
log all ftp information to syslog on a remote machine
ftp.* @remote-machine.cs.ntu.edu.au
all critical errors to console
*.crit /dev/console

To use ‘syslog’ we merely redefine the default handlers and parameter values for ‘nana’. For
example:

#include <syslog.h>
#define L_DEFAULT_HANDLER syslog /* replaces fprintf(3) by syslog(3) */
#define L_DEFAULT_PARAMS LOG_USER /* default priority for syslog info */
#include <nana.h>

1 Of course you also need to use the gdb commands generated by the ‘nana’ command, perhaps
using ‘nana-clg’.

50 GNU Nana: improved support for assertions and logging in C and C++

int main() {
openlog("nana", /* identifier for these log messages */

LOG_PID, /* also log the process id */
LOG_DAEMON /* facility */

);

L("temperature is falling to %d", 35); /* logged at LOG_USER priority */
LP(LOG_CRIT, "the snow is falling in Darwin"); /* LOG_CRIT message */

closelog();
return 0;

}

This program results in the following addition to ‘/var/adm/messages’:

Jun 12 16:04:46 chingiz nana[2671]: the temperature is falling to 35
Jun 12 16:04:46 chingiz nana[2671]: the snow is falling in Darwin

In addition the ‘LOG_CRIT’ message about snow falling in Darwin is sent to the console for
immediate action.

Note: ‘syslog’ normally uses ‘UDP’ for its network communications and that ‘UDP’ does not
guarantee delivery.

8.3 GNU Programs: how to avoid nana sometimes

Imagine you2 are building a GNU program. Ideally it should run on systems without any other
software including GCC, GDB and even Nana.

To achieve this noble goal you can provide your configure script with a ‘--without-nana’3 flag
which then ‘#define’s’ ‘WITHOUT_NANA’. You should also use the ‘VL’ macro rather than ‘L’ macro
since ‘L’ takes a variable number of arguments and will break non GNU C preprocessors.

int half(int n) {
/* Don’t use L(...) since it takes a variable number of args! */
VL(("hello world = %d\n", 10)); /* Note the doubled ((*/
...;

}

8.4 Embedded Systems: testing non-deterministic systems.

One of the uses (in fact the original use) for nana is in the testing of non-deterministic systems.
These systems behave in a different way each time they are run because of timing or measurement
noise. Thus you can’t just ‘diff’ the results against a known good run since they run differently
each time.

2 Gordon Matzigkeit contributed some of the ideas presented here and raised this problem.
3 Or add a ‘--with-nana’ flag to configure that does the opposite.

Chapter 8: Using Nana 51

Instead you can use a series of programs which execute over a the results of the program and
check that the behaviour meets the specification automatically.

8.5 Realtime Systems

Assertions for the timing behaviour of you system can be done in nana nicely. You might also
consider using an instruction level simulator such as PSIM and use the ‘cycles’ variable to test
realtime constraints.

8.6 A database

Ah databases, business boffins using assertions. It would nice to get a real example for this one!

8.7 Program Visualisation: pretty pictures

One nice way to use ‘L’, ‘DL’, etc is to punt off the messages off to a program which displays
the information. You would use the ‘L_DEFAULT_PARAM’ argument to send commands off to a pipe
with gnuplot or TCL/TK interpreter running at the end.

For a small example of this, see ‘tcl/status.c’.

52 GNU Nana: improved support for assertions and logging in C and C++

Chapter 9: FAQ 53

9 FAQ

This chapter is intended to answer some general questions about the usage of Nana. Most of
the material (perhaps) has been presented elsewhere, my apologies for repeating myself.

1. Can I use GNU Nana in a commercial product?

See the license details in the file ‘COPYING’. In summary GNU Nana is Free software which has
been released under a license that allows commercial use provided the copyright is maintained.
It is not under the GPL.

2. How do you completely disable assertion checking?

Set the ‘I_LEVEL’ command to ‘0’ using ‘-D’ or ‘#define’ before including ‘nana.h’.

3. How do I find out about future releases?

Subscribe to the nana mailing list by using the ‘make subscribe’ target in the nana root
directory.

4. Where do I send bug reports, suggestions, etc?

‘nana-bug@it.ntu.edu.au’ – bug archive

‘nana@it.ntu.edu.au’ – mailing list

‘pjm@gnu.org’ – the author

54 GNU Nana: improved support for assertions and logging in C and C++

Chapter 10: Future work 55

10 Future work

As usual, there is more work to be done than time to do it in. Workers or test pilots are
invited to apply for the following tasks which may get down in the fullness of time minister. I’m
particularly interested in which projects people think are worthwhile (or rubbish).

1. Ada support - pre 1.00 versions of nana provided support for Ada. Adding a full version of
nana into the GNATS compiler would probably be useful, particularly the real time part.

2. FORTRAN support.

3. Message browsing (‘emacs/fess.el’) - a very prototypical mode for browsing message logs is
distributed with nana. Features include hiding/showing lines by regular expression or predi-
cate. If someone who knows what they are doing rewrites this that would be a good thing. Or
perhaps a modified version of ‘less’ would be useful.

4. Program Visualisation (‘tcl/status.c’) - another prototype which uses a small TCL/TK
library and nana logging to generate some nice pictures showing the behaviour of the program.
For example the history of variables over time can be recorded, graphs drawn and long message
logs kept. A new version of this has been created and may be released shortly.

5. Automated Testing - combine nana logs with a workbench that lets you verify properties of
the logs using programs ‘gawk’ or the ‘PRECC’ (LL infinity version of YACC). This technique
has been used on industrial strength products quite successfully.

6. GNU standards - perhaps it would be worthwhile to set up a prototype for checking and logging
in GNU tools.

7. Extend GDB(1) so that we can support ‘Q.h’ style quantifiers in ‘DI.h’ expressions. Basically
we need to add a restricted form of the statement value expression to GDB.

8. Support for other (particularly ANSI only) compilers.

56 GNU Nana: improved support for assertions and logging in C and C++

Appendix A: Index 57

Appendix A Index

0
0 . 18, 21, 23, 28

1
1 . 18, 21, 23, 28

2
2 . 18, 21, 23, 28

A
A . 2, 30

abort() . 10

ALWAYS INCLUDE MALLOC . 10

AO . 32

asm("hlt") . 10

asm("unimp") . 10

C
C . 2, 31

calls add . 38

calls delete . 39

calls exec . 38

CHECK. 37

CHECK ALL . 35

CHECK ENSURE . 35

CHECK INVARIANT . 35

CHECK LOOP . 35

CHECK NO . 35

CHECK REQUIRE . 35

CO . 32

cycles . 34

CYCLES . 34

cycles diff . 34

cycles per second . 34

cycles per second max . 34

cycles per second min . 34

D
DI . 20, 22

DI.h . 17

DI DEFAULT GUARD. 21

DI DEFAULT HANDLER . 21

DI DEFAULT PARAMS . 21

DI LEVEL . 21

DI MAKE VALID BREAKPOINT . 10, 22

DIG . 22

DIGH . 22

DIGHP. 22

DIGP . 22

DIH . 22

DIHP . 22

DIP . 22

DL . 27

DL.h . 17

DL DEFAULT GUARD. 28

DL DEFAULT HANDLER . 28

DL DEFAULT PARAMS . 28

DL LEVEL . 28

DL MAKE VALID BREAKPOINT . 10

DL SHOW TIME . 28

DLG . 27

DLGHP. 27

DLGP . 27

DLH . 27

DLHP . 27

DLP . 27

DN . 20, 22

DNG . 22

DNGH . 22

DNGHP. 22

DNGP . 22

DNH . 22

DNHP . 22

DNP . 22

DS . 22

DSG . 22

E
E . 2, 30

E1 . 2, 31

E1O . 32

ENSURE . 36

EO . 32

exprn . 19, 21

F
file . 19, 21

G
gcc-2.7.2 . 8

GDB . 10, 29

gdb-4.16+ . 8

GDB.h. 17

GDBCALL . 29

gmake . 8

I
I . 18, 19

I.h . 17

I DEFAULT GUARD . 18

I DEFAULT HANDLER . 10, 19

I DEFAULT PARAMS. 19

I LEVEL . 18

58 GNU Nana: improved support for assertions and logging in C and C++

ID . 20

IG . 19

IGH . 19

IGHP . 19

IGP . 19

IH . 19

IHP . 19

INVARIANT . 37

IP . 19

IS . 20

ISG . 20

L
L . 22

L.h . 17

L BUFFER . 24

L buffer clear . 25

L buffer create . 24

L buffer delete . 24

L buffer dump . 25

L buffer printf . 25

L buffer putchar. 25

L buffer puts . 25

L buffer wraparound . 24

L DEFAULT GUARD . 23

L DEFAULT HANDLER . 23

L DEFAULT PARAMS. 24

L LEVEL . 23

L SHOW TIME . 24

L SHOW TIME FORMAT . 24

L SHOW TIME NOW . 24

L TIMES . 26

L times add . 27

L times clear . 27

L times create . 27

L times delete . 27

L times dump . 27

L times wraparound . 27

LG . 22

LGHP . 23

LGP . 23

LH . 23

LHP . 23

line . 19, 21

LP . 23

N
N . 18, 19

nana-clg . 16

nana-run . 16

nana-trace . 16

NG . 19

NGH . 19

NGHP . 19

NGP . 19

NH . 19

NHP . 19

now . 33

now delta . 33

now reset . 33

NP . 19

P
P . 2, 31

param . 19, 21

PO . 33

Q
Q.h . 17

R
REQUIRE . 36

restart() . 10

S
S . 2, 31

SO . 33

struct . 38

T
typedef . 38

V
VDL . 27

VDLG . 28

VDLGHP . 28

VDLGP. 28

VDLH . 28

VDLHP. 28

VDLP . 28

VL . 23

VLG . 23

VLGHP. 23

VLGP . 23

VLH . 23

VLHP . 23

VLP . 23

i

Short Contents

1 Introduction . 1
2 Installing the Nana library . 7
3 Invoking Nana . 15
4 Interface . 17
5 Nana Shortform Generator. 41
6 Nana Performance Measurement . 43
7 Tracing tools . 45
8 Using Nana . 49
9 FAQ . 53
10 Future work . 55
Appendix A Index . 57

ii GNU Nana: improved support for assertions and logging in C and C++

iii

Table of Contents

1 Introduction . 1
1.1 Related work . 3
1.2 Assert.h considered harmful . 4
1.3 Scope of this document . 5

2 Installing the Nana library . 7
2.1 Required Software . 8
2.2 Optional Software . 8
2.3 Configure . 8
2.4 Variables for ./configure . 10
2.5 Supported Platforms . 10
2.6 Supported Debuggers . 11
2.7 Known Problems . 12
2.8 Bug Reports . 13
2.9 New Versions . 13

3 Invoking Nana . 15

4 Interface . 17
4.1 nana.h: the main header file . 17
4.2 WITHOUT NANA: disabling all nana code for portability. 17
4.3 I.h: C based invariant checking . 18
4.4 DI.h: debugger based invariant checking . 20
4.5 L.h: support for printf style logging . 22
4.6 L buffer.h: a circular buffer for logging. 24
4.7 L times.h: recording events and times. 26
4.8 DL.h: support for printf style logging . 27
4.9 GDB.h: sending plain gdb commands to the debugger. 29
4.10 Q.h: support for quantifiers . 29
4.11 Qstl.h: quantifiers for STL containers. 32
4.12 now.h: measuring time . 33
4.13 cycles.h: access to CPU cycle counting registers. 34

4.13.1 RDTSC: cycle timing for Pentium, Cyrix, etc 35
4.14 eiffel.h: eiffel type assertions . 35

4.14.1 EIFFEL CHECK: enabling and disabling checking. 35
4.14.2 DOEND: adding DO ... END . 36
4.14.3 REQUIRE, ENSURE, CHECK, etc. 36

4.15 assert.h: a drop in replacement for assert.h . 38
4.16 calls.h: checking/printing many objects/facts. 38

5 Nana Shortform Generator.. 41

6 Nana Performance Measurement 43

7 Tracing tools . 45
7.1 Statement level tracing . 45
7.2 Library tracing . 46

iv GNU Nana: improved support for assertions and logging in C and C++

8 Using Nana . 49
8.1 Simplest example . 49
8.2 Syslog . 49
8.3 GNU Programs: how to avoid nana sometimes 50
8.4 Embedded Systems: testing non-deterministic systems. 50
8.5 Realtime Systems . 51
8.6 A database . 51
8.7 Program Visualisation: pretty pictures . 51

9 FAQ . 53

10 Future work . 55

Appendix A Index . 57

