Materialsammlung Grundlagen der Rechnerarchitektur — Neuere Entwicklungen in der Informationstechnologie

Prof. Dr. Hans-Jürgen Buhl

2003

Fachbereich Mathematik (7) Institut für Angewandte Informatik Bergische Universität – Gesamthochschule Wuppertal

> Interner Bericht der Integrierten Arbeitsgruppe Mathematische Probleme aus dem Ingenieurbereich IAGMPI – 9305

> > Juli 2003 6. Auflage, 2003

Praktische Informatik 01

Inhaltsverzeichnis

1	Rec	hnerarchitekturen 1
	1.1	Der von-Neumann-Rechner
	1.2	Modularer Aufbau von Betriebssystemen
	1.3	CISC/RISC
		1.3.1 CISC
		1.3.2 "Überalterung" von CISC
		1.3.3 RISC (= reduced instruction set computer)-Designprinzip 48
		1.3.4 Historischer CISC-RISC CPU-Vergleich 52
	1.4	Der Cache zur Datentransferbeschleunigung 64
	1.5	Multitasking
	1.6	Bussysteme — Chipsätze und das Motherboard 68
	1.7	Der Weg fort von der von-Neumann-Architektur 69
		1.7.1 SPARC
		1.7.2 Der Intel Pentium
	1.8	IA64 - Die EPIC-Architektur
	1.0	1.8.1 Itanium
	1.9	AMDs 64-Bit-Architektur
		PentiumM
	1.11	Zukünftige Entwicklungen
2	Unt	ernehmensserver und High Performance Computer 99
	2.1	Serverarchitektur in Unternehmensnetzwerken 99
	2.2	Vektorrechner
	2.3	SIMD- und MIMD-Parallelrechner
	2.4	Mehrprozessorsysteme
	2.5	Multithreadsysteme
	2.6	Multiprozessor-Server
	2.7	Clustercomputing und Lastverteilung
	2.8	Großrechner und High End Server: Partitionierung der Resourcen, Grid Container,

3	Rec	chnerar	rchitekturen – Fortsetzung: Peripherie	116
	3.1	Periph	neriebus: USB, Firewire und PCI	116
		3.1.1	USB = Universal Serial Bus	116
		3.1.2	Firewire, IEEE 1394	117
		3.1.3	USB2	117
		3.1.4	Firewire b, IEEE 1394b	117
		3.1.5	PCI-X und PCIe	117

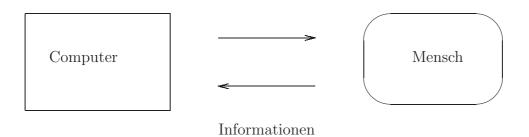
Abbildungsverzeichnis

1.1	Computersystem
1.2	Der ZUSE Z3 von Konrad Zuse 6
1.3	Universalrechner im Aufbau
1.4	"circuit switched" Datentransfer
1.5	Datentypen
1.6	Verteilung UNICODE
1.7	Bidirectional Ordering
1.8	General Scripts
1.9	Die Bytes im Speicher
1.10	und ihre Reihenfolge im Computerwort
1.11	CPU
1.12	Windows 95/98
	Windows NT
1.14	Solaris/Linux
	Microcode und Betriebssystem
1.16	CISC-CPU-Aufbau
1.17	Microprogrammierte CISC-CPU
	Nanoprogrammierte CISC-CPU
1.19	Der x86 MOV-Befehl
	Der x86 MUL-Befehl
1.21	Registerstack am Beispiel SPARC 51
1.22	Der Cache als Daten-Vorratsbehälter
1.23	Multitask-Stati
1.24	Cache auf dem Motherboard
1.25	PC Frontsidebus
1.26	PentiumII Execution Units
	PentiumII-Design 1
1.28	PentiumII-Design 2
	P6 Architektur
	Dynamic Execution Microarchitecture 89
1.31	x86-Entwicklung

1.32	PentiumIII und 4
1.33	NetBurst Architektur
1.34	Datendurchsatz beim Pentium4
1.35	VLIW
1.36	IA64
1.37	Register des Itanium
1.38	Roadmap IA64
2.1	Verarbeitungseinheit: Vektor von Worten
2.2	Vektorregeister und Vektoralu
2.3	Rechnerstruktur eines Cray-1-Rechners
2.4	Die Register und Funktionseinheiten einer Cray-1 104
2.5	CRAY-2 (Juni 1985)
2.6	NEC-SX2 SIMD, mehrere Pipelines 108
2.7	Systemarchitektur und Datendurchsatz
2.8	"shared memory" und "message passing"

Tabellenverzeichnis

1.1	Zeittafel zur Entwicklung der Computertechnik	4
1.2	Merkmale der 1. bis 3. Computergeneration	13
1.3	ASCII-Code	22
1.4	ISO-Austauschtabelle	22
1.5	PC-8 Zeichensatz	23
1.6	Zeichensatz für Windows 3.x	24
1.7	ISO-8859 Latin 1(ECMA-94 Latin 1) Zeichensatz	25
1.8	nationale ISO8859-Varianten	25
1.9	UNICODE Version 1.0, Character Blocks 0000-00FF	28
1.10	Weitere Zeichenbereiche	29
1.11	UNICODE to Adobe Standard Mappings	31
1.12	The UNICODE to SGML (ISO DIS 6862.2) Mappings	32
1.13	UNICODE to Macintosh Mappings	33
1.14	Analyse typischer Computeranwendungen auf ihre Instruktionst	ypen hin 45
1.15	Von CISC zu RISC	48
1.16	Unterscheidungsmerkmale CISC/RISC	49
1.17	RISC-CPUs im Vergleich zu Intel 80x86-CPUs	52
1.18	64 Bit RISC-CPUs	53
1.19	PC-Bussysteme und Durchsatzraten	53
1.20	RISC PC-CPUs: PowerPC (Apple und IBM)	53
	CISC PC-CPUs: i80x86	
1.22	CISC PC-CPUs: i80x86 (Forts.)	55
1.23	Marktallianzen im RISC-Bereich	58
1.24	Anzahl der Register-Fenster und Integer-Zyklen pro Anweisung	77
1.25	"floating point"-Zyklen pro Anweisung	78
2.1	Klassifikation von Mehrprozessorsystemen	
2.2	Speicher bei Mehrprozessorsystemen	112

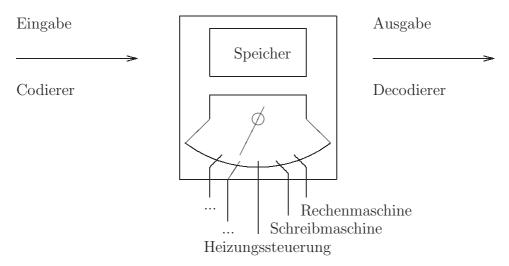

Literatur

- Internet (siehe Links in dieser Materialsammlung).
- Duden Informatik, Ausgabe für das Studium, BI, Mannheim.
- A. S. Tanenbaum: Structured Computer Organization, Prentice-Hall.
- W. Stallings: Computer Organization and Architecture, Prentice-Hall.

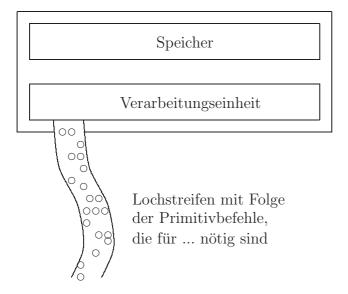
Kapitel 1

Rechnerarchitekturen

Vom (mechanischen) Spezialgerät zum Universalrechner

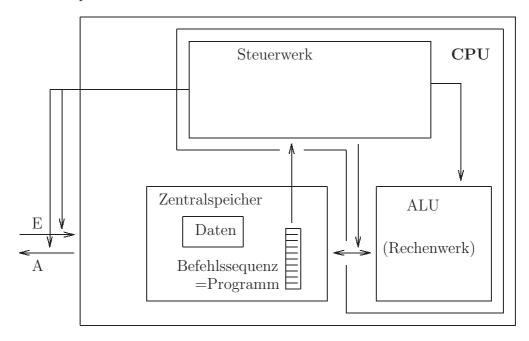

Im Gegensatz

- zur mechanischen Kurbel-Rechenmaschine,
- zur Schreibmaschine,
- zum Heizungsthermostat,
- zur Programmautomatik einer Waschmaschine


ist ein *Computer* ein universell einsetzbares Gerät zur Verarbeitung von Daten (Rechnen, Datenverarbeitung (DVA), Bereitstellung von Informationen). Diese Universalität wird dadurch erreicht, daß

- die Informationen einheitlich als binäre Daten (0/1-Informationen, Spannung da/nicht da) codiert werden (Ein-/Ausgabe),
- nur kurzzeitig verfügbare Daten in ihrer binären Codierung zwischengespeichert werden (Speicher)

und eine *universelle* Binärdatenverarbeitungseinheit durch *Umschaltung* für fast alle denk- und lösbaren Informationsverarbeitungsaufgaben eingesetzt werden kann. Natürlich wird in der folgenden Abbildung keine volle Uni-



versalität erreicht; lediglich eine durch Schalterstellung definierbare 1 aus N Spezialauswahl ist realisiert. Sieht man jedoch eine große Anzahl von die Daten nur gering ändernden Spezialmaschinen, sogenannte Primitivbefehle oder Maschinenbefehle vor, und baut aus sequentieller Aneinanderreihung solcher Befehle den gewünschten Effekt nach und nach auf, so ist die erstrebte Universalität erreicht. Erkennt man nun schließlich, daß die benötigten

Sequenzen von Primitivbefehlen auch nur eine spezielle Art von Information sind, die deshalb — wie die Ein- und Ausgabedaten — ebenfalls codiert

im Speicher abgelegt werden können, so haben wir den prinzipiellen Aufbau eines Computers entwickelt:

Um beliebige Programme in den Computer hineinzubekommen und dann ablaufen lassen zu können, ist ein Verwaltungsprogramm, das Betriebssystem nötig, das den Computer erst benutzbar macht. Dies ist entweder in nicht-flüchtigem Speicher (ROM = read only memory, Inhalt bleibt auch in ausgeschaltetem Zustand erhalten) fest eingebaut oder wird von einer Festplatte, einem Magnetband, ... mit Hilfe des im ROM fest eingebauten Urladers oder Monitorprogramms geladen.

Aufgabe 1.1 Diskutieren Sie die Vor- und Nachteile eines Betriebssystems im ROM und eines von Platte geladenen Betriebssystems.

Tabelle 1.1: Zeittafel zur Entwicklung der Computertechnik

1833	Charles Babbage (1792-1871), Professor an der Universität Cambridge
	(Großbritannien), entwirft und baut einen programmgesteuerten mechani-
	schen Rechenautomaten, die Analytical engine. Sie enthält ein 4-Spezies-
	Rechenwerk, 1000 Zahlenspeicher, Lochkartensteuerung und Ergebnis-
	druckwerk (nicht vollendet).
1941	Vorführung des ersten arbeitsfähigen programmgesteuerten Rechenautoma-
	ten ZUSE Z3 in Relaistechnik durch Konrad Zuse (geb. 1910)
1944	Inbetriebnahme des programmgesteuerten elektromechanischen Rechenau-
	tomaten Mark 1 von Howard H. Aiken (1900-1973).
1944/46	Formulierung der Prinzipien des von-Neumann-Computers (John von
	NEUMANN (1903-1975). Realisiert erstmals mit der EDVAC (1952/53)
1946	Inbetriebnahme des ENIAC, des ersten Computers mit Elektronenröhren
	durch John P. Eckert (geb. 1919) und John W. Mauchley (1907-
	1980). Beginn der Epoche der elektronischen Computer.
1951	Beginn der Serienproduktion elektronischer Computer mit der Anlage
	UNIVAC I der Firma Remington Rand. Beginn der 2. Computergenera-
	tion.
1955	Erster Computer mit Transistoren: TRADIC (Bell. Labor.)
um 1965	Computer-Familie IBM/360. Beginn der 3. Computergeneration. Der Be-
	griff Rechnerarchitektur wird erstmals verwendet.
um 1965	Minirechner PDP-8 (Digital Equipment Corp.). Kleinere Rechner entstehen
	neben den Mainframes.
1969	Pilotprojekt Weitverkehrsrechnernetz ARPANET (USA) in Betrieb genom-
	men.
1971	4-Bit-Mikroprozessoren i4004 der Firma INTEL Corp. Beginn der Mikro-
	prozessorära. Rascher Übergang zu 8-Bit-Mikroprozessoren.
1975 - 1980	Personalcomputer auf Mikroprozessorbasis und die Software dafür werden
	zu Massenartikeln. Beginn der 4. Computergeneration.
um 1978	Erste Installationen lokaler Rechnernetze.
1978-1980	16-Bit-Mikroprozessoren kommen auf den Markt.
1979	Standardvorschlag der ISO $\gg Reference\ model\ of\ open\ system\ interconnection$
	tions≪ für Rechnernetze.
1981-1985	Personalcomputer mit 16-Bit-Mikroprozessoren werden marktbestimmend;
	insbesondere PC XT und AT von IBM und Kompatible dazu sowie das
	Betriebssystem MS-DOS der Firma Microsoft.
ab 1988	Personalcomputer mit 32-Bit-Mikroprozessoren kommen auf den Markt
	und lösen im Verlauf einiger Jahre die 16-Bit-Systeme ab.
ab 1996	Workstations mit 64-Bit-Mikroprozessoren

Quelle: D.Werner (Hrsg.): Taschenbuch der Informatik; Fachbuchverlag Leipzig, $1995\,$

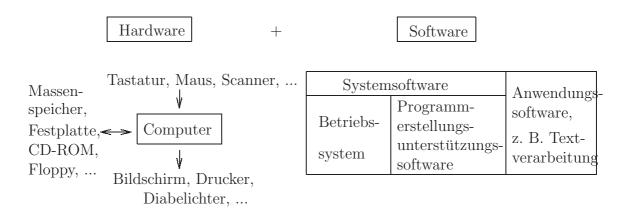


Abbildung 1.1: Computersystem

Das BIOS

Das BIOS (= Basic Input Output System) ist der in Intel-basierten Computersystemen im ROM vorhandene Betriebssystemteil, der eng mit dem Motherboard des Rechners verbunden ist:

- BIOS: http://www.qvctc.commnet.edu/classes/csc277/bios.html
- Der PC-Bootvorgang: http://www.qvctc.commnet.edu/classes/csc277/boot.html
- Motherboards/Mainboards: http://www.computerhope.com/network/mboard.htm
- BIOS-Versionen: etwa in http://www.heise.de/newsticker/data/jow-19.05.01-000/ ...

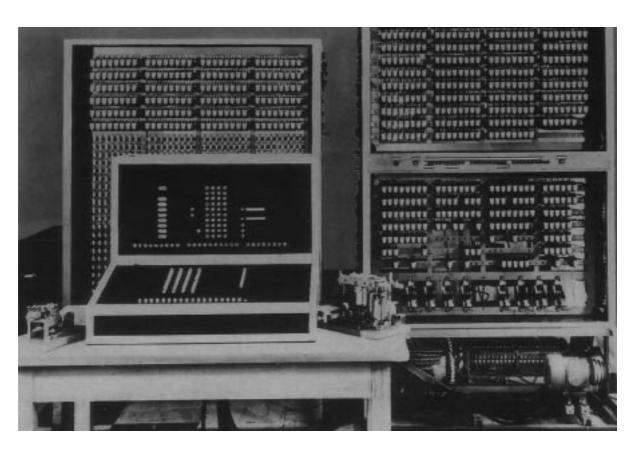
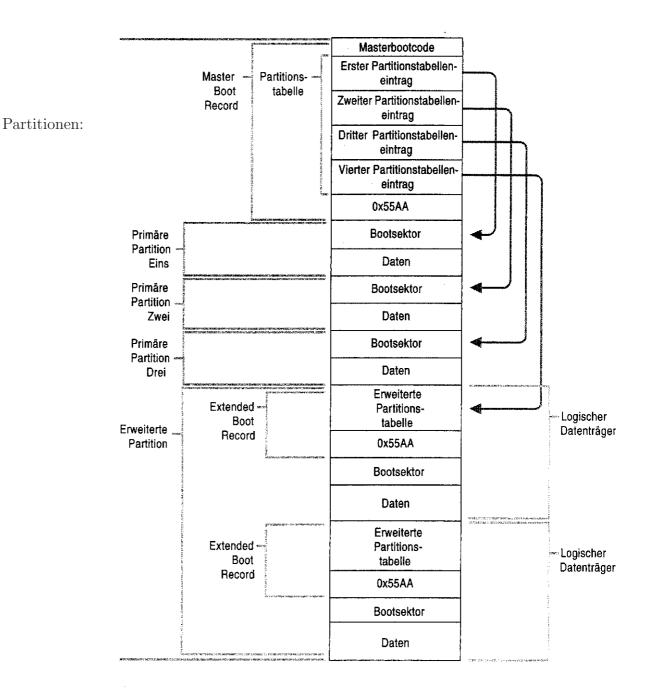
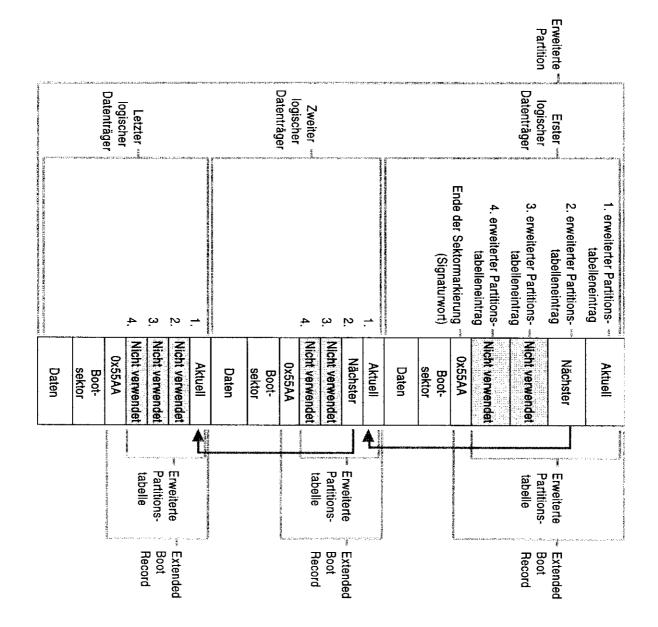


Abbildung 1.2: Der ZUSE Z3 von Konrad Zuse

Das BIOS-Setup

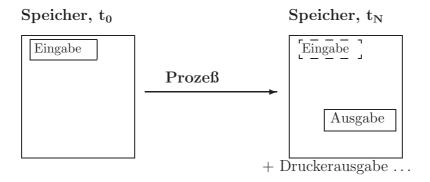
Das BIOS-Setup erlaubt das Einstellen der Systemkonfiguration:

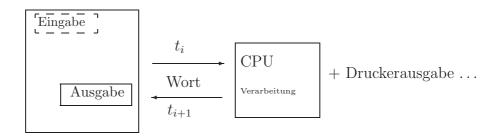

- Anzeige der vorhandenen Hardware
- Setzen von Datum und Uhrzeit der Hardware-Uhr
- (früher:) Einstellung der Festplattengeometrie (Anzahl der Zylinder, der Spuren, der Sektoren)
- Auswahl der Bootreihenfolge (Platte/n, Diskette, CDROM, USB-Speicherkarte, NIC (Network), ...)
- Konfiguration des Bootvorganges: voller/minimaler POST, Boot-CPU-Geschwindigkeit, ...
- Konfiguration der Schnittstellen (parallele/serielle/Infrarot-/...)
- Konfiguration von Tastatur (Typ, USB-Emulation, ...) und Maus (Typ, bei Laptops: Touchpad parallel, ...)
- Konfiguration der Videokarten (intern/extern/...)
- Auswahl der Prozessorgeschwindigkeit, enable/disable SpeedStep-Technology
- Anzeige des Akkustatus
- Konfiguration des Stromsparmodus/Powermanagements (für Laptops): getrennt für Netzbetrieb/Akkubetrieb: Abschaltzeiten für Videosignal, Festplatte, ...; Start des Suspend-/Hybernate-Modus; ...
- An/Aus von internem/extenem Modem, Netzwerk, ...
- Wakeup on Modem/LAN, Autoboot zu Uhrzeit, ...
- Konfiguration von Bluetooth, wireless LAN, ...
- Konfiguration des Anschlusses an eine Docking-Station
- Vereinbarung von Systempasswörtern: Master, Admin, Festplatten, ...
- ...

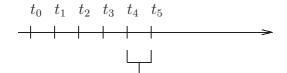

Festplatten-Partitionierung

Für einige Zwecke sollte man eine Festplatte in mehrere "logische" Festplatten unterteilen; sie sieht dann dem Betriebssystem gegenüber wie mehrere ("physikalisch" vorhandene) Festplatten aus:

- "Vorspiegelung" mehrerer kleinerer Festplatten, wenn die Gesamtkapazität sonst für das Betriebssystem/Dateisystem unbrauchbar groß ist (FAT16-Dateisysteme konnten zum Beispiel nur maximal 2 GB groß sein).
- Gleichzeitige Installierung mehrerer Betriebssysteme auf einer Festplatte.
- Logische Trennung der Bereiche einer Platte, die zum Beispiel das Betriebssystem (inklusive Swapping-Bereich), die Anwenderprogramme und die Datenbereiche der einzelnen Benutzer (bei Terminalservern) enthalten.
- Logische Trennung von Bereichen für das Betriebssystem, für die Loggingdatenbereiche des Betriebssystems, Temporärbereiche (wie zum Beispiel 800 MB für das Image einer CD bzw. 5 GB für ein DVD-Image), . . .
- Anlegen einer gemeinsamen Daten-Partition (zum Beispiel FAT) zum Datentausch zwischen verschiedenen installierten Betriebssystemen.
- Anlegen einer dediziert nur zum Swapping benutzten Partition.
- Einrichten einer temporären Scratch-Partition.
- •


Man nennt solche "logischen" Festplatten Partitionen. Eine Festplatte wird für die genannten Zwecke partitioniert.





bootini

[boot loader]
timeout=30
default=multi(0)disk(0)rdisk(0)partition(5)\wINDOWS
[operating systems]
multi(0)disk(0)rdisk(0)partition(5)\wINDOWS="Microsoft Windows XP Professional"
/fastdetect
multi(0)disk(0)rdisk(0)partition(1)\wINNT="Microsoft Windows 2000 Professional"
/fastdetect

Machinenzykluszahl heute: typisch

$$\frac{1}{100\,MHz} = \frac{1}{100\cdot 10^6\,s^{-1}} = 10\cdot 10^{-9}\,s = 10\,ns$$

1.1 Der von-Neumann-Rechner

Die Geschichte der Computerentwicklung

Tabelle 1.2: Merkmale der 1. bis 3. Computergeneration

	1. Generation	2. Generation	3. Generation
	ab 1951	ab 1960	ab 1965
Basiselement	Elektronenröhre	Flächentransistor	integrierter Schalt-
			kreis
Arbeitsspeicher	Magnettrommel-,	Ferritkernspeicher	Mikroferritkernspei-
	Umlaufspeicher		cher
Externe Spei-	keine	Magnetbandspeicher,	Magnetband-, Wech-
cher		-trommelspeicher	selplattenspeicher
Ein- und Aus-	Lochkarten- , Loch-	wie 1. Generation	wie 2. Generation
gabegeräte	streifengeräte, elek-	sowie Walzendrucker	sowie Bildschirmge-
	trische Schreibma-		räte, Datenfernüber-
	schine		tragungsgeräte
Programmie-	Maschinencode, As-	Assemblersprache, er-	Assemblersprache,
rung	semblersprache	ste problemorientierte	universelle Sprachen,
		Sprachen, einfache Be-	komplexe Betriebssy-
		triebssysteme	steme
Einsatz als	wissenschaftlich-	wissenschaftlich-tech-	universelle und Pro-
	technische Rechner	nische, kommerzielle	zeßrechner, Einbau-
		und Prozeßrechner	rechner

Quelle: D.Werner (Hrsg.): Taschenbuch der Informatik; Fachbuchverlag Leipzig, $1995\,$

Merkmale der 4. Generation (heute):

- VLSI-Schaltkreise
- in wenigen Jahren sich verdoppelnde Rechengeschwindigkeiten, Speichergrößen, Übertragungsgeschwindigkeiten (\rightarrow in 4 Jahren ist ein Computersystem "total" veraltet)
- Software-Entwicklungskosten höher als Hardwarekosten; wegen der schnellen Hardware-Innovationszyklen sind meist "nur" noch portable Software-Produkte schnell genug verfügbar (UNIX, TFX, ...)
- GUI's = graphical user interfaces
- Computer werden immer mehr zu IT-Geräten (Datennetzwerke)
- Laserdrucker, fotorealistischer Druck, Scanner mit 24Bit Farbtiefe
- 5. Generation: Für nach 2000 angestrebte Merkmale:
 - natürlichsprachiger Umgang mit Computern
 - Handschrift
 - Sprache
 - Multimedia, Telekonferenzen, Unterhaltung, Teleshoping, T-online, WWW, Heimarbeitsplätze, Fernkurse
 - Methoden der Künstlichen Intelligenz (KI)
 - Zeichen-, Bild-, Sprach-, Schrift-, Bewegungserkennung
 - simultane automatische Sprachübersetzung
 - Wissensverarbeitung (automatische Krankheitsdiagnose, ...)
 - Nutzeridentifizierung durch Iris-Mustererkennung ...

Blockschaltbild eines Computers

Ein von-Neumann-Rechner ist durch folgende Merkmale gekennzeichnet:

Prinzipien:

1. Computerbestandteile: CPU (= Rechenwerk und Steuerwerk), Speicher, Ein- und Ausgabewerk, Bussystem.

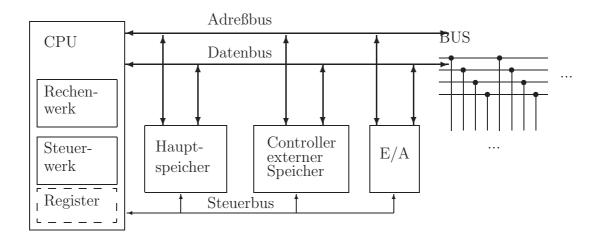


Abbildung 1.3: Universalrechner im Aufbau

- 2. **Universalität:** Spezialisierung nur durch von außen eingegebenes Programm.
- 3. **Programme als Daten:** Eingabedaten, Zwischen- und Endergebnisse sowie Programme werden im selben Speicher abgelegt.
- 4. Linearer Speicher: Der Speicher ist in gleichgroße Zellen, die fortlaufend numeriert sind, eingeteilt.
- 5. **Sequentielle Ausführung:** Aufeinanderfolgende Befehle eines Programms werden in aufeinanderfolgenden Speicherzellen abgelegt. Beim Programmablauf wird im allgemeinen der Befehlszähler fortlaufend inkrementiert.
- 6. **Sprünge:** Sprungbefehle ermöglichen ein Durchbrechen der linearen Ausführungsreihenfolge.

- 7. **Zusätzliche Primitiva:** Datentransferbefehle, arithmetische Operationen, logische und Vergleichsoperationen, (heute auch: Graphik- und Multimediabefehle); unmittelbare, direkte, indizierte, relative, . . . Adressierung.
- 8. Binäre Codierung: Daten (Befehle, Adressen, Operanden) werden binär codiert. Geeignete Schaltwerke (Decodierer) sorgen für die richtige Entschlüsselung.

Aufgabe: Informieren Sie sich mit Hilfe von

http://tech-www.informatik.uni-hamburg.de/applets/baukasten/DA/VNR_Simulation_1.html über die internen Vorgänge beim Programmablauf in einem von-Neumann-Rechner.

Beim geschilderten Computeraufbaustellt sich die Frage, wann welche Systemeinheit welche Bus-Leitungen benutzen darf. Dies wird durch den Controller (CPU oder DMA-Chip) mittels der *Handshake-Steuerbus-Leitungen* gemäß Abbildung 1.4 geregelt.

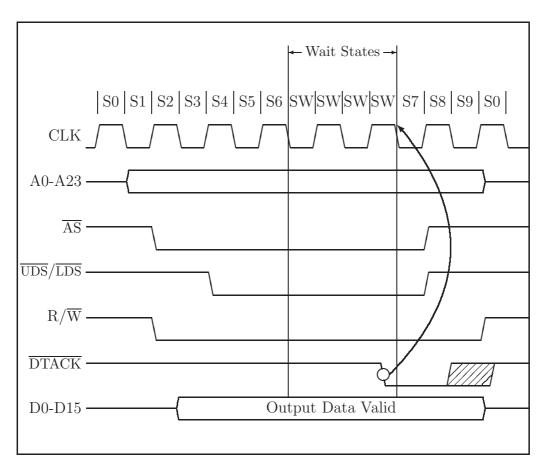


Abbildung 1.4: "circuit switched" Datentransfer

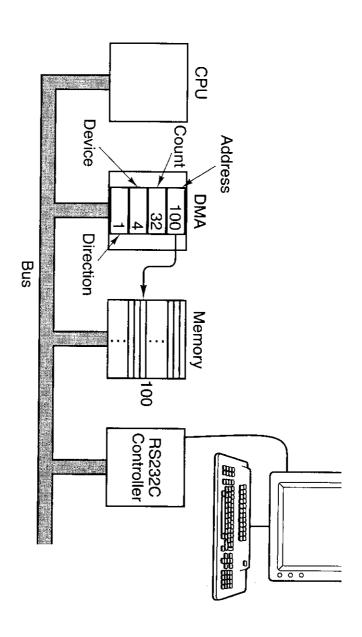
Aufgabe 1.2 Diskutiere: write Daten von Datenbus D0-D15 in die Speicherzelle mit der auf A0-A23 anliegenden Adresse.

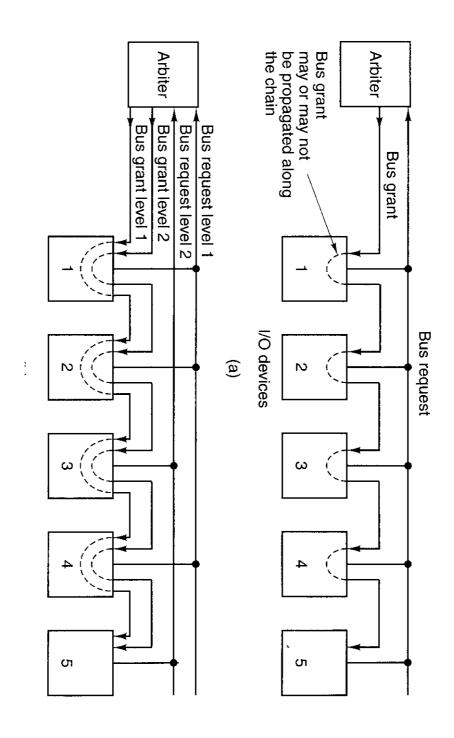
Bemerkungen:

• Signalnamen:

CLK	=	clock
A0-A23	=	address bus
$\overline{\mathrm{AS}}$	=	address strobe
R/\overline{W}	=	read/write
$\overline{\mathrm{UDS}}, \overline{\mathrm{LDS}}$	=	upper/lower data strobe
D0-D15	=	data bus
DTACK	=	data transfer acknowledge

• strobe = Gültigkeitssignal für z.B. die Daten auf dem Adreßbus


Problem:


• circuit switched: Der Bus blockiert, bis die anstehende Operation ausgeführt ist: wait states

Alternative:

• packet switched: Jeder Datentransfer wird in kleine Pakete zerlegt, die jeweils deie Adresse ihres Ziels enthalten. Diese werden nacheinander nichtblockierend auf den Bus geschickt. Dadurch kann eine weitere CPU (ein weiterer Thread) schon wieder Daten transferieren, obwohl die erste CPU ihren Transfer noch nicht abgeschlossen hat.

CSMA/CD = carrier sense multiple access / collison detect

Bemerkung: Speicherinhalte werden je nach "Datentyp" unterschiedlich interpretiert

Numerische Datentypen:

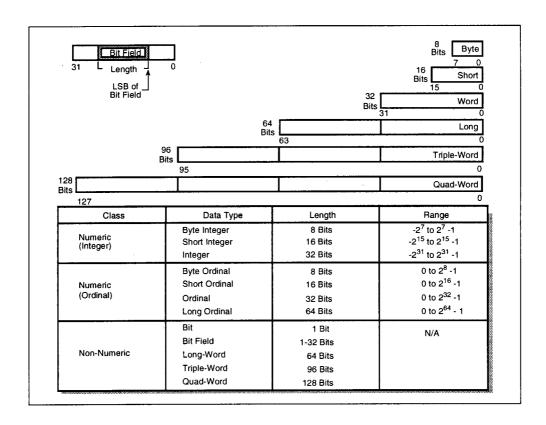


Abbildung 1.5: Datentypen

Nichtnumerische Datentypen:

Der ASCII-Code (American Standard Code for Information Interchange) ist auch heute noch Grundlage vieler Zeichencodes.

00	NUL	01	SOH	02	STX	03	ETX	04	EOT	05	ENQ	06	ACK	07	BEL
08	BS	09	HT	0A	NL	0B	VT	0C	NP	0D	CR	0E	SO	0F	SI
10	DLE	11	DC1	12	DC2	13	DC3	14	DC4	15	NAK	16	SYN	17	ETB
18	CAN	19	EM	1A	SUB	1B	ESC	1C	FS	1D	GS	1E	RS	1F	US
20	SP	21	!	22	"	23	#	24	\$	25	%	26	&	27	,
28	(29)	2A	*	2B	+	2C	,	2D	-	2E		2F	/
30	0	31	1	32	2	33	3	34	4	35	5	36	6	37	7
38	8	39	9	3A	:	3В	;	3C	<	3D	=	3E	>	3F	?
40	@	41	A	42	В	43	$^{\mathrm{C}}$	44	D	45	\mathbf{E}	46	\mathbf{F}	47	G
48	Η	49	I	4A	J	4B	K	4C	${ m L}$	4D	${ m M}$	4E	N	4F	Ο
50	Р	51	Q	52	\mathbf{R}	53	\mathbf{S}	54	${ m T}$	55	U	56	V	57	W
58	X	59	Y	5A	\mathbf{Z}	5B	[5C	\	5D]	5E	^	5F	_
60	`	61	a	62	b	63	$^{\mathrm{c}}$	64	d	65	e	66	f	67	g
68	h	69	i	6A	j	6B	k	6C	1	6D	\mathbf{m}	6E	n	6F	О
70	p	71	q	72	r	73	\mathbf{s}	74	\mathbf{t}	75	u	76	\mathbf{v}	77	w
78	X	79	У	7A	\mathbf{Z}	7B	{	7C		7D	}	7E	~	7F	DEL

Tabelle 1.3: ASCII-Code

Da sieben Bit, also 128 Zeichen nicht für landesspezifische Sonderzeichen ausreichten, entstanden die landesspezifischen Varianten durch Zeichenersetzung (vgl. Tabelle 1.4).

ISO	Zeichensatz	Dezimalform												
Nr.	Zeienensauz	ID	35	36	64	91	92	93	94	96	123	124	125	126
6	ANSI ASCII	0U	#	\$	@	[\		^	`	{		}	~
11	Schweden: Namen	0S	#		É	Ä	Ö	Å	Ü	`	ä	ö	å	ü
10	Schweden	3S	#		@	Ä	Ö	Å	^	`	ä	ö	å	
17	Spanien	2S	£	\$	§	i	Ñ	į	^	`	0	ñ	ç	~
69	Frankreich	1F	£	\$	à	0	ç	§	^	μ	é	ù	è	
21	Deutschland	1G	#	\$	§	Ä	Ö	Ü	^	`	ä	ö	ü	ß
4	Großbritannien	1E	£	\$	@	[\]	^	`	{		}	
16	Portugal	4S	#	\$	§	Ã	Ç	Õ	^	`	ã	ç	õ	0
60	Norwegen 1	0D	#	\$	@	Æ	Ø	Å	^	`	æ	Ø	å	
61	Norwegen 2	1D	§	\$	@	Æ	Ø	Å	^	`	æ	Ø	å	
2	IRV		#		@		\		^	`	{		}	
15	Italien	0I	£	\$	§	0	ç	é	^	`	à	ò	è	ì

Tabelle 1.4: ISO-Austauschtabelle

Alternativ wurden acht Bit (256 Zeichen) für landesspezifische Sonderzeichen, mathematische Symbole, graphische Symbole zum Tabellendruck bzw. für Sonderzwecke (Spiele, ...) besetzt, etwa im Industriestandard PC-8 Zeichensatz (Tabelle 1.5)¹.

			0	@	Р	(р	Ç	É	á				α	=
0	16	32	48	64	80	96	112	128	144	160	176	192	208	224	240
		!	1	Α	Q	a	q	ü	æ	í				ß	±
1	17	33	49	65	81	97	113	129	145	161	177	193	209	225	241
	\uparrow	"	2	В	R	b	r	é	Æ	ó		Т		Γ	\geq
2	18	34	50	66	81	98	114	130	146	162	178	194	210	226	242
	!!	#	3	С	S	С	S	â	ô	ú		\vdash		π	\leq
3	19	35	51	67	82	99	115	131	147	163	179	195	211	227	243
	¶	\$	4	D	Т	d	t	ä	ö	ñ	\dashv			\sum	
4	20	36	52	68	83	100	116	132	148	164	180	196	212	228	244
*	§	%	5	Ε	U	е	u	à	ò	Ñ				σ	
5	21	37	53	69	84	101	117	133	149	165	181	197	213	229	245
•		&	6	F	V	f	V	å	û	a				μ	÷
6	22	38	54	70	85	102	118	134	150	166	182	198	214	230	246
		,	7	G	W	g	W	ç	ù	0				au	\approx
7	23	39	55	71	86	103	119	135	151	167	183	199	215	231	247
	1	(8	Η	X	h	X	ê	ÿ	i				Φ	0
8	24	40	56	72	87	104	120	136	152	168	184	200	216	232	248
\circ	↓)	9	I	Y	i	У	ë	Ö					Θ	•
9	25	41	57	73	88	105	121	137	153	169	185	201	217	233	249
	\rightarrow	*	:	J	Z	j	\mathbf{z}	è	Ü	_				Ω	•
10	26	42	58	74	89	106	122	138	154	170	186	202	218	234	250
	\leftarrow	+	;	K		k	{	ï	Ç					δ	$\sqrt{}$
11	27	43	59	75	90	107	123	139	155	171	187	203	219	235	251 n
		,	<	L	\	1		î	£					∞	71
12	28	44	60	76	91	108	124	140	156	172	188	204	220	236	252
	\leftrightarrow	-	=	М		m	}	ì		i				ϕ	
13	29	45	61	77	92	109	125	141	157	173	189	205	221	237	253
			>	Ν	^	n	~	Ä	Pt	«				ϵ	
14	30	46	62	78	93	110	126	142	158	174	190	206	222	238	254
		/	?	О	_	О		Å	f	>>				\cap	
15	31	47	63	79	94	111	127	143	159	175	191	207	223	239	255

Tabelle 1.5: PC-8 Zeichensatz

¹In dieser – wie auch in einigen der folgenden Tabellen – sind leere Codestellen entweder unbesetzt oder wegen Problemen beim Satz der entsprechenden Zeichen in diesem Skript freigelassen worden.

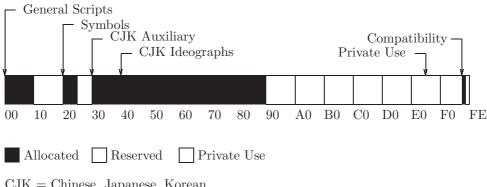
In Windows 3.x wurden jedoch andere Codierungen genutzt (Tabelle 1.6). Der inzwischen verabschiedete Standard der *International Standardization*

NUL			0	@	Р	`	р				0	À		à	
0	16	32	48	64	80	96	112	128	144	160	176	192	208	224	240
		!	1	A	Q	a	q		(i	±	Á	Ñ	á	ñ
1	17	33	49	65	81	97	113	129	145	161	177	193	209	225	241
		"	2	В	R	b	r		,	ç	2	Â	Ò	â	ò
2	18	34	50	66	81	98	114	130	146	162	178	194	210	226	242
		#	3	С	S	С	s			£	3	Ã	Ó	ã	ó
3	19	35	51	67	82	99	115	131	147	163	179	195	211	227	243
		\$	4	D	Т	d	t				,	Ä	Ô	ä	ô
4	20	36	52	68	83	100	116	132	148	164	180	196	212	228	244
		%	5	Ε	U	е	u				μ	Å	Õ	å	õ
5	21	37	53	69	84	101	117	133	149	165	181	197	213	229	245
		&	6	F	V	f	V				\P	Æ	Ö	æ	ö
6	22	38	54	70	85	102	118	134	150	166	182	198	214	230	246
BEL		/	7	G	W	g	W			§		Ç	×	ç	÷
7	23	39	55	71	86	103	119	135	151	167	183	199	215	231	247
BS		(8	Η	X	h	X					È	Ø	è	Ø
8	24	40	56	72	87	104	120	136	152	168	184	200	216	232	248
HT)	9	Ι	Y	i	У			©	1	É	Ù	é	ù
9	25	41	57	73	88	105	121	137	153	169	185	201	217	233	249
LF		*	:	J	Z	j	\mathbf{z}			a	0	E	Ü	ê	ú
10	26	42	58	74	89	106	122	138	154	170	186	202	218	234	250
VT	ESC	+	;	K	[k	{			«	>>	Ë	Û	ë	û
11	27	43	59	75	90	107	123	139	155	171	187	203	219	235	251
FF		,	<	L	\	1				\neg	$\frac{1}{4}$	Ì	Û	ì	ü
12	28	44	60	76	91	108	124	140	156	172	188	204	220	236	252
CR		-	=	Μ]	m	}			-	$\frac{1}{2}$	Í	Ý	í	ý
13	29	45	61	77	92	109	125	141	157	173	189	205	221	237	253
SO			>	N	^	n	~				$\frac{3}{4}$	I		î	
14	30	46	62	78	93	110	126	142	158	174	190	206	222	238	254
SI		/	?	Ο	_	О				_	į	Ï	ß	ï	ÿ
15	31	47	63	79	94	111	127	143	159	175	191	207	223	239	255

Tabelle 1.6: Zeichensatz für Windows 3.x

Organisation (ISO), der ISO-8859 Latin 1(ECMA-94 Latin 1) Zeichensatz (Tabelle 1.7) setzte sich insbesondere bei Workstations und neueren Hardund Softwareprodukten durch. Neben der Latin-1 Version existieren auch noch einige andere nationale Sonderformen des ISO 8859 Codes (vgl. Tabelle 1.8).

			0	0	Р	(р				0	À		à	
0	16	32	48	64	80	96	112	128	144	160	176	192	208	224	240
		!	1	Α	Q	a	q			i	土	Á	Ñ	á	ñ
1	17	33	49	65	81	97	113	129	145	161	177	193	209	225	241
		"	2	В	R	b	r				2	Â	Ò	â	ò
2	18	34	50	66	81	98	114	130	146	162	178	194	210	226	242
		#	3	С	S	С	S			£	3	Ã	Ó	ã	ó
3	19	35	51	67	82	99	115	131	147	163	179	195	211	227	243
		\$	4	D	Т	d	t				′	Ä	Ô	ä	ô
4	20	36	52	68	83	100	116	132	148	164	180	196	212	228	244
		%	5	Е	U	е	u				μ	Å	Õ	å	õ
5	21	37	53	69	84	101	117	133	149	165	181	197	213	229	245
		&	6	F	V	f	V				\P	Æ	Ö	æ	ö
6	22	38	54	70	85	102	118	134	150	166	182	198	214	230	246
		,	7	G	W	g	W			§		Ç	×	ç	÷
7	23	39	55	71	86	103	119	135	151	167	183	199	215	231	247
		(8	Н	X	h	X					È	Ø	è	Ø
8	24	40	56	72	87	104	120	136	152	168	184	200	216	232	248
)	9	Ι	Y	i	У			©	1	É	Ù	é	ù
9	25	41	57	73	88	105	121	137	153	169	185	201	217	233	249
		*	:	J	Z	j	\mathbf{z}			a	0	Ê	Ú	ê	ú
10	26	42	58	74	89	106	122	138	154	170	186	202	218	234	250
		+	;	K	[k	{			«	>>	E	Ü	ë	û
11	27	43	59	75	90	107	123	139	155	171	187	203	219	235	251
		,	<	L	\	1				_	$\frac{1}{4}$	Ì	Ü	ì	ü
12	28	44	60	76	91	108	124	140	156	172	188	204	220	236	252
		-	=	Μ]	m	}			-	$\frac{1}{2}$	I	Ý	í	ý
13	29	45	61	77	92	109	125	141	157	173	189	205	221	237	253
			>	N	^	n	~				$\frac{3}{4}$	Î		î	
14	30	46	62	78	93	110	126	142	158	174	190	206	222	238	254
		/	?	О	_	О				_	į	Ï	ß	ï	ÿ
15	31	47	63	79	94	111	127	143	159	175	191	207	223	239	255


Tabelle 1.7: ISO-8859 Latin 1
(ECMA-94 Latin 1) Zeichensatz

Code Set	Name	Coverage	Approved
8859-1	Latin-1	western Europe	15 February 1987
8859-2	Latin-2	eastern Europe	15 February 1987
8859-3	Latin-3	Maltese, Catalan, Galician, Esperanto	15 April 1988
8859-4	Latin-4	Baltic and Nordic region	15 April 1988
8859-5	Cyrillic	Slavic countries	1 December 1988
8859-6	Arabic	Arab countries	15 August 1987
8859-7	Greek	Greece	15 November 1987
8859-8	Hebrew	Israel	1 June 1988
8859-9	Latin-5	8859-1 minus Iceland plus Turkey	15 May 1989

Tabelle 1.8: nationale ISO8859-Varianten

Eine weltweite Anwendbarkeit eines Zeichencodes kann erreicht werden, falls 16 Bit für die Codierung zur Verfügung stehen: UNICODE, der in neuen Programmiersprachen wie etwa JAVA schon benutzt wird.

Statistik der Version 1.0

CJK = Chinese, Japanese, Korean

Abbildung 1.6: Verteilung UNICODE

Die folgende Tabelle zeigt die Anteile des gesamten im UNICODE zur Verfügung stehenden Platzes, die verschiedenen Schrifttypen in der Version 1.0 bereits zugeteilt wurden:

	Allocated	Un assigned	% Assigend	
General	2336	5856	29%	
Symbols	1290	2806	31%	
CJK symbols	763	261	75%	
Hangul	2350	450	84%	
Han Compatibility	268	4	99%	(Volume 2)
Ideographic & other	20733	22275	48%	(Volume 2)
User Space	5632	N/A	N/A	
Compatibility Zone	362	133	73%	
Special	1	13		
FEFF	1	0		
FFFE, FFFF	N/A	2		
Totals	2870	6 (assigned)		
	+ 5632 (ps	rivate use)		
	= 34338	(allocated)		
	52%			

Mit noch über 30000 unbenutzten Character Positionen besitzt der UNICO-DE auch für die Zukunft noch genug Raum für weitere Expansionen.

Die Zukunft des UNICODES

In Zukunft wird der UNICODE Standard um weniger verbreitete und veraltete Schrifttypen erweitert. Schrifttypen dieser Art werden jedoch nicht in ihrer ursprünglichen Form eingebunden, da sich ihr Nutzen schwer einschätzen läßt. So wird bei vielen dieser Schriften eine ausführliche Diskussion nötig sein, bis ein zufriedenstellendes Codierungsschema vorliegt. Die fünf Schriftarten Ethiopian, Burmese, Khmer, Sinhala und Mongolian werden zum Standard UNICODE hinzugefügt, sobald zuverlässige Informationen über sie vorliegen. Weitere Schriftarten, die für eine mögliche Aufnahme vorgesehen sind, sind

- Inuktitut/Cree Syllabary: Das Kommunikationsministerium von Kanada untersucht Standardisierungen von verschiedenen Dialektarten, die von Cree und/oder Inuktitut gesprochen werden und sucht Codierungsschemen.
- Egyptian Hieroglyphics: Ein einheitliches Codierungsschema existiert und wird vorangetrieben.
- Korean Hangul Syllables: Eventuell werden noch weitere Korean Hangul Dialekte hinzugefügt.

Der Unterschied zwischen der logischen Anordung von Zeichen und der Anordnung auf dem Bildschirm zeigt die Abbildung 1.7

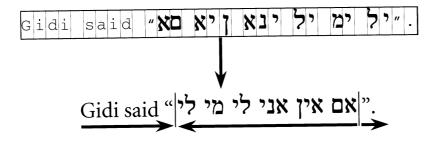


Abbildung 1.7: Bidirectional Ordering

General Scripts

Im *General Scripts*-Bereich des UNICODEs sind alle lateinischen und nichtideographischen Schriftzeichen codiert:

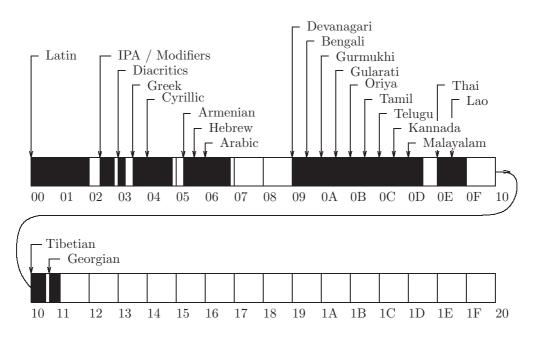
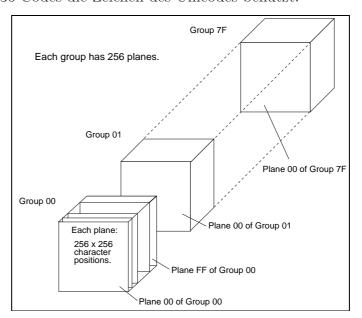


Abbildung 1.8: General Scripts

Control		ASCII						Con	Latin 1						
000	001	002	2 003	3 004	1 005	006	007	008	009	00A	00B	00C	00D	00E	00F
NUL	DLE		0	@	Р	(р	CTRL	CTRL		0	À		à	
SOH	DC1	!	1	Α	Q	a	q	CTRL	CTRL	i	土	Á	Ñ	á	ñ
STX	DC2	11	2	В	R	b	r	CTRL	CTRL		2	Â	Ò	â	ò
ETX	DC3	#	3	С	S	С	S	CTRL	CTRL	£	3	Ã	Ó	ã	ó
EOT	DC4	\$	4	D	Τ	d	t	CTRL	CTRL		,	Ä	Ô	ä	ô
ENQ	NAK	%	5	Ε	U	е	u	CTRL	CTRL		μ	Å	Õ	å	õ
ACK	SYN	&	6	F	V	f	V	CTRL	CTRL		\P	Æ	Ö	æ	ö
BEL	ETB	,	7	G	W	g	W	CTRL	CTRL	§		Ç	×	ç	÷
BS	CAN	(8	Η	X	h	X	CTRL	CTRL		د	È	Ø	è	Ø
HT	EM)	9	Ι	Y	i	У	CTRL	CTRL	©	1	É	Ù	é	ù
LF	SUB	*	:	J	Z	j	\mathbf{z}	CTRL	CTRL	a	0	Ê	Ú	ê	ú
VT	ESC	+	;	K	[k	{	CTRL	CTRL	«	>>	Ë	Û	ë	û
FF	FS	,	<	L	\	1		CTRL	CTRL	\neg	$\frac{1}{4}$	Ì	Ü	ì	ü
CR	GS	-	=	Μ]	m	}	CTRL	CTRL	-		Í	Ý	í	ý
SO	RS		>	Ν	^	n	~	CTRL	CTRL		$\frac{1}{2} \\ \frac{3}{4}$	Î		î	
SI	US	/	?	Ο	_	О	DEL	CTRL	CTRL	_	į	Ï	ß	ï	ÿ


Tabelle 1.9: UNICODE Version 1.0, Character Blocks 0000-00FF

```
Zeichen für die Zeichensetzung: ,.:;", ...
2000..206F
                Subscripts und Superscripts: <sup>2</sup>, <sup>3</sup>, <sup>4</sup>, ...
2070..209F
20A0..20CF
                Währungssymbole: £,$, ...
                diakretische Zeichen: ^{\leftarrow}, ^{\rightarrow}, \dots
20D0..20FF
2100..214F
                buchstabenähnliche Zeichen: \mathcal{F}, {}^{\circ}F, \dots
                Zahlen: \frac{1}{3}, I, VII, ...
2150..218F
2190..21FF
                Pfeile: \uparrow, \mapsto, ...
2200..22FF
                mathematische Sonderzeichen: \forall, \exists, \in, ...
                verschiedene technische Sonderzeichen: #, ...
2300..23FF
2400..243F
                Symbole für Control-Zeichen: NUL,ESC, ...
                OCR-Zeichen
2440..245F
2460..24FF
                eingerahmte alphanumerische Zeichen: ©, ...
2500..257F
                Formular- und Diagrammzeichen: \vdash, \dashv, \parallel, ...
2580..259F
                Blockgraphik-Zeichen
25A0..25FF
                graphische Symbole
2600..26FF
                verschiedene Dingbats
2700..27BF
                Zapf-Dingbats
3000..303F
                CJK-Symbole
3040..309F
                Hiragana
30A0..30FF
                Katakana
     ...
```

Tabelle 1.10: Weitere Zeichenbereiche

Der UNICODE stellt weitgehende Kompatibilität zu bestehenden Codes durch (verschobenes) Einfügen oder Bereitstellen von Code-Umwandlungstabellen her: 0000..007F entspricht ASCII. Für andere Codes werden UNICODE-Übersetzungstabellen bereitgestellt, z.B. für UNICODE zu SGML (Tabelle 1.12), UNICODE zu Postscript (Tabelle 1.11) oder UNICODE zu MacIntosh (Tabelle 1.13). Analoge Tabellen gibt es zur Übersetzung von UNICODE zu Microsoft Windows, zu PC Code Page Mappings (Latin, Greek,...), zu EBCDIC Code Page Mappings und weiteren.

Die Notwendigkeit, Control-Codes anderer Codierungen auch verfügbar zu haben, und die Weigerung von Japan und Korea, die vereinheitlichte CJK-Codierung (die mit 19000 statt insgesamt über 31000 Codepositionen ausgekommen wäre) zu akzeptieren, führt zum 32Bit Zeichencode *ISO 10646*, der in seinen ersten 65536 Codes die Zeichen des Unicodes benutzt:

Näheres zum ISO- bzw. Unicode lese man bei

http://dns.hti.umich.edu/htistaff/pubs/1997/janete.01/,

http://www.indigo.ie/egt/standards/iso10646/bmp-today-table.html,

http://wwwinfo.cern.ch/asdoc/WWW/publications/ictp99/ictp99N2705.html

und

http://www.unicode.org/

nach. Die nun zur Verfügung stehenden 4294967296 Codes dürften voraussichtlich für eine Codierung auch der ausgefallensten (ausgestorbenen) Schriften ausreichen.

	ISO La	tin1	ZapfDB		
UNIC	StdEnc		Symbol	Adobe glyph name	Unicode character name
0020	20	20	20	space	SPACE
0021	21	21	21	exclam	ECLAMATION MARK
0022	22	22		quotedbl	QUOTATION MARK
0023	23	23	23	numbersign	NUMBERSIGN
0024	24	24		dollar	DOLLAR SIGN
0025	25	25	25	percent	PERCENT SIGN
0026	26	26	26	ampersand	AMPERSAND
0027	A9			quotesingle	APOSTROPHE-QUOTE
0028	28	28	28	parenleft	OPENING PARENTHESIS
0029	29	29	29	parenright	CLOSING PARENTHESIS
002A	2A	2A		asterisk	ASTERISK
002B	2B	2B	2B	plus	PLUS SIGN
002C	2C	2C	2C	comma	COMMA
002D	2D	AD		hyphen	HYPHEN-MINUS
002D		2D		minus	HYPHEN-MINUS
002E	$2\mathrm{E}$	2E	$2\mathrm{E}$	period	PERIOD
002F	2F	2F	$2\mathrm{F}$	slash	SLASH
0030	30	30	30	zero	DIGIT ZERO
0031	31	31	31	one	DIGIT ONE
0032	32	32	32	two	DIGIT TWO
0033	33	33	33	three	DIGIT THREE
0034	34	34	34	four	DIGIT FOUR
0035	35	35	35	five	DIGIT FIVE
0036	36	36	36	six	DIGIT SIX
0037	37	37	37	seven	DIGIT SEVEN
0038	38	38	38	eight	DIGIT EIGHT
0039	39	39	39	nine	DIGIT NINE
003A	3A	3A	3A	colon	COLON
003B	3B	3B	3B	semicolon	SEMIKOLON

Tabelle 1.11: UNICODE to Adobe Standard Mappings

UNIC	6862.2	SGML	Unicode character name
0021		excl	EXCLAMATION MARK
0023		num	NUMBER SIGN
0024		dollar	DOLLAR SIGN
0025		percnt	PERCENT SIGN
0026		amp	AMPERSAND
0027		quot	APOSTROPHE-QUOTE
0028		lpar	OPENING PARENTHESIS
0029		rpar	CLOSING PARENTHESIS
002A		ast	ASTERISK
002B	05.00	plus	PLUS SIGN
002C		comma	COMMA
002D		hyphen	HYPHEN-MINUS
002E		period	PERIOD
002F		sol	SLASH
003A		colon	COLON
003B		semi	SEMICOLON
003C		lt	LESS-THAN SIGN
003D		equals	EQUALS SIGN
003E		gt	GREATER-THAN SIGN
003F		quest	QUESTION MARK
0040		commat	COMMERCIAL AT
005B		lsqb	OPENING SQUARE BRACKET
005C		bsol	BACKSLASH
005D		rsqb	CLOSING SQUARE BRACKET
005E		circ	SPACING CIRCUMFLEX
005F		lowbar	SPACING UNDERSCORE
0060		grave	SPACING GRAVE
007B		lcub	OPENING CURLY BRACKET
007C		verbar	VERTICAL BAR
007D		rcub	CLOSING CURLY BAR
007E		tilde	TILDE
00A0		nbsp	NON-BREAKING SPACE
00A1		iexcl	INVERTED EXCLAMATION MARK
00A2		cent	CENT SIGN
00A3		pound	POUND SIGN

Tabelle 1.12: The UNICODE to SGML (ISO DIS $6862.2)\ \mathrm{Mappings}$

UNIC	ROM	SYM	GRK	GK2	HEB	ARB	NAME
0020	20	20	20	20	20/A0	21/A1	SPACE
0021	21	21	$\frac{1}{21}$	21	21/A1	21/A1	ECLAMATION MARK
0022	22		22	22	22/A2	22/A2	QUOTATION MARK
0023	23	23	23	23	$\frac{23}{A3}$	$\frac{23}{A3}$	NUMBERSIGN
0024	24		24	24	24/A4	24/A4	DOLLAR SIGN
0025	25	25	25	25	25/A5	$25^{'}$	PERCENT SIGN
0026	26	26	26	26	26	26/A6	AMPERSAND
0027	27		27	27	27/A7	27/A7	APOSTROPHE-QUOTE
0028	28	28	28	28	28/A8	28/A8	OPENING PARENTHESIS
0029	29	29	29	29	29/A9	29/A9	CLOSING PARENTHESIS
002A	2A		2A	2A	2A/AA	,	
002B	2B	2B	2B	2B	2B/AB	2B/AB	PLUS SIGN
002C	2C	2C	2C	2C	2C/AC	2C	COMMA
002D	2D		2D	2D	2D/AD	2D/AD	HYPHEN-MINUS
002E	2E	2E	2E	2E	2E/AE	2E/AE	PERIOD
002F	2F	2F	2F	2F	2F/AF	2F/AF	SLASH
0030	30	30	30	30	30/B0	30	DIGIT ZERO
0031	31	31	31	31	31/B1	31	DIGIT ONE
0032	32	32	32	32	32/B2	32	DIGIT TWO
0033	33	33	33	33	33/B3	33	DIGIT THREE
0034	34	34	34	34	34/B4	34	DIGIT FOUR
0035	35	35	35	35	35/B5	35	DIGIT FIVE
0036	36	36	36	36	36/B6	36	DIGIT SIX
0037	37	37	37	37	37/B7	37	DIGIT SEVEN
0038	38	38	38	38	38/B8	38	DIGIT EIGHT
0039	39	39	39	39	39/B9	39	DIGIT NINE
003A	3A	3A	3A	3A	3A/BA	3A/BA	COLON
003B	3B	3B	3B	3B	3B/BB	3B	SEMICOLON
003C	3C	3C	3C	3C	3C/BC	3C/BC	LESS-THAN SIGN
003D	3D	3D	3D	3D	3D/BD	3D/BD	
003E	3E	3E	3E	3E	3E/BE	3E/BE	GREATER-THAN SIGN
003F	3F	3F	3F	3F	3F/BF	3F	QUESTION MARK
0040	40		40	40	40	40	COMMERCIAL AT
0041	41		41	41	41	41	LATIN CAPITAL LETTER A
0042	42		42	42	42	42	LATIN CAPITAL LETTER B
0043	43		43	43	43	43	LATIN CAPITAL LETTER C
0044	44		44	44	44	44	LATIN CAPITAL LETTER D
0045	45		45	45	45	45	LATIN CAPITAL LETTER E
0046	46		46	46	46	46	LATIN CAPITAL LETTER F
0047	47		47	47	47	47	LATIN CAPITAL LETTER G
:							

Tabelle 1.13: UNICODE to Macintosh Mappings 33

Unicode 4.0.0 kommt mit 1226 neuen Zeichen

Minderheitensprachen wie Limbu, Tai Le oder Osmanya aufgestockt. Auch die sonst oft vernachlässigten historischen Schriften bekamen eine den Schriftzeichen für Sprachen wie Indisch, Khmer oder Arabisch hinzugefügt. Außerdem wurde das neue Release um die Zeichensätze von Erweiterung. Damit reagierte das Consortium auf Probleme bei vorherigen Unicode-Versionen[3]. Diese waren nicht zur Formulierung von XML-Tags für einige historische Zeichensätze wie Alt-Mongolisch, Burmesisch oder einige kanadische Indianerschriften fähig Wesentliche Bestandteile von Unicode 4.0 sind neue Symbole für den mathematisch und technischen Bereich, viele individuelle Zeichen wurden zu Das Unicode Konsortium[1] hat die Major-Version Unicode 4.0.0[2] vorgestellt. In der neuen Version wurden 1226 neue Zeichen integriert.

Industriegrößen wie Apple, Hewlett-Packard, IBM, Microsoft, Oracle, SAP oder Sun eingesetzt. Genauere Informationen über die neue Version natürlich, dass der Computer beziehungsweise das ausgeführte Programm das Unicode-System unterstützt. Der Unicode-Standard wird von Durch dieses System wird es möglich, einem Computer "weltweit" zu sagen, welches Zeichen man dargestellt bekommen will. Voraussetzung ist Unicode ist ein System, in dem die Zeichen oder Elemente aller bekannten Schriftkulturen und Zeichensysteme computertauglich festgehalten werden finden sich in der Dokumentation zu Unicode 4.0.0[4] und in der Unicode Character Database[5]. (see[6]/c't)

URL dieses Artikels:

http://www.heise.de/newsticker/data/see-28.04.03-002/

Links in diesem Artikel:

- [1] http://www.unicode.org/
- [2] http://www.unicode.org/versions/Unicode4.0.0/
- [3] http://www.heise.de/newsticker/data/hps-18.10.02-000/
- [4] http://www.unicode.org/versions/Unicode4.0.0/
- [5] http://www.unicode.org/ucd/
- [6] mailto:see@et.heise.de

Bemerkung: Byteadressierte Computersysteme

Memory Contents for Little and Big Endian Example

ADDRESS	DATA
1000H	12H
1001H	34H
1002H	56H
1003H	78H
1004H	9AH
1005H	ВСН
1006H	DEH
1007H	F0H

Abbildung 1.9: Die Bytes im Speicher ...

Access	Example	Register Contents (Little Endian)	Register Contents (Big Endian)
Byte at 1000H	ldob 0x1000, r3	12H	12H
Short at 1002H	ldos 0x1002, r3	7856H	5678H
Word at 1000H	ld 0x1000, r3	78563412H	12345678H
Long-Word at 1000H	ldl 0x1000, r4	78563412H (r4) F0DEBC9AH (r5)	12345678H (r4) 9ABCDEF0H (r5)

Abbildung 1.10: ... und ihre Reihenfolge im Computerwort

Im Inneren der CPU

In einer CPU wurden zunächst

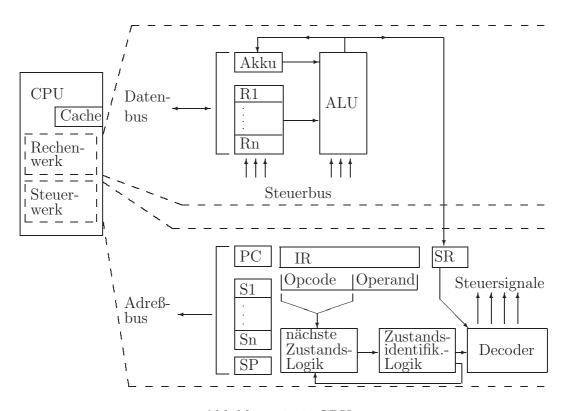


Abbildung 1.11: CPU

die einzelnen Aktionen hardwaremäßig (1 aus N Auswahl der gewünschten Aktion der ALU über CPU-interne Steuerleitungen) realisiert.

Die Maschinenbefehle einer typischen Intel-CPU sind unter http://taurus.ubishops.ca/ljensen/asm/intelasm.htm inspizierbar.

1.2 Modularer Aufbau von Betriebssystemen

Betriebssysteme haben die folgenden Aufgaben:

- Auftragsverwaltung (Jobs)
- Betriebsmittelverwaltung:
 - Hauptspeicherverwaltung
 - Dateiverwaltung
 - E/A-Steuerung / Gerätetreiber
 - Ablaufsteuerung / Prozess-/Taskverwaltung
 - Zugriffskontrolle
 - Ausnahmebehandlung
 - ...
- Dienste / Services

Sie setzen sich dabei modular aus Subsystemen zusammen:

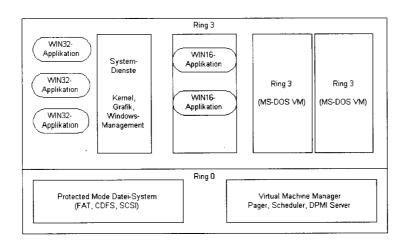


Abbildung 1.12: Windows 95/98

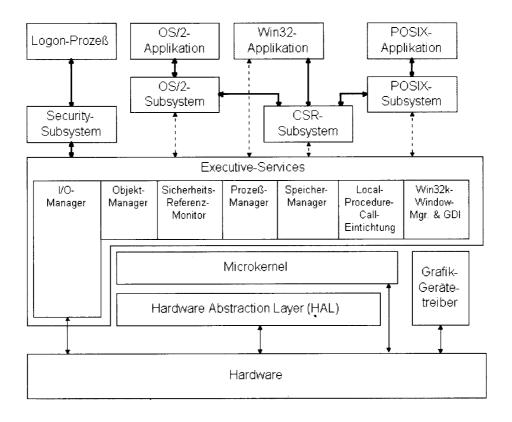


Abbildung 1.13: Windows NT

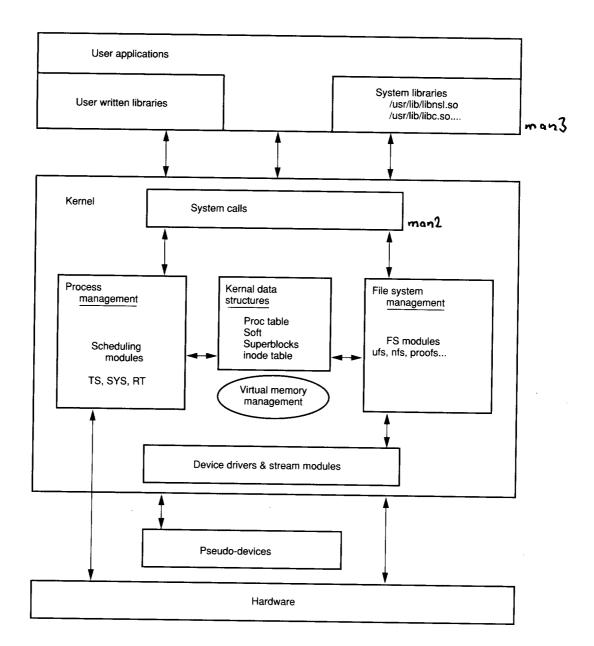


Abbildung 1.14: Solaris/Linux

In der folgenden Skizze

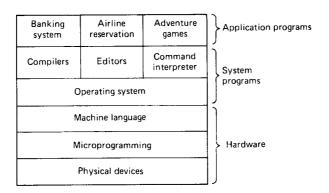


Abbildung 1.15: Microcode und Betriebssystem

wird auf Microprogramming (Microcode) hingewiesen. Was ist darunter zu verstehen?

1.3 CISC/RISC

1.3.1 CISC

Traditionelle CISC's (= complex instruction set computers) sind:

- IBM360
- DEC VAX
- Intel 80386 (80x86)
- Motorola 68030 (680x0)
- ...

Akku CPU R1Daten-ALU Cache bus Rn Rechen-werk 111 Steuer-Steuerbus werk PCSRIR Opcode Operand Steuersignale S1۱ Adreßt bus nächste Zustands-identifik.-Sn Zustands-Decoder SP logik logik

Abbildung 1.16: CISC-CPU-Aufbau

In Zeiten, als der Zeitraum zur Übertragung eines Datenwortes vom Speicher in ein Register oder umgekehrt Größenordnungen länger dauerte als ein

einfacher logischer oder arithmetischer Primitiv-Befehl, mußte zunächst die Programmabarbeitung durch wait-states künstlich verlangsamt werden. Man versuchte dann aus Gründen der Ökonomie, eine CPU immer komplexere Primitiv-Befehle (deren Ausführungszeit lediglich anfangs immer noch höchstens eine "Datentransferzeit Register in Speicher" lang war) ausführen zu lassen. In der damaligen Zeit waren dafür jedoch nicht genügend Schaltoperationen auf einem Chip realisierbar, weshalb man das Rechenwerk der CPU wiederum als Computer aufbaute:

Computer im Computer: Steuerwerk PC IR Opcode [Operand] μ Programm-Steuersignale Adreß-Logik für Microcodeoperationen(ALU) μ P-Speicher $\mu P-PC$ $\mu P-IR$ Decoder Ausführungseinheit Bedingungsgatter (Status)

Abbildung 1.17: Microprogrammierte CISC-CPU

Software ("SW") reduziert den Schaltungsaufwand (= Anzahl der Gatter, Anzahl der Leitungen, . . .) und "interpretiert" den Maschinencode der CPU (Computer im Computer).

Eventuell werden sogar "noch" Nanoprogramme benutzt (68000er, ...):

Abbildung 1.18: Nanoprogrammierte CISC-CPU

Das CISC-Designprinzip:

Reduziere die "semantic gap" zwischen Maschinensprache und Hochsprache durch

- viele komplexe Maschinenbefehle ($\gtrsim 200$), etwa "case", "while", . . .
- viele Adressierungsmodi, etwa für "Felder", "Verbunde", . . .
- Unterprogramm-Management im Maschinencode

unter besonderer Beachtung der mindestens um den Faktor 10 langsameren Transferbefehle zum/vom Speicher.

1.3.2 "Überalterung" von CISC

Ungefähr 1970 wird

- die Komplexität des Microprogramms immer schlechter zu managen
- der Speicherzugriff schneller
- lohnt sich ein Redesign aufgrund von Messungen "typischer" Anwendungen:

Tabelle 1.14: Analyse typischer Computeranwendungen auf ihre Instruktionstypen hin

	SAL	XPL	FORTRAN	С	Pascal
%-	Operating System	Systempgm.	num. Pgm.	Systempgm.	Systempgm.
Verteilung	Tanenbaum (1978)	Wortman (1972)	Knuth (1971)	Patterson (1982)	Patterson (1982)
:=	$47^{1)}$	55	51	38	45
if	17	17	10	43	29
call	25	17	5	12	15
loop	6	5	9	3	5
goto	0	1	9	3	0
sonstiges	5	5	16	1	6

Dabei sind in $\,^{1)}$ 80% der Wertzuweisungen von dem einfachen Typ "Variable := Wert".

Konsequenz: Der Overhead durch das komplexe Microprogramm und die vielen Adressierungsmodi wird nur sehr selten auch ausgenutzt.

MOV (80286/80386)

Move

Instruction: Move

Typical clocks: (80286) 2-19, (80386) 2-22

Description: Copies the source to the destination

Operation: There are several MOV instructions, all of which have the same function. They all copy the source operand's contents into the destination

operand without destroying the source.

Syntax: MOV destination, source

Flags affected: None Flags undefined: None

Protected mode exceptions: A general protection exception, stack fault exception, or descriptor not present exception may be generated if a segment register is being loaded. A general protection exception also may be generated if the destination is in a nonwritable segment. If the CS, DS, or ES segment contains an illegal memory operand effective address, a general protection exception is generated. If the SS segment contains an illegal address, a stack fault exception is generated.

Real address mode exceptions: When a word operand is at offset 0FFFFH, INT 13 is generated.

80386 note: Word size is 32 bits. Memory addresses are formed using 32-bit effective addresses or 32-bit displacement.

Abbildung 1.19: Der x86 MOV-Befehl

MUL (80286/80386)

Multiply, unsigned

Instruction: MUL

Typical clocks: (80286) 13-21, (80386) 9-41

Description: Performs unsigned multiply $(AX = AL \times specified byte)$

Performs unsigned multiply (DX:AX = $AX \times$ specified word)

Operation: A byte operand of the MUL instruction causes the byte to be multiplied by the AL register and the result left in the AX register. CF and OF are reset to 0 if AH is 0; otherwise, they are set to 1.

A word operand of the MUL instruction causes the word to be multiplied by the AX register and the result left in DX:AX. DX contains the high-order 16 bits of the result. CF and OF are reset to 0 if DX is 0; otherwise, they are set to 1. See the 80386 note.

Syntax: MUL source

Flags affected: OF, CF

Flags undefined: SF, ZF, AF, PF

Protected mode exceptions: If the CS, DS, or ES segment contains an illegal memory operand effective address, a general protection exception is generated. If the SS segment contains an illegal address, a stack fault exception is generated.

Real address mode exceptions: When a word operand is at offset 0FFFFH, INT 13 is generated.

Abbildung 1.20: Der x86 MUL-Befehl

1.3.3 RISC (= reduced instruction set computer)-Designprinzip

- Analysiere Anwendungen, um die Schlüsseloperationen zu finden.
- Reduziere unter allen Umständen die "Datenpfadzykluszeit" (Register \rightarrow ALU \rightarrow Register) für diese Operationen, also: keine Microcode Interpretation (Maschinencode = Microcode)
- Jedes "neue" Feature ist nur zuzulassen, wenn es häufig benutzt wird und die Mehrzahl der existierenden nicht verlangsamt.

(Wiederhole diesen Design-Zyklus für die anderen CPU-Ressourcen: Cache, Speichermanagement, Gleitkomma-Koprozessoren, . . .)

Tabelle 1.15: Von CISC zu RISC

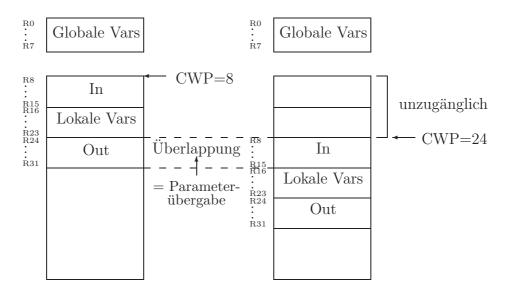
		CISC		RISC			
	IBM	IBM VAX Xerox			Berkeley	Stanford	
	370/168	11/780	Dorado	801	RISC I	MIPS	
Jahr	1973	1978	1978	1980	1981	1983	
# Operationen	208	303	270	120	39	55	
Microcode-Größe [byte]	54K	61K	17K	_	_	_	
Befehlslänge [byte]	2-6	2–57	1–3	4	4	4	
Ausführungsmodell	reg-reg	reg- reg	stack	reg-reg	reg-reg	reg-reg	
	reg-men	reg-men					
	men-men	men-men					

CISC- und RISC-Architekturen lassen sich durch einige charakteristische Merkmale voneinander unterscheiden:

Tabelle 1.16: Unterscheidungsmerkmale CISC/RISC

	Bei RISC üblich	Bei CISC üblich
1.	einfache Befehle, 1 Befehl/Zyklus	komplexe Befehle, 1 Befehl/viele Zyklen
2.	LOAD/STORE-Architektur	mem-reg, mem-mem Befehle
	(nur LOAD/STORE greift auf Speicher zu)	
3.	pipelined	kaum pipelined
4.	Hardware, kein Microcode	Microcode
5.	feste Befehlslänge	variable Befehlslänge (1 17 byte beim 80386)
6.	Wenige Befehle, wenige Adressierungsmodi	viele Befehle und Adressierungsmodi
7.	Komplexität im Compiler	Komplexität im Microprogramm
8.	Registerstack	feste Registermenge

Bemerkungen:


- zu 1. Deswegen evtl. sogar keine Multiplikation/Division, die dann in Runtime-Bibliotheken angeboten werden muß.
- zu 2. Vorhandene RISC-Varianten: (load|store) (signed|unsigned) (byte|halfword|word)
- zu 3. delayed load/store: Codereorganisation bzw. NOP's

- Pipeline:	Zyklus	1	2	3	4	5	6	7
	instr1	fetch	decode	exec	write			
	instr2		fetch	decode	exec	write		
	instr3			fetch	decode	exec	write	
	:							

- zu 4. in RISC viel Chip-Platz frei: mehr Register realisierbar
- zu 5. Die variable Länge benötigte Microcode (oder aufwendige Decoder).
- zu 6. Befehlsdecoder-Länge wächst exponentiell mit der Anzahl der Befehle.
 - Geschwindigkeit/Komplexität: wenige Adressierungsmodi
- zu 7. In RISC-Systemen sind gute Compiler unumgänglich.
- zu 8. Registerstack:
 - $-\sim 500$ Register, von denen 32 gleichzeitig verfügbar sind
 - überlappende Register-Fenster (s.u.)
 - Register-Mehrfachbenutzung ("Lebenszeit" von Variablen)

Der Registerstack ist auch bei CISC möglich, wenn genügend Chip-Platz verfügbar ist.

Abbildung 1.21: Registerstack am Beispiel SPARC

1.3.4 Historischer CISC-RISC CPU-Vergleich

Tabelle 1.17: RISC-CPUs im Vergleich zu Intel 80x86-CPUs

	MIPS	SPARC	DEC-	Intel	HP	IBM	MIPS	SPARC	Intel
	4400	SS20	Alpha	Pentium P5	PA7100	Power 6264	R4000SC	SS10	486DX2
Taktrate (MHz)	200	75	nom.200	66	100	62,5	100	40	66
# Pipelinestufen		4	7		5	6	8	4	5
max # Instr./Zyklus		3	2		2	4	1	3	1
Cache Instr.	16 KB	20 KB	8 KB	16 KB	_	32 KB	8 KB	20 KB	8 KB
Cache Data	16 KB	16 KB	8 KB	gemeinsam	_	_	8 KB	16 KB	gemeins.
max Durchsatz (MB/s)			3200		k.A.	1000	1200	960	1067
sek. Cache Instr.	1 MB	1 MB	32 MB	256 KB	1 MB	-	4 MB	2 MB	512 KB
sek. Cache Data	insges.	insges.	insges.	gemeinsam	2 MB	64 KB	insges.	gemeins.	gemeins.
max Durchsatz (MB/s)			1067	k.A.	1600	500	800	320	133
Bus-Taktrate (MHz)			67		67	62,5	50	40	33
Bus-Durchsatz (MB/s)	1200		1067		267	1000	400	320	133
SPECint92	140	125,8	69,6	64,5	80,0	59,2	61,7	53,2	32,2
SPECfp92	131	121,2	182,1	56,9	150,6	124,8	63,4	63,4	16,0
SPECint95		3,11			3,13			1,0	
SPECfp95		3,10			4,0			1,0	

Zum Vergleich:

Der MPC620 ist ein 64 Bit-Prozessor, der MPC604e hat zwar einen 64 Bit-Datenbus, aber nur einen 32 Bit-Adreßbus.

Tabelle 1.18: 64 Bit RISC-CPUs

	UltraSPARC	Ultra-SPARC	MIPS	DEC-alpha	HP	IBM
	II	I	R10000	21164	PA8200	PowerPC 604e
Taktrate (MHz)	336	200	250	533	240	332
Cache Instr.	16 KB	16 KB	32 KB	8 KB	2 MB	32 KB
Cache Data	16 KB	16 KB	32 KB	8 KB	2 MB	32 KB
sek. Cache	4 MB	1 MB	4 MB	96 KB + 4 MB	_	256 KB
SPECint95	14,9	7,81	14,7	16,9	17,4	14,4
SPECfp95	37,6	10,4	62,5	56,7	28,5	12,6

Tabelle 1.19: PC-Bussysteme und Durchsatzraten

	ISA	MCA	EISA	EISA	VL-Bus	VL-Bus	PCI	PCI
		1.0		EMB-133		64-bit	32	64
Datenbus-								
breite (bit)	16	32	32	64	32	64	32	64
Taktrate (MHz)	8	4	8	8	33	50	33	33
Bus-Durchsatz (MB/s)	8	16	33	125	75	160	117	234

Tabelle 1.20: RISC PC-CPUs: PowerPC (Apple und IBM) $\,$

	MPC620	PowerPC "G3"	MPC604e	MPC604	MPC603e	MPC603	MPC601
Taktrate (MHz)	~133	250	332	166	200 240	66/80	50/60/66/80
Cache Instr.	32 KB	32 KB	32 KB		16 KB	8 KB	32 KB
Cache Data	32 KB	32 KB	32 KB		16 KB	8 KB	gemeins.
sek. Cache	1 128 MB	256 1024 KB	256 KB		1 MB	1 MB	1 MB
SPECint92	\sim_{225}					\sim 60/75	~62 85
SPECfp92	\sim 300					\sim 70/85	\sim_{72105}
SPECint95	\sim 5,6	\sim_{10}	14,4	5,2	7,1		
SPECfp95	\sim 5,6		12,6	4,3	4,2		

Tabelle 1.21: CISC PC-CPUs: i80x86

	i486DX2	i486DX4	Pentium	Pentium	Pentium	Pentium	PentiumPro
						MMX	
Taktrate (MHz)	66	100	100	133	200	200	200
Cache Instr.	8 KB	16 KB	8 KB				
Cache Data	gemeins.	gemeins.	8 KB				
sek. Cache	256 KB	256 KB	512 KB	512 KB	512 KB	512 KB	512 KB
SPECint92	32,2	51,4	100,0				
SPECfp92	16,0	26,6	80,6				
SPECint95			3.05	4,1	5,5	6,41	8,58
SPECfp95			2,07	2,5	3,92	4,66	6,48

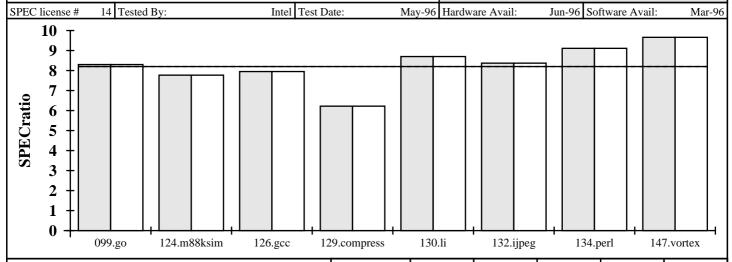
Tabelle 1.22: CISC PC-CPUs: i80x86 (Forts.)

	Pentium II	"Deschutes"		
	MMX, AGP, SDRAM	MMX, AGP		
Taktrate (MHz)	333	300		
Cache Instr.	16 KB			
Cache Data	16 KB			
sek. Cache	512 KB			
SPECint95	12,8	\sim_{12}		
SPECfp95	9,25	\sim_{10}		

MMX ("matrix manipulation extensions") stellt eine Erweiterung des Befehlssatzes für Bild/Audio/Video zu Lasten der FloatingPoint-Befehle dar. Der PentiumPro (P6) ist intern ein RISC-Prozessor mit eingebautem "CISC-RISC translator" (Kompatibilität!). Für den Pentium II wird ein schnelleres Motherboard mit SDRAM ("synchr. dyn. RAM") benötigt; die Graphikkarte wird aus Geschwindigkeitsgründen nicht mehr über den PCI-Bus sondern über den dedizierten AGP ("accelerated graphics ports") angeschlossen.

Aktuelle Daten entnehme man dem WWW:

```
http://www.specbench.org, http://www.ibm.com,
```


http://www.intel.com, ...

SPEC CINT95 Results ©Copyright 1995, Standard Performance Evaluation Corporation

Dell Computer Corporation Dimension XPS Pro200n

SPECint95 8.20

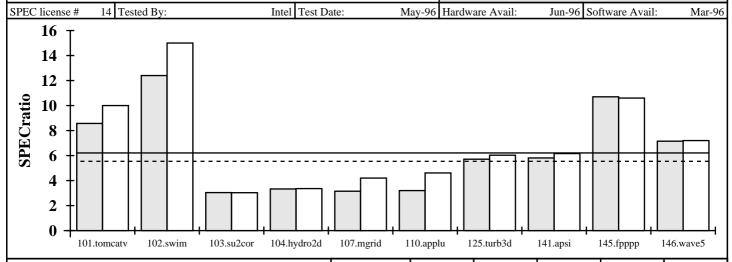
SPECint base95 = 8.20

Hardware/Software Configuration for: Dell Dimension XPS Pro200n		Benchmark # and Name	Reference Time	Base Run Time	Base SPEC Ratio	Run Time	SPEC Ratio
Model Name:	Hardware XPS	099.go	4600	554	8.30	554	8.30
CPU:	200MHz Pentium Pro processor	124.m88ksim	1900	244	7.77	244	7.77
FPU: Number of CPU(s):		126.gcc	1700	214	7.95	214	7.95
Primary Cache: Secondary Cache:	econdary Cache: 256KB(I+D) Other Cache: None	129.compress	1800	289	6.22	289	6.22
Other Cache: Memory:		130.li	1900	218	8.70	218	8.70
Disk Subsystem:	1MB IDE Quantum Fireball	132.ijpeg	2400	287	8.37	287	8.37
Other Hardware:	Integrated EIDE disk controller Software	134.perl	1900	209	9.11	209	9.11
Operating System:	UnixWare 2.0, UnixWare SDK	147.vortex	2700	280	9.66	280	9.66
Compiler: File System:	Intel C Reference Compiler V2.3 UFS	SPECint_base	95 (G. Mea	n)	8.20		
System State:	Single User			SPECint95	(G. Mean)	•	8.20

Notes/Tuning Information

Base and peak flags are the same and use Feedback Directed Optimization
Pass1: -tp p6 -ipo -prof_gen -ircdb_dir /proj/tmp/IRCDB
Pass2: -tp p6 -ipo -prof_use -ircdb_dir /proj/tmp/IRCDB
-ircdb_dir is a location flag and not an optimization flag
Portability: 124: -DSYSV -DLEHOST 130, 134, 147: -lm 132: -DSYSV 126: -lm -lc -L/usr/ucblib -lucb -lmalloc

For More Information


SPEC 10754 Ambassador Drive, Suite 201 Manassas, VA 22110

(703) 331-0180 info@specbench.org http://www.specbench.org

SPEC CFP95 Results ©Copyright 1995, Standard Performance Evaluation Corporation

Dell Computer Corporation Dimension XPS Pro200n

SPECfp95 6.21 SPECfp_base95 = 5.54

Hardware/Software Configuration for: Dell Dimension XPS Pro200n		Benchmark # and Name	Reference Time	Base Run Time	Base SPEC Ratio	Run Time	SPEC Ratio
	Hardware	101.tomcatv	3700	432	8.57	369	10.0
Model Name:	XPS	102.swim	8600	695	12.4	572	15.0
CPU:	200MHz Pentium Pro processor	102.3WIII	8000	093	12.4	312	13.0
FPU:	Integrated	103.su2cor	1400	461	3.04	462	3.03
Number of CPU(s):	1	104.hvdro2d	2400	720	3.33	715	3.36
Primary Cache:	8KBI+8KBD		2400	720	3.33	/13	3.30
Secondary Cache:	256KB(I+D)	107.mgrid	2500	793	3.15	595	4.20
Other Cache:	None	110.applu	2200	687	3.20	478	4.61
Memory:	64MB(EDO)		2200	007	3.20	170	1.01
Disk Subsystem:	1MB IDE Quantum Fireball	125.turb3d	4100	718	5.71	679	6.03
Other Hardware:	Integrated EIDE disk controller	141.apsi	2100	361	5.81	341	6.16
	Software	145.fpppp	9600	901	10.7	902	10.6
Operating System:	UnixWare 2.0, UnixWare SDK	146.wave5	3000	420	7.15	417	7.20
Compiler:	Intel C/FORTRAN Reference Compiler V2.3	CDEC6- base					20
File System:	UFS	SPECfp_base9	95 (G. Mear	1)	5.54		
System State:	Single User			SPECfp95	(G. Mean)		6.21

Notes/Tuning Information

```
Flags: Base: -tp p6 -ipo -pc 64 -mem
101: -tp p6 -ipo -mem -pad -distype -fcon -pc 64
102: -tp p6 -ipo -pad -fcon -pc 64
103: Pass1: -tp p6 -prof_gen -ircdb_dir /proj/tmp/IRCDB
Pass2: -tp p6 -ip -mem -mill -pad -fcon -pc 64 -prof_use -ircdb_dir /proj/tmp/IRCDB 104: Pass1: -tp p6 -prof_gen -ircdb_dir /proj/tmp/IRCDB Pass2: -tp p6 -ip -mem -mill -pc 64 -prof_use -ircdb_dir /proj/tmp/IRCDB
107: -tp p6 -pad -fcon -pc 64
110: -tp p6 -ipo -mem -mP2OPT_opt_bblock_stat_limit=10000 -pc 64
125: -tp p6 -ip -mem -mill -pad -fcon -pc 64
141: Passl: -tp p6 -w -prof_gen -ircdb_dir /proj/tmp/IRCDB
Pass2: -tp p6 -pc 64 -prof_use -ircdb_dir /proj/tmp/IRCDB
145: -tp p6 -ipo -pc 64
146: Pass1: -tp p6 -prof_gen -ircdb_dir /proj/tmp/IRCDB
Pass2: -tp p6 -ipo -mem -pad -distype -pc 64 -prof_use -ircdb_dir /proj/tmp/IRCDB
```

For More Information

SPEC 10754 Ambassador Drive, Suite 201 Manassas, VA 22110

(703) 331-0180 info@specbench.org http://www.specbench.org

Tabelle 1.23: Marktallianzen im RISC-Bereich

Das Sparc-Lager (unter anderem): SPARC

- Sun Microsystems
- Amdahl
- Cray
- Fujitsu
- ICL
- Solbourne
- Toshiba
- Xerox
- Matsushita
- Tadpole Technology
- Goldstar
- Hyundai
- Tatung
- Force Computers
- LSI Logic
- Tulip Computers
- Meiko

Das HP-PRO-Lager: HP PA (Power Architecture)

- HP
- Hitachi
- Mitsubishi
- Hughes
- Oki
- Yokogawa
- Prime
- Convex
- Sequoia

Das Motorola-Lager (88-Open unter anderem): 88000 (siehe auch Power-PC)

- Motorola
- Data General
- Omron
- Encore Computer
- Dolphin Server Technology
- Sanyo/Icon International Inc.
- Cetia (Thomson CSF)
- Harris Computer Systems Division
- McDonnell Douglas Information Systems
- Micro Focus
- Philips Information Systems
- SAS Institute
- Tadpole Technology
- Unify
- Wordperfect
- Oracle
- Unix International

Das Power-Open-Lager: POWER (siehe auch Power-PC)

- IBM
- Apple
- Bull HN Information Systems Inc.
- Harris Corp.
- Motorola
- Tadpole Technology
- Thomson CSF

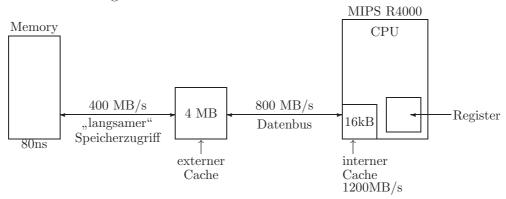
Das Digital-Lager: Alpha

- DEC
- Kubota
- Olivetti
- Raytheon
- Encore Computer
- Advanced Computer Research International
- Carrera Computers
- Cray Research

Das Mips-Lager (unter anderem): MIPS

- Silicon Graphics (Mips)
- DEC
- Pyramid
- SNI
- Siemens
- Olivetti
- Tandem
- NEC
- Sony
- AT&T
- Sumitomo
- Control Data
- Microsoft
- LSI Logic
- Integrated Device Technology
- Toshiba
- Acer
- Carrera Computers

Intel: (i860)


- PentiumPro (nur im Kern ?!)

Das Power-PC-Lager: POWER-PC

- IBM
- Apple
- ASI
- Bull HN Information Systems Inc.
- Canon
- Ford (für den Einsatz in Kraftfahrzeugen)
- Harris Corp.
- Motorola
- Peacock
- Tadpole Technology
- Taiwan New PC Consortium (24 Hersteller)
- Thomson CSF
- Vobis

1.4 Der Cache zur Datentransferbeschleunigung

Abbildung 1.22: Der Cache als Daten-Vorratsbehälter

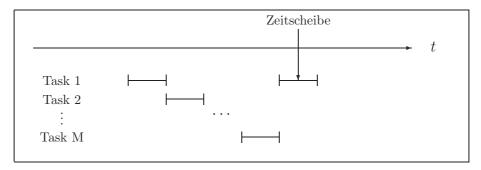
Bemerkungen: Beachte die verschiedenen Duchsatzraten in (umgekehrter) Proportionalität zur jeweiligen Cache-/Speichergröße!

Hoher Durchsatz wird erreicht bei:

- sequentieller Ausführung von Befehlen,
- Zugriff auf ganze Vektoren (Daten),
- Zugriff auf 64/128 Bit-Gleitkommazahlen bei 32 Bit Datenbusbreite,
- durchschnittlich geringem Bedarf an Daten (aus dem Speicher) pro Befehl

Geringer Durchsatz wird erzielt bei:

- wilden Sprüngen, ...
- Benutzung von verketteten Listen mit "großen" Knoten (CAD-Programme), ...


Bemerkung: Es wurden SparcStation10's ohne SuperCache ausgeliefert, um bei speziellen Anwenderprogrammen das "verlangsamende" Cache-Füllen zu umgehen.

1.5 Multitasking

Pagefaults führen dann zu keinen unnötigen wait-Zyklen, wenn in einem Multitaskingsystem andere Aufträge (Prozesse) auf die CPU-Benutzung warten.

Prozesse (Tasks)

- Programmeinheiten, die unterbrech- und wiederfortsetzbar sind
- Multitasking:
 - 1 Rechner erscheint M Benutzern als M jeweils dedizierte einzelne Rechner. Ein Rechner kann (scheinbar) zugleich mehrere Prozesse bearbeiten.

Beispiele:

Windows 3.x: Multitasking, nicht preemptiv.

OS/2, Windows 95, Windows NT, UNIX: preemptives Multitasking.

Preemtiv (= "wahlweise vergebbar") heißt ein Multitasking-Betriebssystem dann, wenn der Betriebssystemkern allein für die Vergabe der Zeitscheiben verantwortlich ist, also nicht auf die kooperative Mitarbeit der Tasks angewiesen ist. Die Tasks werden von "außen" unterbrochen und später wieder fortgesetzt.

Running besitzt gerade die CPU-Kontrolle 2. Ready / Runnable lauffähig, aber gerade angehalten, weil ein anderer Prozess die CPU besitzt Blocked / Waiting nicht lauffähig, wartet auf ein Ereignis von außen (I/O, Signal) Running Terminated dispatch wait preemp Ready Blocked New event admit Zu den einzelnen Übergängen im Diagramm: der neu geschaffene Prozess wird eingeordnet wait der Prozess ruft eine Systemroutine (meist I/O) auf event erwartete Eingabe/erwartetes Signal trifft ein preempt ein anderer Prozess erhält die CPU (Scheduler-Entscheidung, s.u.) der Prozess erhält die CPU (Scheduler-Entscheidung, s.u.) dispatch exit der Prozess beendet sich selbst (ggf. auch: wird abgebrochen)

Abbildung 1.23: Multitask-Stati

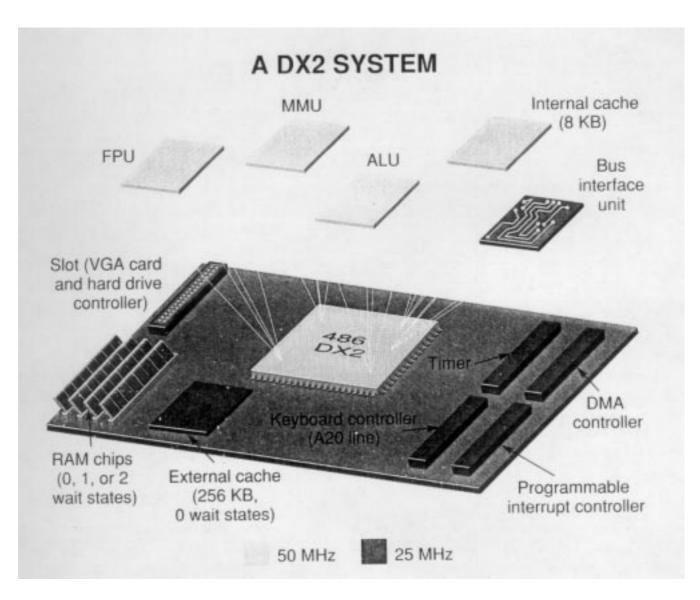


Abbildung 1.24: Cache auf dem Motherboard

1.6 Bussysteme — Chipsätze und das Motherboard

Die wichtigsten die Bus- und Peripherieinterfaces bedienenden Hartwareschaltungen befinden sich bei Motherboards für Intel-kompatible Rechner im sogenannten Chipsatz:

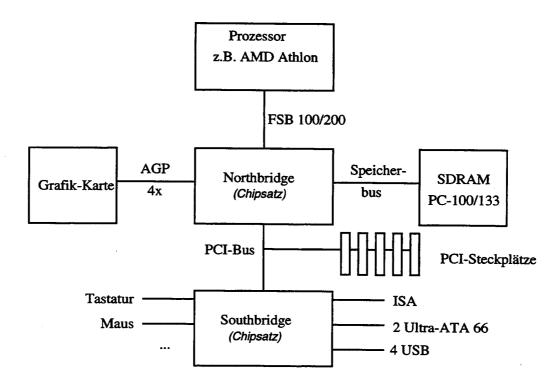
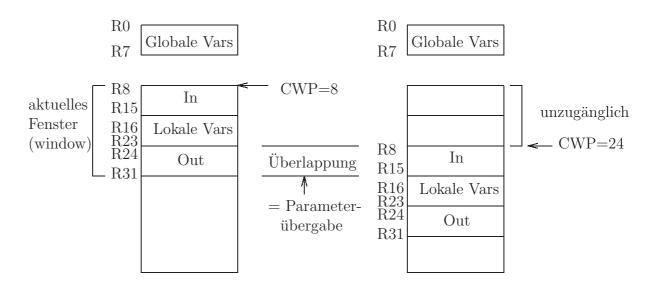


Abbildung 1.25: PC Frontsidebus

Zu genaueren aktuellen Informationen vergleiche im Web:

Hinweise zur Architektur von Standard-PCs


1.7 Der Weg fort von der von-Neumann-Architektur

1.7.1 SPARC

SUPER-SPARC

Die Register des SPARC V8-Prozessors (SUPER-SPARC) sind durch verschiedene Merkmale gekennzeichnet:

1. Registerstack

CWP steht für *current window pointer*. Die SPARCclassic besitzt z. B. acht solcher Fensterbereiche. Auf die Register greift man mit *logischen* Namen zu:

%g0..%g7 global vars %i0..%i7 in %10..%17 local vars %o0..%o7 out

mit %g0 \equiv 0 (fest), %o6=%sp (stack pointer), %o7 $return\ adress$ für Unterprogramm-Rücksprung.

2. Y für Multiplikation und Division.

3. Gleikommaregister:

Je 32 Bit-Gleitkommaregister für 16 $double\ precision$ oder 8 $quad\ precision$ Gleitkommazahlen.

4. State-Register sind unter anderem PSR processor state register, FSR floating point state register, PC program counter, nPC next program counter, WIM window invalid maske, TBR trap base register, IU-deferred trap queue, FP-deferred trap queue, . . .

Befehle und Ausführungszeiten bei SPARC(RISC)-ALU's

LDSB	load signed byte sign extended
LDSH	load signed halfword sign extended
LDUB	load unsigned byte zero filled
LDUH	load unsigned halfword zero filled
LD	load word
LDD	load doubleword
LDF	load floating-point
LDDF	load double floating-point
LDFSR	load floating-point state register
STB	store byte
:	
LDSTUB	atomic load/store unsigned byte
SWAP	swap register with memory
SETHI	set 22 bit of register
NOP	no operation
1101	no operation
AND	
ANDcc	and modify icc (= integer condition codes) of PSR
OR	m and mounty too (mooger condition codes) of 1 site
ORN	A or not B
XOR	11 02 1100 12
XNOR	exclusive $NOR = XOR$ not
111.010	110101100
SLL	shift left logical
SRL	shift right logical (fill zero)
-	0 0 (/

```
SRA
            shift right arithmetic (fill most significant bit)
ADD
            A+B
ADDcc
            A+B and modify icc
ADDX
            add with carry = A + B + c
SUB
            subtract
MULSss
            multiply step (zusammen mit Register Y für 64Bit-Ergebnis)
            unsigned integer multiply
UMUL
            signed integer multiply
SMUL
UDIV
            unsigned integer division
SDIV
            signed integer division
SAVE
            register stack
RESTORE register stack
Bicc
            branch on integer condition codes, z.B.
                         branch always
              BA
              BN
                         branch never
              BNE
                         branch not equal
FBfcc
            branch on floating point condition codes
CALL
            call and link
JMPL
            jump and link
RETT
            return from Trap
            Trap on icc, z.B. TA, TN, ...
Ticc
            (read/write state ... registers)
UNIMP
            unimplemented
FLUSH
            flush instruction memory
FPop
            (rounding direction, wahlweise to nearrest, towards 0, towards -\infty, towards +\infty)
              FiTOs
                         integer to single
              FiTOd
                         integer to double
              FiTOq
                         integer to quad
```

FsTOi FdTOi FqTOi FsTOd

```
FsToq \vdots FMOVs FNEGs FNEGs FABSs FSQRTs FADDs FADDd FADDd FSUBs FMULs FsMULd  entspricht \ s\cdot s \to d   entspricht \ d\cdot d \to q  FDIVs  FCMPs FCMPs  compare \ and \ exception \ it \ unordered  \vdots
```

Ein Beispiel-PASCAL Programm ...

```
program Tabelle(output);
    var
        i: integer;
    function f(x : real) : real;
    const
        pi = 3.141592653589793;
    var
        arg : real;
    begin
        arg := 2.0 * pi * x + 5.0;
           := \sin(\arg);
    end;
begin
        writeln("'f(arg)");
        writeln("',——");
        for i := 0 to 20 do
                 writeln(i/10.0,f(i/10.0));
```

end.

```
... und was daraus in SPARC-Maschinenbefehlen wird (pc -s):
           .section ".data"
           .align 4
           .common i,4,4
           .common PROGFRAME,4,4
           .align 4
.L15:
                     "%21.14e "
           .ascii
           .byte 0
           .section ".text"
           .proc 010
           .global f
           .align 4
f:
           !#PROLOGUE# 0
           sethi
                     %hi(.LF2),%g1
                     %g1,%lo(.LF2),%g1
           add
                     %sp,%g1,%sp
           save
           !#PROLOGUE# 1
                     \%i0, [\%fp + 0x44]
           \operatorname{st}
                     \%i1, [\%fp + 0x48]
           st
.L3:
.L4:
           .stabs "SC3.0.1 07 Nov 1994 Pascal 3.0.3 patch 101912-01 NN ",0x30,0,0xd,0x0
                     ^{\prime\prime} SC3.0.107 Nov 1994 Pascal 3.0.3 patch 101912-01 ^{\prime\prime}
           .ident
                     "Tabelle.p",0x30,0,0x1,0x1
           .stabs
                     "Tabelle.p"
           .file
           .xstabs ".stab.index ", "V=2.0 ",0x3c,0,0,0x33b3734e
           arg := 2.0 * pi * x + 5.0;
!
           sethi
                     %hi(.L2000000),%o0
           ldd
                     [\%00+\%lo(.L2000000)],\%f0
           ld2
                     [\%fp+0x44],\%f2
           fmuld
                     %f0,%f2,%f0
                     %hi(.L2000001),%o1
           sethi
           ldd [%o1+%lo(.L2000001)],%f4
                     %f0,%f4,%f6
           faddd
                     \%f6,[\%fp+-0x20]
           std
```

```
!
            f := \sin(\arg);
            ldd
                      [\%fp+-0x20],\%o0
            call
                       _{-\sin,2}
            nop
                      \%f0,[\%fp+-0x18]
            \operatorname{std}
.L6:
.L7:
                      [%fp+-0x18],%f0
            \operatorname{ldd}
                       .LE2
            b
            nop
.LE2:
            ret
            restore
            .
optim^{\prime\prime}\text{-O} Q R S ^{\prime\prime}
            .LF2 = -128
            .LP2 = 96
            .LST2 = 96
            .LT2 = 96
            .type f,#function
            .size f,.-f
            .<br/>section ".rodata"
            .align 8
.L2000000: .word
                      0x401921fb,0x54442d18
            .align 8
.L2000001: .word
                      0x40140000,0x0
            .section ".text"
                      022
             .proc
             .global
                      program
            .align 4
program:
            !#PROLOGUE# 0
                       %hi(.LF1),%g1
            sethi
                      %g1,%lo(.LF1),%g1
            add
                      %sp,%g1,%sp
            save
            !#PROLOGUE# 1
.L8:
.L9:
            .xstabs "'.stab.index ", "Tabelle ",0x2a,0,0,0
                      _PC0_tb_init,0
            call
            nop
```

```
%hi(PROGFRAME),%o2
             sethi
                        %fp,[%o2+%lo(PROGFRAME)]
             \operatorname{st}
!
             writeln("f(arg)");
             set
                       output,%o0
                        _PC0_UNIT,1
             call
             nop
                        \%00, [\%fp+-0x8]
             \operatorname{st}
                        [\%fp+-0x8],\%o3
             ld
                        [%o3+0xc],%o1
             ld
             mov
                       0xa,\%o0
             call
                       fputc,2
             nop
             writeln( "----");
!
                       output,%o0
             set
                        __PC0__UNIT,1
             call
             nop
                        \%00, [\%fp+-0x8]
             \operatorname{st}
             ld
                        [\%fp+-0x8],\%o4
                        [\%o4+0xc],\%o1
             ld
                       0xa,\%o0
             mov
             call
                       fputc,2
             nop
!
             for i := 0 to 20 do
                        \%g0, [\%fp+-0x10]
             \operatorname{st}
.L12:
                        [%fp+-0x10],%o5
             ld
                       %hi(i),%o7
             sethi
                       \%05, [\%07 + \%lo(i)]
             \operatorname{st}
!
             writeln(i/10.0, f(i/10.0));
                       output,%o0
             set
                        __PC0__UNIT,1
             call
             nop
                        \%00, [\%fp + -0x8]
             \operatorname{st}
                        [\%fp+-0x8],\%l0
             ld
                        [\%10+0xc],\%00
             ld
                        %hi(.L2000002),%l1
             sethi
             ldd
                        [%l1+%lo(.L2000002)],%f8
             ld
                        [\%fp+-0x10],\%f10
                        %f10,%f12
             fitod
                        %f12,%f8,%f12
             fdivd
                       \%f12,[\%sp+.LP1]
             \operatorname{st}
```

```
%f13,[%sp+.LP1]
             \operatorname{st}
                       [%sp+.LP1],%o3
             ld
             set
                       .L15,%o1
                       fprintf,4
             call
             nop
             sethi
                       %hi(.L2000002),%l2
             ldd
                       [%l2+%lo(.L2000002)],%f14
             ld
                       [\%fp+-0x10],\%f16
             fitod
                       %f16,%f18
             fdivd
                       %f18,%f14,%f18
                       %f18,[%sp+.LP1]
             \operatorname{st}
                       [%sp+.LP1],%o0
             ld
                       %f19,[%sp+.LP1]
             \operatorname{st}
                       [%sp+.LP1],%o1
             \operatorname{ld}
             call
                       f,2
             nop
                       \%f0,[%sp+.LP1+0x8]
             \operatorname{std}
             ld2
                       [\%sp+.LP1+0x8],\%o2
                       [\%fp+-0x8],\%l3
             ld
             ld
                       [\%13+0xc],\%00
                       .L15,%o1
             set
             call
                       fprintf,4
             nop
                       [\%fp+-0x8],\%l4
             ld
                       [%l4+0xc],%o1
             ld
                       0xa,\%o0
             mov
                       fputc,2
             call
             nop
.L13:
             ld
                       [\%fp+-0x10],\%l5
             add
                       %15,0x1,\%15
                       \%15, [\%fp + -0x10]
             \operatorname{st}
             ld
                       [\%fp+-0x10],\%l6
             cmp
                       \%16,0x14
             bg
                       .L16
             nop
             b
                       .L12
             nop
.L16:
.L14:
```

[%sp+.LP1],%o2

ld

```
.L11:
.L17:
             b
                        .LE1
             nop
.LE1:
             \operatorname{ret}
             restore
             .optim^{\prime\prime}\mbox{''}\mbox{-O} Q R S ^{\prime\prime}
             .LF1 = -128
             .LP1 = 96
             .LST1 = 112
             .LT1 = 112
                        program,#function
             .type
                        program,.-program
             .size
             .section ".rodata"
             .align 8
.L2000002: .word
                        0x40240000,0x0
             .<br/>section ".data"
             .align 4
```

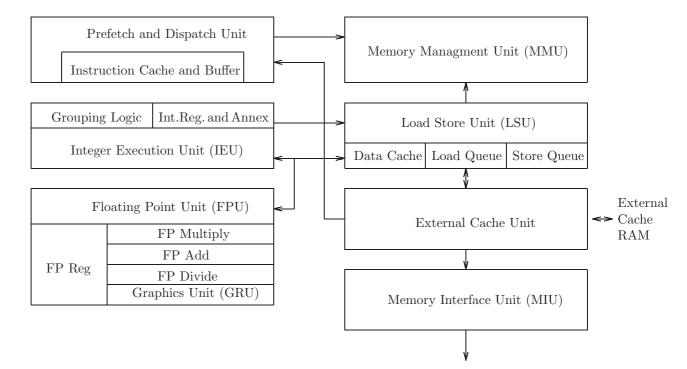
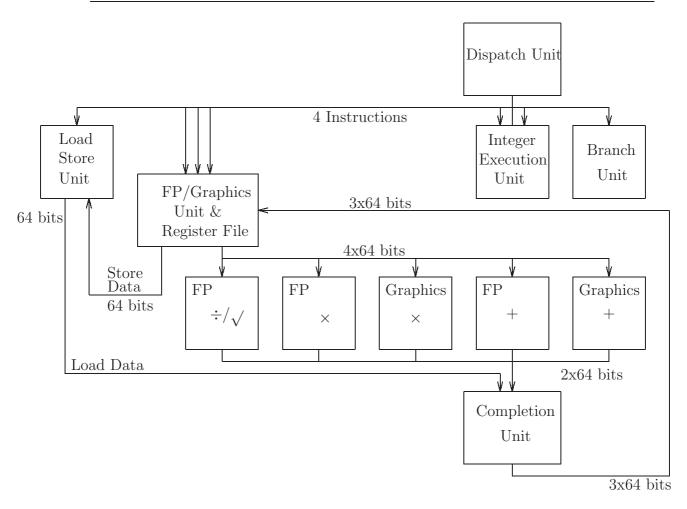
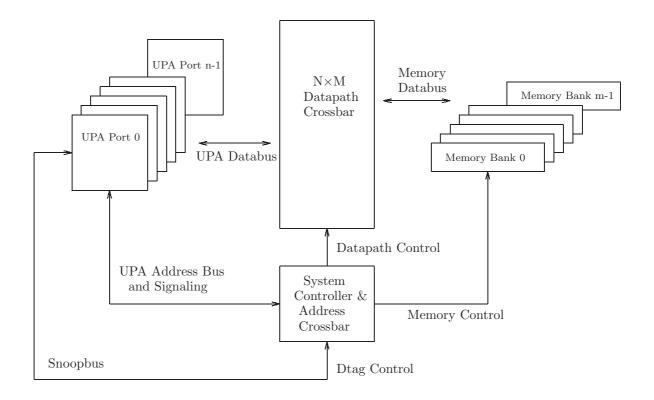

Anweisung	Fujitsu/LSI #1,#2	Cypress/ Fujitsu #3	MicroSPARC (&B5000)	Fujitsu SPARClite	Super SPARC
# of register windows	7	8	7	8	8
ld (32 bit integer)	2	2	1	1	1
ldd (64 bit integer)	3	3	2	2	1
ld (32 bit float)	2	2	1	1	1
ldd (64 bit double)	3	3	2(1)	2	1
st (32 bit integer)	3	3	2	1	1
std (64 bit integer)	4	4	3	2	1
st (32 bit float)	3	3	2(1)	1	1
std (64 bit double)	4	4	3(2)	2	1
taken branches	1	1	1	1	1
untaken branches	2	1	1	1	1
jmpl and rett	2	2	2	2	1
integer multiply	N/A	N/A	19	?	4
integer divide	N/A	N/A	39	?	18
issue FP operation	2	1	1	N/A	1

Tabelle 1.24: Anzahl der Register-Fenster und Integer-Zyklen pro Anweisung

Anweisung	FPC &	Weitek	Texas	BIT	Mic	roSP	Super	
	TI 8847	3170 & 3171	602	B5000	min	typ	max	SPARC
fitos	8	10	4	2	5	6	13	1
fitod	8	5	4	2	4	6	13	1
fstoir, fstoi	8	5	4	2	6	6	13	1
fdtoir, fdtoi	8	5	4	2	7	7	14	1
fstod	8	5	4	2	2	2	14	1
fdtos	8	5	4	2	3	3	16	1
fmovs	8	3	4	2	2	2	2	1
fnegs	8	3	4	2	2	2	2	1
fabss	8	3	4	2	2	2	2	1
fsqrts	15	60	22	24	6	37	51	6
fsqrtd	22	118	32	45	6	65	80	10
fadds, fsubs	8	5	4	2	4	4	17	1
faddd, fsubd	8	5	4	2	4	4	17	1
fmuls	8	5	4	3	5	5	25	1
fmuld	9	8	6	4	7	9	32	1
fdvis	13	38	16	14	6	20	38	4
fdivd	18	66	26	24	6	35	56	7
fcmps, fcmpes	8	3	4	2	4	4	15	1
fcmpd, fcmped	8	3	4	2	4	4	15	1


Tabelle 1.25: "floating point"-Zyklen pro Anweisung

UltraSPARCI


- 64Bit-Architektur (SPARC V9)
- CPU-Befehle für(VIS): 2D-, 3D-Graphik, Real-Time Video
- IU-Pipeline (9 Phasen): fetch-decode-group-execute-cache access-load miss-integer pipe wait- trap resolution-writeback-
- 2 ALU's in IEU (= interger execute unit)
- Branch prediction
- Branch following
- FP-pipeline
- getrennte FP-execution units

Operation	Throughput (Cycles)	Latency (Cycles)
Add (Single Precision)	1	3
Add (Double Precision)	1	3
Multiply (Single Precision)	1	3
Multiply (Double Precision)	1	3
Divide (Single Precision)	12	12
Divide (Double Precision)	22	22
Square Root (Single Precision)	12	12
Square Root (Double Precision)	22	22

Die *Ultra Port Architekture* arbeitet statt mit einem Bus-System mit *packet switched* und *crossbar*-Datentransfer:

Ultra Port Architecture

UltraSPARC-II

- Bis zu 1.92 Gbyte/s Speichertransferzeit
- 4 Instruktionen pro Zyklus (Pipeline der Länge 9)
- 4 IUs, 2 FPUs, 2GUs
- Real-time MPEG2 Decode
- Prefetch

Siehe auch bei: http://www.sun.com/processors

UltraSPARC-III

- 9.6 GB/s Adressbus
- Bis zu 3.6 GB/s Speichertransferzeit
- 14-stufige CPU-Pipeline
- VIS-Extensions

Siehe auch bei: http://www.sun.com/sparc/UltraSPARC-III/

UltraSPARC-IV

Siehe bei: http://www.sun.com/sparc/UltraSPARC-IV/

1.7.2 Der Intel Pentium

MMX- und weitere Graphikerweiterungen:

- MMX = Matrix-Manipulation-Extensions für 2D-Graphik, Audio, Video (1997: P55C/PentiumII)
- SSE/STREAMING 64Bit SIMD-Extensions, auch für 3D-Graphik (1999: PentiumIII)
- SSE2: Real-time Video, 128Bit integer-SIMD-Befehle (2000: Pentium4)

RAM-Architektur

- FP
- EDO
- SDRAM
- DDR-SDRAM
- RDRAM
- Chipsätze für RDRAM (i850), SDRAM (i845) oder SDRAM/DDR-SDRAM (M1671)

Pentium II

- MMX = Matrix-Manipulation-Extensions für 2D-Graphik, Audio, Video
- AGP = accelerated Graphics Port
- SDRAM = synchronous dynamic random access memory
- Dynamic Execution Core: multiple branch prediction, data flow analysis, speculative execution
- Dual Independent Bus Architecture (DIB)
- 100 MHz Frontsidebus

Siehe auch bei: http://www.intel.com/design/PentiumII/

Port	Execution Units	Latency/Throughput
0	Integer ALU Unit LEA instructions Shift instructions	Latency 1, Throughput 1/cycle Latency 1, Throughput 1/cycle Latency 1, Throughput 1/cycle
	Integer Multiplication instruction	Latency 4, Throughput 1/cycle ²
	Floating-Point Unit FADD instruction FMUL FDIV Unit	Latency 3, Throughput 1/cycle Latency 5, Throughput 1/2 cycle1,2 Latency: single precision 17 cycles, deutste precision 36 cycles, extended precision 56 cycles, Throughput nen-pipelined
	MMX ALU Unit	Latency 1, Throughput 1/cycle
	MMX Multiplier Unit	Latency 3, Throughput 1/cycle
1	Integer ALU Unit	Latency 1, Throughput 1/cycle
	MMX ALU Unit	Latency 1, Throughput 1/cycle
	MMX Shift Unit	Latency 1, Throughput 1/cycle
2	Load Unit	Latency 3 on a cache hit, Throughput 1/cycle3
3	Store Address Unit	Latency 3 (not applicable), Throughput 1/cycle3
4	Store Data Unit	Latency 1 (not applicable), Throughput 1/cycle

NOTES:

See notes following Table 2-1.

Abbildung 1.26: Pentium
II Execution Units

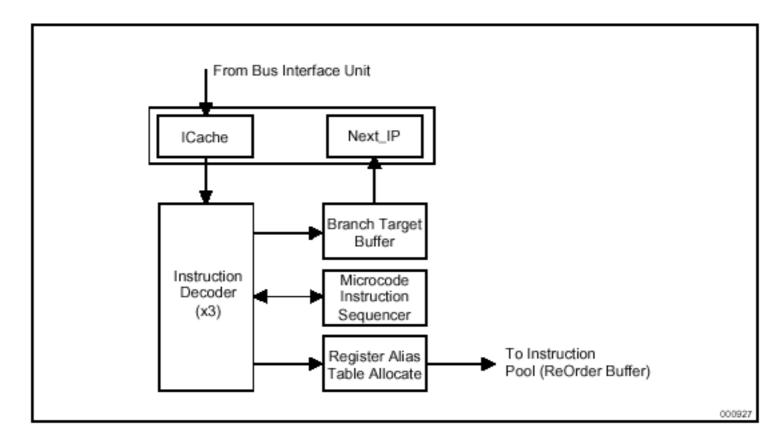


Abbildung 1.27: Pentium
II-Design ${\bf 1}$

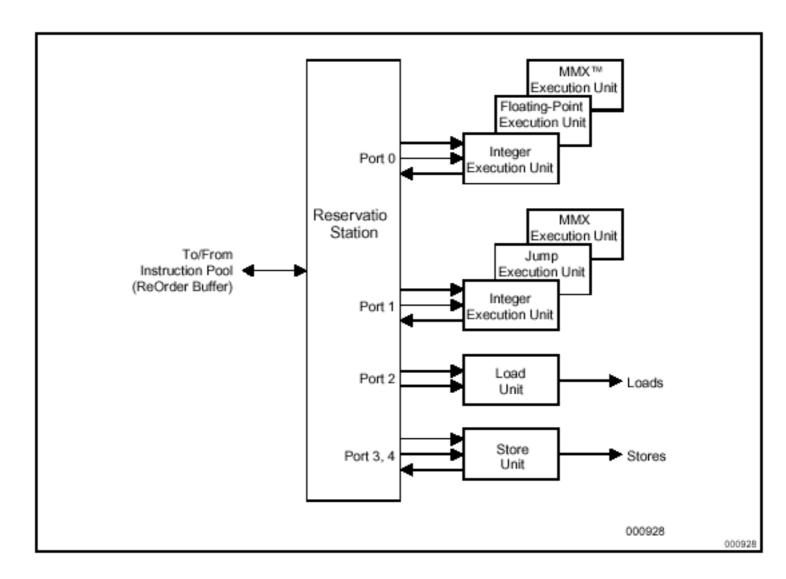


Abbildung 1.28: Pentium
II-Design $2\,$

Pentium III

- SSE = STREAMING 64Bit SIMD-Extensions, auch für 3D-Graphik
- Dynamic Execution Microarchitecture
- Dual Independent Bus
- Intel Processor Serial Number
- 133 MHz Systembus

Siehe auch bei: http://www.intel.com/pentiumiii/

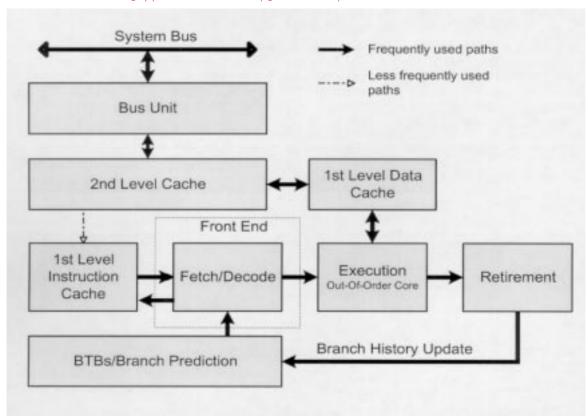


Abbildung 1.29: P6 Architektur

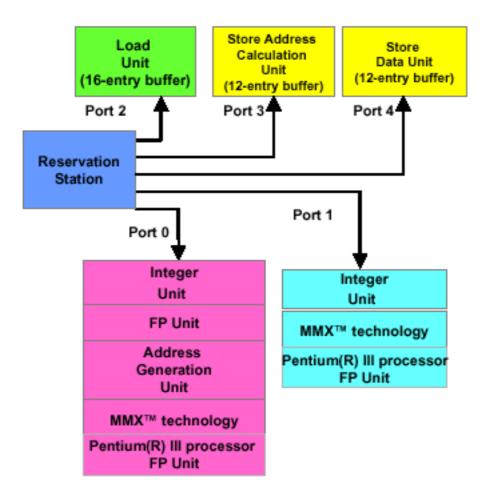


Abbildung 1.30: Dynamic Execution Microarchitecture

Intel Processor	Date Intro- duced	Max. Clock Frequency at Intro- duction	Transis -tors per Die	Register Sizes ¹	Ext. Data Bus Size ²	Max. Extern. Addr. Space	Caches
8086	1978	8 MHz	29 K	16 GP	16	1 MB	None
Intel 286	1982	12.5 MHz	134 K	16 GP	16	16 MB	Note 3
Intel386 DX Processor	1985	20 MHz	275 K	32 GP	32	4 GB	Note 3
Intel486 DX Processor	1989	25 MHz	1.2 M	32 GP 80 FPU	32	4 GB	L1: 8KB
Pentium Processor	1993	60 MHz	3.1 M	32 GP 80 FPU	64	4 GB	L1:16KB
Pentium Pro Processor	1995	200 MHz	5.5 M	32 GP 80 FPU	64	64 GB	L1: 16KB L2: 256KB or 512KB
Pentium II Processor	1997	266 MHz	7 M	32 GP 80 FPU 64 MMX	64	64 GB	L1: 32KB L2: 256KB or 512KB
Pentium III Processor	1999	500 MHz	8,2 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	L1: 32KB L2: 512KB

Abbildung 1.31: x86-Entwicklung

Intel Processor	Date Intro- duced	Micro- architecture	Clock Frequency at Intro- duction	Transis- tors per Die	Register Sizes ¹	System Bus Bandwi dth	Max. Extern. Addr. Space	On-die Caches ²
Pentium III processor ³	1999	P6	700 MHz	28 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	Up to 1.06 GB/s	64 GB	32KB L1; 256KB L2
Pentium 4 processor	2000	Intel NetBurst micro- architecture	1.50 GHz	42 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	3.2 GB/s	64 GB	12K µop Execution Trace Cache; 8KB L1; 256KB L2

Abbildung 1.32: Pentium
III und $4\,$

Pentium4

- SSE2: Real-time Video, 128Bit integer-SIMD-Befehle
- NetBurst Microarchitecture: Hyper Pipelined Technology (verdoppelte Pipeline-Länge), Rapid Execution Unit (2 ALUs sind doppelt so schnell wie die restliche CPU getackted, so dass z.B. Integer-Addition in $\frac{1}{2}$ Taktperiode ausgeführt werden)
- Advanced Dynamic Execution: very deep, out-of-order speculative execution engine, enhenced brach prediction
- Level-1 Cache speichert decodierte Microbefehle
- 400 MHz System Bus

Siehe auch bei: http://www.intel.com/pentium4/

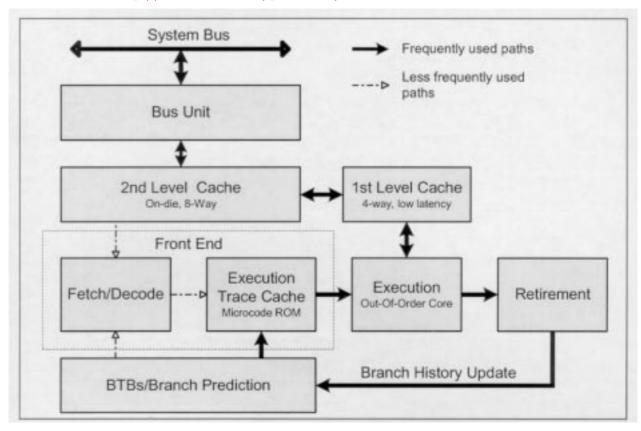


Abbildung 1.33: NetBurst Architektur

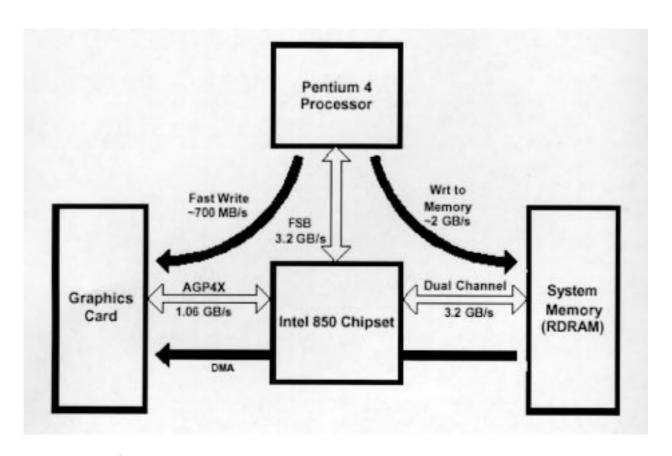


Abbildung 1.34: Datendurchsatz beim Pentium4

Die Zukunft des Pentium4:

http://www.heise.de/newsticker/result.xhtml?url=/newsticker/meldung/47181&words=Intel

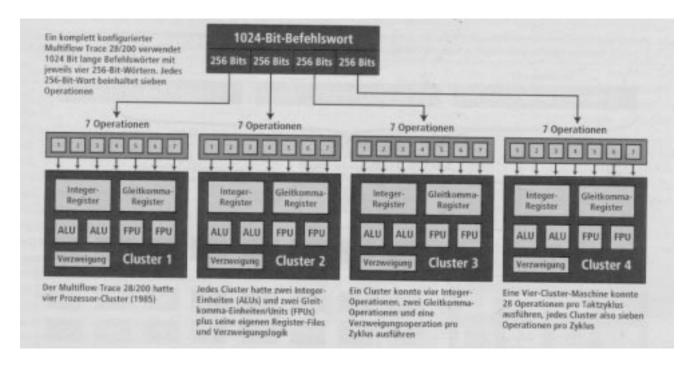


Abbildung 1.35: VLIW

1.8 IA64 - Die EPIC-Architektur

E xplicit P arallel I nstruction C omputing

- Vermeide "dynamic instruction" scheduling
- Der Compiler bestimmt zur Übersetzungszeit, was parallel ausgeführt werden kann und soll (muß gut optimeren können)
- $\bullet\,$ Breitere Busse zur Durchsatzerhöhung: dadurch insbesondere (V)LIW = very long instruction words
- Brach Predication zur besseren Nutzung der Pipelines
- IUs/FPUs mit vielen SIMD-Befehlen
- Prefetching

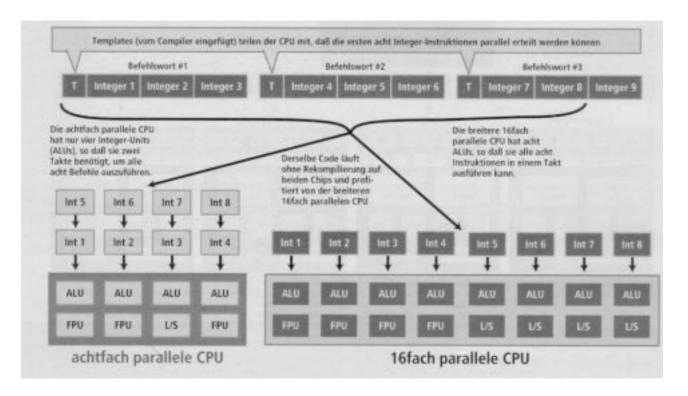


Abbildung 1.36: IA64

1.8.1 Itanium

- MMX, SIMD, Multimedia-Befehle
- Wide parallel hardware
- 15 execution units: 4 INT, 4 FP, 4 Multimedia, 3 Branch
- L1, L2 und L3-Cache
- 128 FP-Register, rotating
- Registerstack
- Predication und Speculation
- 64Bit-Prozessor (IA64-Architektur)
- \bullet 2.1 GB/s Systembus
- 4 GB/s Memorybus
- Binäre IA32-Kompatibilität

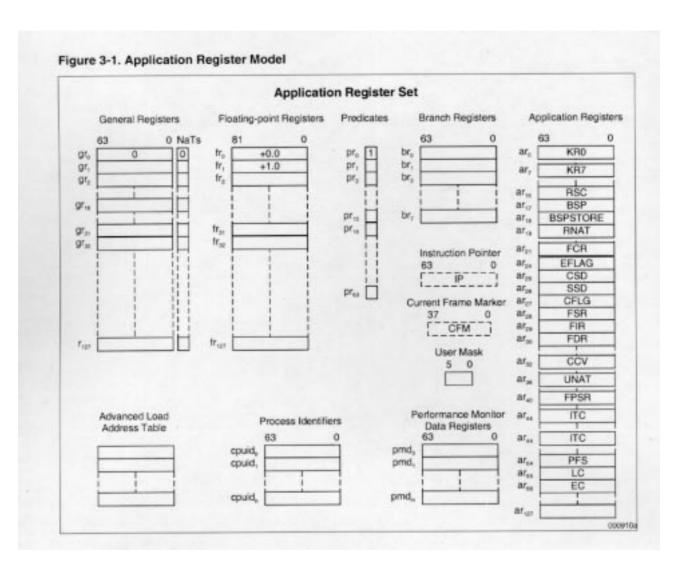


Abbildung 1.37: Register des Itanium

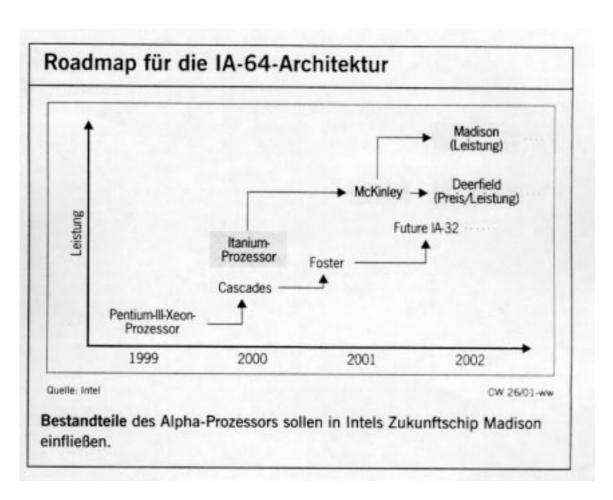


Abbildung 1.38: Roadmap IA64

Die Zukunft der EPIC-Architektur(?): http://www.heise.de/newsticker/result.xhtml?url=/newsticker/meldung/44719&words=Intel

1.9 AMDs 64-Bit-Architektur

http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118_8796_8804,00.html

1.10 PentiumM

http://www.intel.com/products/notebook/processors/pentiumm/

http://www.intel.com/design/mobile/pentiumm/pentiummoverview.htm

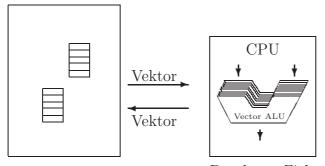
1.11 Zukünftige Entwicklungen

- Miniaturisierung: 12 GB Festplatte im CF-Format
- Festplatte im Netz statt an Servern: Network Storage Link
- Dual-Core Prozessoren
- Neues BIOS für x86-Computer
- Kupfertechnologie (statt Aluminium) für Leiterbahnen
- Wasserkühlung der CPU
- Energiespartechnologien: Energy Star, Suspend/Hibernate, ...
- Dünnschicht-Technologie (mehrere Lagen Schaltkreise übereinander)
- FRAM (= Ferroelectric Random Access Memory) Speicherchips
- MRAM Speicherchips
- Kristall als Speicher, Tesafilmrolle als Speichermedium
- Tesafilm, der Superspeicher?
- 2005: 10 GHz?
- 20 nm-Transistoren 2007: 20 GHz?
- Silizium-Germanium-Chips: 210 GHz
- Einelektron-Transistoren (Kohlenstoff-Nanoröhrchen)
- Supraleitende Transistoren
- Photonik optische transistoren
- Nano-Technologie: Molleküle als Schalter
- Quantencomputer

Kapitel 2

Unternehmensserver und High Performance Computer

2.1 Serverarchitektur in Unternehmensnetzwerken


Informationen:

```
http://www.ssa-lawtech.com/wp/wp3-5.htm $$ http://www.sei.cmu.edu/str/descriptions/clientserver\_body.html $$ http://developer.netscape.com/docs/manuals/appserv/2_1/inover4.htm $$ http://user.it.uu.se/~victor/DK03/p2p-lecture.pdf $$ http://www.stahlknecht-hasenkamp.de/
```

2.2 Vektorrechner

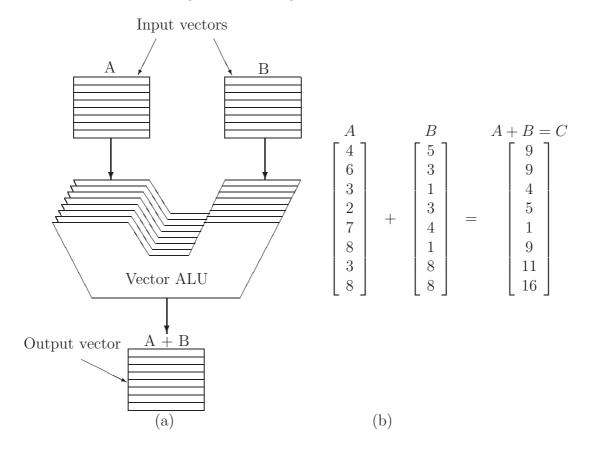

Statt der Verarbeitung einzelner Worte pro Taktperiode versucht man ganze Vektoren/Takt zu verarbeiten (Vervielfältigung der ALU):

Abbildung 2.1: Verarbeitungseinheit: Vektor von Worten

Durchsatz-Ziel: ~ 1 Vektor/Takt verarbeiten

Abbildung 2.2: Vektorregeister und Vektoralu

- (a) Vektor-ALU.
- (b) Beispiel für die Vektor-Addition.

Andere Beispiele für Vektoroperationen:

$$C_i = f_1(A_i)$$
 mit $f_1 \in \{\cos, \sqrt{-}, \dots\}$ komponentenweise ausgewertet $s = \sum_{i=1}^N A_i$ Summe, Minimum, Produkt Maximum Produkt Maximum :

N ALU's sind i.a.:

- zu teuer, da jede einzelne ALU sehr schnell sein soll
- unflexibel in der Vektor-Länge

Kompromiß: "eine ALU im Pipelinebetrieb statt eines Vektors von ALU's"

FPU-Pipeline (baue ALU aus "unabhängigen" Einheiten auf):

Beispiel: Subtraktion

1)	fetch operands	$1.082 \cdot 10^{12}$	$9.212 \cdot 10^{11}$
2)	adjust exponent	$1.082 \cdot 10^{12}$	$0.9212 \cdot 10^{12}$
3)	execute "-"	$0.1608 \cdot 10^{12}$	
4)	normalize result	$1.608 \cdot 10^{11}$	

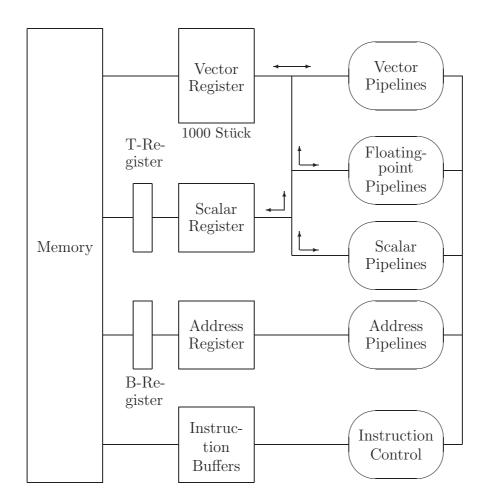
 $C_i = A_i - B_i \ \forall \ i = 1 \dots N$

Zyklus	1	2	3	4	5	
fetch	B_1, C_1	B_2, C_2	B_3, C_3	B_4, C_4	B_5, C_5	
adjust	_	B_1, C_1	B_2, C_2	B_3, C_3	B_4, C_4	
execute	_	_	B_1-C_1	B_2-C_2	B_3-C_3	
normalize	_	_	_	B_1-C_1	B_2-C_2	
•					\	\

$$\begin{array}{ccc}
 & \searrow \\
B_1 - C_1 & B_2 - C_2
\end{array}$$

Resümee:

- Ein Einzelbefehl (z.B. Subtraktion) braucht 4 Zyklen Zeit.
- Nach einer Startup-Zeit von 4 Zyklen (Füllen der Pipe) wird dann jedoch pro Zyklus ein Endergebnis geliefert. (Das ist allerdings nur eine Komponente des Ergebnis-Vektors.)
- Alte Vektorrechner benötigen eine Vektorlänge ≥ 100 , damit sie schneller als ein Skalarrechner arbeiten; neuere Vektorrechner kommen jedoch schon mit einer Vektorlänge von $\geq 2\dots 4$ aus.
- Problem: "Datenabhängigkeit"


Ein Wert ist noch in der Pipe, obwohl er schon als neues Argument benötigt wird.

- Jede ALU arbeitet denselben Befehl ab (SIMD = "single instruction multiple data")
- COMPILER vektorisieren z.T. automatisch.

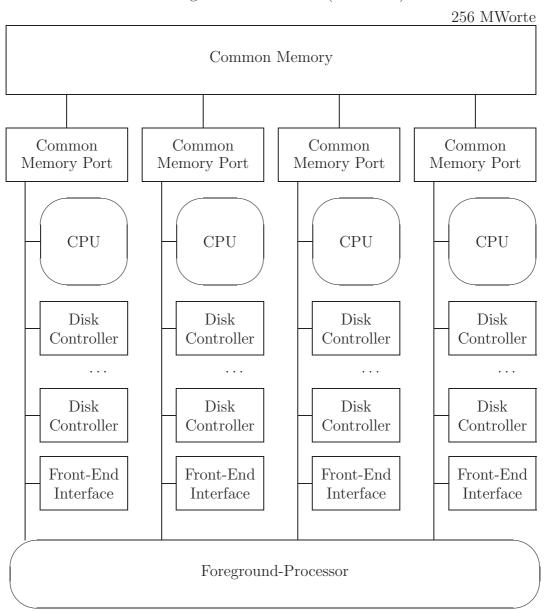
Beispiel: Cray-1 (1976)

mehrere parallel arbeitende Piplines, viele Register, Taktzeit $\sim 12.5~\mathrm{ns}$ peak_Leistung: 250 MFlops

Abbildung 2.3: Rechnerstruktur eines Cray-1-Rechners

Chaining von Pipelines

Abbildung 2.4: Die Register und Funktionseinheiten einer Cray-1


Weitere Geschwindigkeitssteigerungen¹ sind erreichbar durch

ein speichergekoppeltes **Multiprozessorsystem**, das mehrere Zentraleinheiten (MIMD = "multiple instruction multiple data") oder nur mehrere ALU's (SIMD = "single instruction multiple data") enthalten kann.

¹ Selbst heutige PC-CPUs enthalten parallel benutzbare Funktionseinheiten (ein oder mehrere Integer-Units, ein oder mehrere FP-Units, . . .), die häufig im Sinne einer Pipeline arbeiten (z.B. beim Pentium: zwei 32 Bit-Integer-Pipelines und eine FP-Pipeline). Naturgemäß sind Programme aus wenigen einfachen Befehlen viel besser parallel zu "dispatchen" (zur parallelen Abarbeitung vorzubereiten und "in Marsch zu setzen"), weshalb das CISC-RISC-Translatorprinzip des PentiumPro zwar genaugenommen einer Microcode-CPU entspricht, aber das Design des "Microcodes" als RISC-Code bessere Parallelisierbarkeit und deshalb schnellere CPUs ermöglicht (PentiumPro: dreiweg Superskalarausführung, "speculative execution", "branch prediction", 14-stufige Superpipeline).

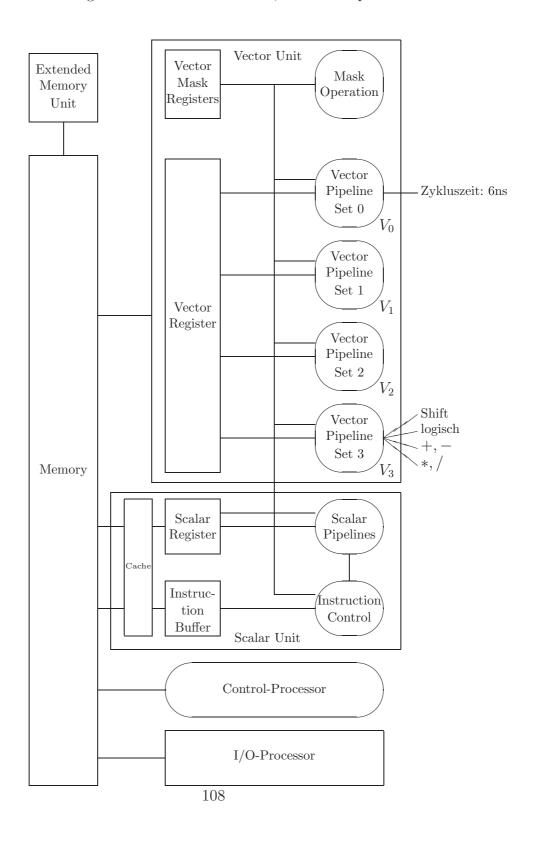
2.3 SIMD- und MIMD-Parallelrechner

Abbildung 2.5: CRAY-2 (Juni 1985)

Rechnerstruktur eines Cray-2-Rechners

 $6 \ldots 12 \times$ schneller als Cray-1

Cray-3 16 CPU's mit 2ns Taktzeit


Cray-4 64 CPU's mit 1ns Taktzeit \sim 128 GFLOPS (\sim 1000× Cray-1)

Cray T90 32 CPU's mit je 2 Vektorpipelines ~60 GFLOPS

 Cray Origin 2000
 2048 CPU's
 ~2.5 TFLOPS

 Cray T3E-1200
 2048 CPU's
 ~2.5 TFLOPS

Abbildung 2.6: NEC-SX2 SIMD, mehrere Pipelines

Überlappende Abarbeitung der Vector-Pipeline-Sets:

 V_0 1,5,9, ... V_1 2,6,10, ... V_2 3,7,11, ... V_3 4,8,12, ...

nichtsichtbar, automatisch Start-Up-Zeit: 60ns

NEC SX-3/11 mit:

- 256MB Hauptspeicher
- 1GB Erweiterungsspeicher (max. 2GB)
- 20GB Platte
- $\bullet\,$ IBM 3084Q als "front end" Rechner
- 2.9 ns Zykluszeit
- $\bullet\,$ skalar: 170 MFlops peak, vektoriell: 4× 345MFlops = 1.386GFlops pro Vektorpipeline

SX-3/44 mit:

4 Pipelines pro CPU \rightarrow 5.5 GFlops/CPU 4 CPU's in Modell 44 \rightarrow 22 GFlops

NEC SX-4 mit:

• 512 CPUs mit je 8 Pipelines $\rightarrow 1$ TFlops²

 $^{^2\}mathrm{Vgl.}\ \mathtt{http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?prefix}$

Kritisch bei High-Performance Rechnern ist auch heute noch, das I/O-Subsystem mit einer geeignet hohen Durchsatzrate an die CPUs zu koppeln:

extended memory $8.3~\mathrm{GB/s}$ Vektor-Register $36~\mathrm{kB}$ $1~\mathrm{GB}$ $256~\mathrm{MB}$ $256~\mathrm{MB}$

Abbildung 2.7: Systemarchitektur und Datendurchsatz

Einen Überblick zu den jeweils aktuell leistungsstärksten Supercomputern bietet:

for each disk (channel)

http://www.top500.org/

2.4 Mehrprozessorsysteme

Welche der Systemeinheiten wird vervielfältigt?

- ALU
- ALU und Steuerwerk
- $\bullet\,$ ALU, Steuerwerk und Speicher

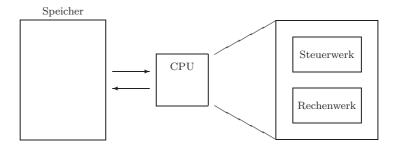


Tabelle 2.1: Klassifikation von Mehrprozessorsystemen

	CPU's		Memory	Beispiel
	Steuerwerke	Rechenwerke		
von Neumann	1		1	"alte" PCs
Vektorrechner	1	N	1	Cray-1
Multiprozessor-	M		1	Cray-2
Vektorrechner	(mit je N Rechenwerken)			

Bemerkung: Rechenwerke oder Pipelines

Abbildung 2.8: "shared memory" und "message passing"

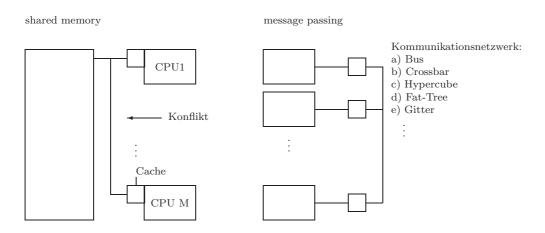
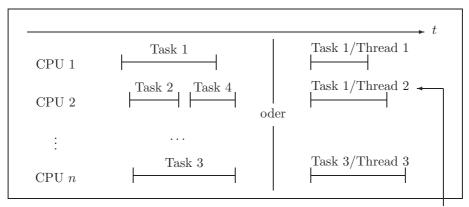


Tabelle 2.2: Speicher bei Mehrprozessorsystemen

Multi-	CPU's		Memory	Beispiel	
prozessor mit	Steuerwerke	Rechenwerke			
shared memory	M		1	AlphaServer	
message passing	M		M	Transputersysteme	
"Mischung" M		M	M+1		

Unter M+1 soll verstanden werden: "Ein gemeinsamer und je ein lokaler Speicher."

Zuweilen klassifiziert man Multiprozessorsysteme durch folgendes zweidimensionale Schema:


$SW \setminus HW$	homogen	inhomogen
symmetrisch		
unsymmetrisch		

Häufig: 1 Steuerprozessor und N Arbeitsprozessoren

Aktuell wird daran geforscht, zwischen "shared memory" und "distributed memory" (=message passing systems) im sogenannten "virtuellen distributed memory" den Effizienzvorteil des "distributed memory" mit der einfacheren Bedienbarkeit des "shared memory" zu kombinieren.

2.5 Multithreadsysteme

parallele, unabhängig durchführbare Teile eines Prozesses, die deshalb auf Multiprozessorsystemen (≠ Multiprozesssystemen) durch verschiedene CPU's durchgeführt werden können: An der Aufgabe eines Prozesses arbeiten mehrere Prozessoren zugleich.

Prozesse feinkörniger verteilbar

2.6 Multiprozessor-Server

Die Programmierung von Anwendungen, die mehrere Prozessoren im MIMD-Modus nutzen sollen, ist i.a. sehr arbeitsaufwendig. Deshalb gibt es auch nicht viele solche Programme, die auf jedem Knoten wirklich unterschieldliche Algorithmen ablaufen lassen. Einfacher ist es zum Beispiel, ein Betriebssystem so zu konzipieren, daß bei einem Mehrbenutzerbetrieb die einzelnen Prozesse und Threads jeweils einzelnen Prozessoren zur Abar-

nutzerbetrieb die einzelnen Prozesse und Threads jeweils einzelnen Prozessoren zur Abarbeitung übergeben werden: Multiprozessor-Server mit hohem Prozeß-/Thread-Durchsatz. Für solche DV-Anlagen ist dann jedoch eine hohe Verfügbarkeit unbedingte Voraussetzung: unterbrechungsfreie Stromversorgung, Hotswap, redundante Komponenten, . . .

Der hohe Preis von solchen Servern ist jedoch nicht immer akzeptabel, so daß zur Zeit an verteilten Betriebssystemen gearbeitet wird, die mehrere billigere PCs oder Workstations zu einem virtuellen Mehrprozessorserver vereinigt erscheinen lassen: Man meldet sich dann an einem "virtuellen" Rechner an und arbeitet auf einem gerade freien Rechner des ganzen Clusters. Beim nächsten Anmelden arbeitet man eventuell auf einem anderen Rechner, was man jedoch überhaupt nicht merkt, da das Betriebssystem die ganze Arbeitsumgebung unabhängig von dem gerade wirklich benutzten Rechner einheitlich erscheinen läßt.

Wirkliche Multiprozessor-Server sind dann nur noch in den Fällen wirtschaftlich, wenn in Abteilungsservern spezielle Dienste (Datenbanken, WWW-Intranets, Fileexport (NFS) , ...) bereitgestelt werden müssen.

Aktuelle Daten zu Multiprozessor-Servern findet man unter:

```
http://www.sun.de/Produkte/Hardware/index.html
http://welcome.hp.com/country/us/en/prodserv/servers.html
http://www.ibm.com/products/
```

2.7 Clustercomputing und Lastverteilung

Infomationen in:

- http://www.heise.de/newsticker/meldung/print/48598
- http://www.theorie.physik.uni-wuppertal.de/Computerlabor/ALiCE.phtml
- http://par-tec.com/de/parastation4.php
- $\bullet \ http://www.itseccity.de/?url=/content/fachbeitraege/grundlagen/020401_fac_gru_xtro.html$

2.8 Großrechner und High End Server: Partitionierung der Resourcen, Grid Container, ...

Infomationen in:

- $\bullet \ \, http://www.heise.de/newsticker/meldung/print/47081$
- http://www-1.ibm.com/servers/eserver/zseries/z890/
- $\bullet \ \, http://www-1.ibm.com/servers/eserver/zseries/library/refguides/pdf/gm130522.pdf$
- http://www.heise.de/newsticker/meldung/print/49147
- http://www.dfn.de/
- http://www.d-grid.de/
- $\bullet \ \, http://iwrwww1.fzk.de/dgrid/intern2/D-Grid_Strategie_17-12-03b.pdf$

Kapitel 3

Rechnerarchitekturen – Fortsetzung: Peripherie

3.1 Peripheriebus: USB, Firewire und PCI

3.1.1 USB = Universal Serial Bus

- Packet switched Peripherie-Bus
- LowSpeed: 1.5MBit/s, FullSpeed: 12 MBit/s
- Hot-swapping
- Eingebaute Stromversorgung für Endgeräte mit geringem Stromverbrauch
- Audioübertragung mit fest ausgehandelter Bandbreite
- kaskadierende Hub's (maximal 7 Ebenen inkl. root-Hub), bis zu 127 Geräte
- Kabellänge maximal 5 m
- PC-kontrolliertes Master-Slave Protokoll
- seit 1996 (weit verbreitet erst seit standardmäßig in Chipsets vorhanden)
- einheitlicher "Ersatz" für die serielle und die parallele Schnittstelle für Tastatur, Maus, Monitor, Drucker, lowspeed Scanner, digitaler Fotoapparat, ISDN-Adapter, Ethernetkarten (10 MBit/s), . . .

Siehe auch: http://www.testmart.com/webdata/appnote/886.pdf, http://www.usb.org/developers/whitepapers/

3.1.2 Firewire, IEEE 1394

- Packet switched Hochgeschwingigkeitsperipherie-Bus
- 100, 200, 400 MBit/s
- Hot-swapping
- Daiy-Chaining bis zu 16 Kablel, maximal 63 Geräte
- Kabellänge maximal 4.5 m
- Peer-to-Peer ohne Beteiligung des PCs

Siehe auch: http://developer.apple.com/firewire/overview.html

3.1.3 USB2

- abwärtskompatibel zu USB 1.1
- HighSpeed: 480 MBit/s
- auch geeignet für: Festplatten, DVD-Laufwerke, CD-Brenner mit mehr als 4x Geschwindigkeit, Fast Ethernet (100 MBit/s), Camcorder (≥ 28MBit/s), . . .

Siehe auch: http://www.usb.org/developers/whitepapers/usb_20t.pdf

3.1.4 Firewire b, IEEE 1394b

- geplante Erweiterung des Firewire
- 800, 1600 MBit/s
- bis zu 100 m Übertragungsstrecke möglich

Siehe auch: http://www.it-enquirer.com/storage/firewire.html

3.1.5 PCI-X und PCIe

http://www.elektronik-kompendium.de/sites/com/0904051.htm, http://www.extremetech.com/article2/0,1558,27302,00.asp

Siehe auch: http://www.heise.de/newsticker/meldung/print/48396