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Abstract

The orbits of the group Bn of upper-triangular matrices acting on
2-nilpotent complex matrices via conjugation are classified via oriented
link patterns, generalizing A. Melnikov’s classification of the Bn-orbits on
upper-triangular such matrices. The orbit closures as well as the “build-
ing blocks” of minimal degenerations of orbits are described. The classi-
fication uses the theory of representations of finite-dimensional algebras.
Furthermore, we initiate the study of the Bn-orbits on arbitrary nilpotent
matrices.

1 Introduction
The study of adjoint actions and variants thereof, and in particular the classi-
fication of orbits for such actions and the description of the orbit closures, are
a common theme in Lie representation theory. The archetypical example is the
Jordan-Gerstenhaber theory for the conjugacy classes of complex n×n-matrices.

A more recent case is A. Melnikov’s study of the action of the Borel subgroup
Bn acting on upper-triangular 2-nilpotent matrices via conjugation [8, 9]. The
orbits and their closures are described there combinatorially in terms of so-called
link patterns, which we will recapitulate in section 2.1.

Our aim in this paper is to generalize the work of A. Melnikov by extending the
variety of upper-triangular 2-nilpotent matrices to all 2-nilpotent matrices. The
basic setup to reach this goal is a translation of the classification problem to a
problem in representation theory of finite-dimensional algebras. More precisely,
this translation yields a bijection between the orbits and the isomorphism classes
of certain representations of a specific finite-dimensional algebra, see section 3.1.
After a brief summary of methods from the representation theory of algebras
(see, for example, [1]) in section 2.2, we are able to calculate all indecomposable
representations using Auslander-Reiten theory [2] in section 3.2 and to classify
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the required representations. This gives a combinatorial classification in terms
of oriented link patterns in section 3.3.

Since several results on orbit closures for representations of finite-dimensional
algebras are available through work of G. Zwara [10, 11], we can also character-
ize the orbit closures of 2-nilpotent matrices in section 4.

Finally, we study the conjugation action of upper-triangular matrices on arbi-
trary nilpotent matrices. We provide a generic normal form for the orbits of
this action in section 5.1 and construct a large class of semiinvariants in section
5.2.

Acknowledgments: The authors would like to thank K. Bongartz and A.
Melnikov for valuable discussions concerning the methods and results of this
work.

2 The basic setup
In this section, we fix some notation and collect information about the afore-
mentioned group action. In addition, we summarize material from the repre-
sentation theory of finite-dimensional algebras.

Let k = C be the field of complex numbers. We denote by Bn ⊂ GLn(k) the
Borel subgroup of upper-triangular matrices, by Nn ⊂ Mn×n(k) the variety of
nilpotent n× n-matrices, and by N (2)

n the closed subvariety of 2-nilpotent such
matrices. Obviously, GLn(k) and Bn act on Nn and on N (2)

n via conjugation.

In case of the action of GLn(k) on Nn, the classical Jordan-Gerstenhaber the-
ory gives a complete classification of the orbits and their closures in terms of
partitions (or, equivalently, Young diagrams).

Our aim is to classify the orbits OA of 2-nilpotent matrices A ∈ N (2)
n under the

action of Bn. Such a classification will be given in terms of oriented link pat-
terns; these are oriented graphs on the set of vertices {1, . . . , n} such that every
vertex is incident with at most one arrow. This is followed by a description
of the orbit closures, by giving a necessary and sufficient condition to decide
whether one orbit is contained in the closure of another, and by a method to
construct all orbits contained in a given orbit closure. These descriptions are
also given in terms of oriented link patterns.

2.1 Results of A. Melnikov
The group Bn also acts on nn ⊂ Nn, the space of all upper-triangular matrices in
Nn, and on n

(2)
n = nn ∩N (2)

n . The orbits and their closures for the latter action
are described by A. Melnikov in [8, 9]. Since these results will be generalized in
the following, we describe them in more detail.
Let S(2)

n be the set of involutions in the symmetric group Sn in n letters. An
element σ of S(2)

n is represented by a so-called link pattern, an unoriented graph
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with vertices {1, . . . , n} and an edge between i and j if σ(i) = j. For example,
the involution (1, 2)(3, 5) ∈ S5(k) corresponds to the link pattern

q q q q q
1 2 3 4 5 .

For σ ∈ S(2)
n , define Nσ ∈ N (2)

n by

(Nσ)i,j =

{
1 if i < j and σ(i) = j,
0 otherwise,

and denote by Bσ = Bn ·Nσ the Bn-orbit of Nσ.

Theorem 2.1. [8] Every orbit of Bn in n
(2)
n is of the form Bσ for a unique

σ ∈ S(2)
n .

The next step is to look at the (Zariski-)closures of the orbits Bσ.
For 1 ≤ i < j ≤ n, consider the canonical projection πi,j : n

(2)
n → n

(2)
j−i+1

deleting the first i− 1 and the last n− j columns and rows of a matrix in n
(2)
n .

Define the rank matrix Ru of u ∈ n
(2)
n by

(Ru)i,j =

{
rank (πi,j(u)) if i < j;
0 otherwise.

The rank matrix Ru is Bn-invariant, and we denote Rσ = RNσ for σ ∈ S(2)
n . We

define a partial ordering on the set of rank matrices by Rσ′ 4 Rσ if (Rσ′)i,j ≤
(Rσ)i,j for all i and j, inducing a partial ordering on S(2)

n by σ′ 4 σ if Rσ′ 4 Rσ.

Theorem 2.2. [9] The orbit closure of Bσ is given by Bσ =
⋃
σ′4σ Bσ′ . More-

over, the entry (Rσ)i,j of the rank matrix equals the number of edges with end
points e1 and e2 such that i ≤ e1, e2 ≤ j in the link pattern of σ.

The theorem thus gives a combinatorial characterization of the Bn-orbits in n
(2)
n

and their orbit closures in terms of link patterns.

2.2 Representations of algebras
As we make key use of results from the representation theory of finite-dimen-
sional algebras for the study of the action of Bn on N (2)

n , we now recall the
basic setup of this theory and refer to [1] and [2] for a thorough treatment. Let
Q be a finite quiver, that is, a directed graph Q = (Q0,Q1, s, t) consisting of
a finite set of vertices Q0 and a finite set of arrows Q1, whose elements are
written as α : s(α)→ t(α); the vertices s(α) and t(α) are called the source and
the target of α, respectively. A path in Q is a sequence of arrows ω = αs . . . α1

such that t(αk) = s(αk+1) for all k = 1, . . . , s − 1; we formally include a path
εi of length zero for each i ∈ Q0 starting and ending in i. We have an obvious
notion of concatenation ωω′ of paths ω = αs . . . α1 and ω′ = βt . . . β1 such that
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t(βt) = s(α1).

The path algebra kQ is defined as the k-vector space with basis consisting of
all paths in Q, and with multiplication

ω · ω′ =

{
ωω′ if t(βt) = s(α1),
0 otherwise.

The radical rad(kQ) is defined as the (two-sided) ideal generated by paths of pos-
itive length. An ideal I of kQ is called admissible if rad(kQ)s ⊂ I ⊂ rad(kQ)2

for some s.

The key feature of such pairs (Q, I) consisting of a quiver Q and an admissible
ideal I ⊂ kQ is the following: every finite-dimensional k-algebra A is Morita-
equivalent to an algebra of the form kQ/I, in the sense that their categories of
finite-dimensional k-representations are (k-linearly) equivalent.

A finite-dimensional k-representation M of Q consists of a tuple of k-vector
spaces Mi for i ∈ Q0, and a tuple of k-linear maps Mα : Mi → Mj indexed
by the arrows α : i → j in Q1. A morphism of two such representations
M = ((Mi)i∈Q0

, (Mα)α∈Q1
) and N = ((Ni)i∈Q0

, (Nα)α∈Q1
) consists of a tuple

of k-linear maps (fi : Mi → Ni)i∈Q0
such that

fjMα = Nαfi for all α : i→ j in Q1.

For a representation M and a path ω in Q as above, we denote Mω = Mαs · . . . ·
Mα1

. We call M bound by I if
∑
ω λωMω = 0 whenever

∑
ω λωω ∈ I.

The abelian k-linear category of all representations of Q bound by I is denoted
by repk(Q, I); it is equivalent to the category of finite-dimensional representa-
tions of the algebra kQ/I. We have thus found a “linear algebra model” for the
category of finite-dimensional representations of an arbitrary finite-dimensional
k-algebra A.

We define the dimension vector dimM ∈ NQ0 of M by (dimM)i = dimkMi

for i ∈ Q0. For a fixed dimension vector d ∈ NQ0, we consider the affine
space Rd(Q) =

⊕
α:i→j Homk(kdi , kdj ); its points naturally correspond to rep-

resentations M of Q of dimension vector d with Mi = kdi for i ∈ Q0. Via
this correspondence, the set of such representations bound by I corresponds
to a closed subvariety Rd(Q, I) ⊂ Rd(Q). It is obvious that the algebraic
group GLd =

∏
i∈Q0

GLk(kdi) acts on Rd(Q) and on Rd(Q, I) via base change
(gi)i · (Mα)α = (gjMαg

−1
i )α:i→j . By definition, the GLd-orbits OM of this ac-

tion naturally correspond to the isomorphism classes of representations M in
repk(Q, I) of dimension vector d.
By the Krull-Schmidt theorem, every representation in repk(Q, I) is isomorphic
to a direct sum of indecomposables, unique up to isomorphisms and permuta-
tions. Thus, knowing the isomorphism classes of indecomposable representations
in repk(Q, I) and their dimension vectors, we can classify the orbits of GLd in
Rd(Q, I).
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For certain classes of finite-dimensional algebras, a convenient tool for the clas-
sification of the indecomposable representations is the Auslander-Reiten quiver
Γ(Q, I) of kQ/I. Its vertices [X] are given by the isomorphism classes of inde-
composable representations of kQ/I; the arrows between two such vertices [X]
and [Y ] are parametrized by a basis of the space of so-called irreducible maps
f : X → Y . Several standard techniques are available for the calculation of
Γ(Q, I), see for example [1] and [7]. We will illustrate one of these techniques,
namely the use of covering quivers, in subsection 3.2 in a situation relevant for
our setup.

3 Classification of orbits

3.1 Translation to a representation-theoretic problem
Our aim in this section is to translate the classification problem for the action of
Bn on N (2)

n into a representation-theoretic one. The following is a well-known
fact on associated fibre bundles:

Theorem 3.1. Let G be an algebraic group, let X and Y be G−varieties, and
let π : X → Y be a G-equivariant morphism. Assume that Y is a single G-
orbit, Y = Gy0. Define H := IsoG(y0) = {g ∈ G | g · y0 = y0} and F :=
π−1(y0). Then X is isomorphic to the associated fibre bundle G×H F , and the
embedding φ : F ↪→ X induces a bijection between H-orbits in F and G-orbits
in X preserving orbit closures.

We consider the following quiver, denoted by Q from now on,

Q : • • • · · · • • •
1 2 3 n− 2 n− 1 n

α1 α2 αn−2 αn−1
α

together with the ideal I ⊂ kQ generated by the path α2. We consider the
full subcategory repinj

k (Q, I) of repk(Q, I) consisting of representations M for
which the linear maps Mα1

, . . . ,Mαn−1
are injective. Corresponding to this

subcategory, we have an open subset Rinj
d (Q, I) ⊂ Rd(Q, I), which is stable

under the GLd-action. We consider the dimension vector d := (1, 2, . . . , n) ∈
Nn.

Lemma 3.2. There exists a closure-preserving bijection between the set of Bn-
orbits in N (2)

n and the set of GLd-orbits in Rinj
d (Q, I).

Proof. Consider the subquiver Q̃ of Q with Q̃0 = Q0 and Q̃1 = Q1 \ {α}. We
have a natural GLd-equivariant projection π : Rinj

d (Q, I)→ Rinj
d (Q̃). The variety

Rinj
d (Q̃) consists of tuples of injective maps, thus the action of GLd on Rd(Q̃) is

easily seen to be transitive. Namely, Rinj
d (Q̃) is the orbit of the representation

y0 := k
α1−→ k2

α2−→ · · · αn−2−−−→ kn−1
αn−1−−−→ kn,
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with αi being the canonical embedding from ki to ki+1. The stabilizer H of y0
is isomorphic to Bn, and the fibre of π over y0 is isomorphic to N (2)

n . Thus,
Rinj
d (Q, I) is isomorphic to the associated fibre bundle GLd×BnN (2)

n , yielding
the claimed bijection.

3.2 Classification of indecomposables in repk(Q, I)
By the results of the previous section, it suffices to classify the indecomposable
representations in repk(Q, I) to obtain a classification of the orbits of Bn in
N (2)
n . We compute the Auslander-Reiten quiver Γ of kQ/I using covering theory,

which is described in [7] as mentioned before. We consider the (infinite) quiver
Q̂ given by

...

• • • · · · • • •

Q̂ : • • • · · · • • •

• • • · · · • • •
...

1 2 3 n− 2 n− 1 n

αi

αi+1

with the ideal Î generated by all paths αi+1αi, and the quiver Q′ given by

Q′ : • • • · · · • • •

• • • · · · • • •

1 2 3 n− 2 n− 1 n

α

The quiver Q̂ carries a natural action of the group Z by shifting the rows,
such that Q̂/Z ∼= Q. Moreover, Q′ naturally embeds into Q̂, such that the
composition of this inclusion with the projection Q̂ → Q is surjective. By results
of covering theory [7], we have corresponding maps of the Auslander-Reiten
quivers, namely an embedding Γ(Q′) → Γ(Q̂, Î) and a quotient Γ(Q̂, Î) →
Γ(Q, I), such that the composition is surjective. Since Q′ is nothing else than a
Dynkin quiver of type A2n, it is routine to calculate its Auslander-Reiten quiver
(see [1]), and we derive the Auslander-Reiten quiver Γ = Γ(Q, I) just by making
the identifications resulting from the action of Z, which can be read off from
the dimension vectors of indecomposable representations. More examples and
details concerning the calculation of Auslander-Reiten quivers using covering
theory can also be found in [7].
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We finally arrive at the picture (the marked regions have to be identified) given
in figure 1.
We define the following representations Ui,j for 1 ≤ i, j ≤ n, Vi for 1 ≤ i ≤ n
and Wi,j for 1 ≤ i ≤ j ≤ n in repk(Q, I) (graphically represented by dots for
basis elements and arrows for a map sending one basis element to another one):

Ui,j for 1 ≤ j ≤ i ≤ n:

0
0−→ · · · 0−→ 0

0−→ k
id−→ · · · id−→ k

e1−→ k2
id−→ · · · id−→ k2

• → · · · → • → • → · · · → •
j i n

• → · · · → •

α

Ui,j for 1 ≤ i < j ≤ n:

0
0−→ · · · 0−→ 0

0−→ k
id−→ · · · id−→ k

e2−→ k2
id−→ · · · id−→ k2

• → · · · → • → • → · · · → •
i j n

• → · · · → •

α

Vi for 1 ≤ i ≤ n:

0
0−→ · · · 0−→ 0

0−→ k
id−→ · · · id−→ k

i n
• → · · · → •

0

Wi,j for 1 ≤ i ≤ j < n:

0
0−→ · · · 0−→ 0

0−→ k
id−→ · · · id−→ k

0−→ 0
0−→ · · · 0−→ 0

i j n
• → · · · → •

0

Here we denote e1 =

(
1
0

)
, e2 =

(
0
1

)
and α =

(
0 0
1 0

)
.

Theorem 3.3. The representations Ui,j, Vi and Wi,j form a system of rep-
resentatives of the indecomposable objects in repk(Q, I). The representations
Ui,j and Vi form a system of representatives of the indecomposable objects in
repinj

k (Q, I)

Proof. The endomorphism rings of these representations are easily computed to
be

End(Ui,j) ∼= k for i > j, End(Ui,j) ∼= k[x]/(x2) for i ≤ j,

End(Vi) ∼= k, End(Wi,j) ∼= k,
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thus they are indecomposable. Their dimension vectors are

(0 . . . 01 . . . 12 . . . 2), (0 . . . . . . 01 . . . . . . 1) and (0 . . . . . . 01 . . . . . . 10 . . . . . . 0),

respectively. These are precisely the dimension vectors appearing in Γ(Q, I),
thus we have found all indecomposables. It is clear from the definition that the
indecomposable representations belonging to repinj

k (Q, I) are the Ui,j and the
Vi.

3.3 Classification of Bn-orbits in N (2)
n

Our next aim is to parametrize the isomorphism classes of representations in
repinj

k (Q, I) of dimension vector d. As mentioned before, the Krull-Schmidt
theorem states that every representation can be decomposed into a direct sum
of indecomposables in an essentially unique way.

Theorem 3.4. The isomorphism classes M in repinj
k (Q, I) of dimension vector

d are in natural bijection to

1. n × n-matrices A = (mi,j)i,j with entries 0 or 1, such that
∑
jmi,j +∑

jmj,i ≤ 1 for all i = 1, . . . , n,

2. oriented link patterns on {1, . . . , n}, that is, oriented graphs on the set
{1, . . . , n} such that every vertex is incident with at most one arrow.

Moreover, if an isomorphism class M corresponds to a matrix A under this
bijection, the orbit OM ⊂ Rinj

d (Q, I) and the orbit OA ∈ N (2)
n correspond to

each other via the bijection of Lemma 3.2.

Proof. Let M be a representation in repinj
k (Q, I) of dimension vector d, so

M =

n⊕
i,j=1

Umi,ji,j ⊕
n⊕
i=1

Vnii

for some multiplicitiesmi,j , ni ∈ N by Theorem 3.3. Since dimM = (1, 2, . . . , n),
we simply need to calculate all tuples (mi,j , ni) such that

n∑
i,j=1

mi,jdimUi,j +

n∑
i=1

nidimVi = d = (1, 2, . . . , n).

Applying the automorphism δ of Zn defined by

δ(d1, d2, . . . , dn) = (d1, d2 − d1, d3 − d2, . . . , dn − dn−1),

this condition is equivalent to

n∑
i,j=1

mi,jδ(dimUi,j) +

n∑
i=1

niδ(dimVi) = (1, 1, . . . , 1, 1).
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If we fix i ∈ {1, . . . , n}, this condition states that

1 =

n∑
j=1

mi,j +

n∑
j=1

mj,i + ni.

We can extract an oriented graph on the set of vertices {1, . . . , n} from (mi,j)i,j
as follows: for all 1 ≤ i, j ≤ n, we have an arrow from j to i if mi,j = 1. The
conditions on (mi,j)i,j ensure that this graph is in fact an oriented link pattern.
The matrix (mi,j)i,j is obviously 2-nilpotent.

The decomposition of M into indecomposables can be visualized as follows.

• → • → • · · · • → • → • 1

• → • · · · • → • → • 2

• · · · • → • → • 3

M :
...

...

• → • → • n− 2

• → • n− 1

• n

The arrows in the rightmost column of the diagram allow us to read off the
indecomposable direct summands of M . Namely, Ui,j is a direct summand
of M if and only if there is an arrow j → i. If there is no arrow at k, the
indecomposable Vk is a direct summand of M .

Shortening the above picture to the rightmost column, M corresponds to an
oriented link pattern:

•
1

•
2

•
3

. . . •
n−2

•
n−1

•
n

��{{ ��

For a given matrix A ∈ N (2)
n , we would like to decide to which oriented link

pattern it corresponds. Define Ui = 〈e1, . . . , ei〉, the span of the first i coordinate
vectors in kn, and define a matrix DA = (dAi,j)i,j by setting dAi,j := dim(Ui ∩
A(Uj)) (we formally define dAi,j = 0 for i = 0 or j = 0). The matrix DA

is obviously an invariant for the Bn-action on N (2)
n . It is easy to extract an

oriented link pattern from DA as follows:

Lemma 3.5. The matrix A belongs to the orbit of a matrix (mi,j)i,j as above if
and only if dAi,j =

∑
i′≤i; j′≤jmi′,j′ or, conversely, mi,j = dAi,j −dAi−1,j −dAi,j−1 +

dAi−1,j−1 for all 1 ≤ i, j ≤ n.
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Proof. By Bn-invariance, we just have to compute DA for A = (mi,j)i,j as in the
previous theorem. We have ek ∈ Ui ∩ A(Uj) if and only k ≤ i and there exists
l ≤ j such that mk,l = 1 or, equivalently, such that there exists an arrow l→ k
in the corresponding oriented link pattern. Since both Ui and A(Uj) are spanned
by coordinate vectors ek, we thus have dAi,j = dim(Ui∩A(Uj)) =

∑
k≤i, l≤jmk,l.

The second formula follows.

We can also rederive Theorem 2.1 of A. Melnikov: every Bn−orbit of an upper-
triangular 2-nilpotent matrix corresponds to the orbit of a representation in
repinj

k (Q, I) of dimension vector d which does not contain Ui,j for i ≥ j as a
direct summand. In this case, the corresponding link pattern consists of arrows
pointing in the same direction. We can thus delete the orientation and arrive
at a link pattern as in [8].

Remark: Our method is easily generalized to obtain a classification of orbits for
a more general group action: let P ⊂ GLn be the parabolic subgroup consisting
of block-upper triangular matrices with block-sizes (b1, . . . , bk). Then P acts on
N (2)
n by conjugation, and the same reasoning as above yields a bijection between
P-orbits in N (2)

n and isomorphism classes of representations in repinj
k (Q, I) of

dimension vector (b1, b1 + b2, . . . ,
∑k
i=1 bi). Using the analysis of this section,

the P-orbits in N (2)
n correspond bijectively to matrices (mi,j)i,j such that∑

j

mi,j +
∑
j

mj,i ≤ bi

for all i = 1, . . . , k. Consequently, they correspond bijectively to “enhanced
oriented link patterns of type (b1, . . . , bk)”, namely, to oriented graphs on the
set {1, . . . , k} such that the vertex i is incident with at most bi arrows for all i.

4 Orbit closures
After classifying the orbits via oriented link patterns, we describe the corre-
sponding orbit closures. Again, we will solve this problem using results about
the geometry of representations of algebras. Two theorems of G. Zwara are the
key to calculating these orbit closures, see [10] and [11] for more details.

4.1 A criterion for degenerations
LetM andM ′ be two representations in repk(Q, I) of the same dimension vector
d. We say that M degenerates to M ′ if OM ′ ⊂ OM in Rd(Q, I), which will be
denoted byM ≤deg M

′. Since the correspondence of Lemma 3.2 preserves orbit
closure relations, we know that M ≤deg M

′ if and only if the corresponding
2-nilpotent matrices, denoted by A = (mi,j)i,j and A′ = (m′i,j)i,j , respectively,
fulfill OA′ ⊂ OA in N (2)

n .
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Theorem 4.1. (Zwara) Suppose an algebra kQ/I is representation-finite, that
is, kQ/I admits only finitely many isomorphism classes of indecomposable rep-
resentations. Let M and M ′ be two finite-dimensional representations of kQ/I
of the same dimension vector.
Then M ≤deg M

′ if and only if dimk Hom(U,M) ≤ dimk Hom(U,M ′) for every
representation U of kQ/I.

To simplify notation, we set [U, V ] := dimk Hom(U, V ) for two representations U
and V . Since the dimension of a homomorphism space is additive with respect
to direct sums, we only have to consider the inequality [U,M ] ≤ [U,M ′] for
indecomposable representations U to characterize a degeneration M ≤deg M

′.
Furthermore, since [Wi,j ,M ] = 0 for all representations M in repinj

k (Q, I) by a
direct calculation, we can restrict these indecomposables U to those of type Ui,j
and Vi of the previous section.

We can easily calculate the dimensions of homomorphism spaces between these
indecomposable representations.

Lemma 4.2. For i, j, k, l ∈ {1, . . . , n} we have

• [Vk,Vi] = δi≤k,

• [Vk,Ui,j ] = δi≤k,

• [Uk,l,Vi] = δi≤l,

• [Uk,l,Ui,j ] = δi≤l + δj≤l · δi≤k,

where δx≤y :=

{
1, if x ≤ y;
0, otherwise.

For a representationM in repinj
k (Q, I) of dimension vector d (or equivalently, for

the corresponding 2-nilpotent matrix A), consider the corresponding oriented
link pattern. Define pMk as the number of vertices to the left of k which are not
incident with an arrow, plus the number of arrows whose target vertex is to the
left of k. Define qMk,l as p

M
l plus the number of arrows whose source vertex lies

to the left of l and whose target vertex lies to the left of k.

Theorem 4.3. We haveM ≤deg M
′ (or equivalently, OA′ ⊂ OA in the notation

above) if and only if pMk ≤ pM
′

k and qMk,l ≤ qM
′

k,l for all k, l = 1, . . . , n.

Proof. Given two representations M and M ′, we write

M =

n⊕
i,j=1

Umi,ji,j ⊕
n⊕
i=1

Vnii and M ′ =

n⊕
i,j=1

Um
′
i,j

i,j ⊕
n⊕
i=1

Vn
′
i

i .

For an indecomposable U , the condition [U,M ] ≤ [U,M ′] is then equivalent to

n∑
i,j=1

mi,j [U,Ui,j ] +

n∑
i=1

ni[U,Vi] ≤
n∑

i,j=1

m′i,j [U,Ui,j ] +

n∑
i=1

n′i[U,Vi].
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Using the dimensions of homomorphism spaces between indecomposable repre-
sentations stated in the previous lemma, we calculate

pMk =
∑
i≤k;j

mi,j +
∑
i≤k

ni

and
qk,l(M) = pMl +

∑
i≤k;j≤l

mi,j ,

and the condition [U,M ] ≤ [U,M ′] is equivalent to the conditions pMk ≤ pM
′

k

and qMk,l ≤ qM
′

k,l for all k, l = 1, . . . , n. The claimed interpretation of these values
pMk and qMk,l in terms of oriented link patterns follows from Theorem 3.4.

4.2 Minimal degenerations
As a next step, we develop a combinatorial method to produce all degenerations
of a given representation M in repinj

k (Q, I) of dimension vector d out of its
oriented link pattern. It is sufficient to construct all minimal degenerations,
that is, degenerations M <deg M

′ such that if M ≤deg L ≤deg M
′, then M ∼= L

or M ′ ∼= L. Minimal degenerations are denoted by M <mdeg M
′.

In [11], G. Zwara describes all minimal degenerations; the result is stated here
in a generality sufficient for our purposes. Denote by ≤ext the transitive closure
of the relation on representations given by M ≤M ′ if there exists a short exact
sequence 0→M ′1 →M →M ′2 → 0 such that M ′ ∼= M ′1 ⊕M ′2.

Theorem 4.4. Let M and M ′ be representations in repinj
k (Q, I).

If M <mdeg M
′, then one of the following holds:

1. M <ext M
′

2. There are representations W , M̃ , M̃ ′ in repinj
k (Q, I) such that

(a) M ∼= W ⊕ M̃

(b) M ′ ∼= W ⊕ M̃ ′

(c) M̃ <mdeg M̃ ′

(d) M̃ ′ is indecomposable.

Combining this theorem with the technique of [3, Theorem 4], we obtain a char-
acterization of minimal disjoint degenerations, that is, minimal degenerations
M <mdeg M

′ such that M and M ′ do not share a common direct summand:

Corollary 4.5. Let M <mdeg M ′ be a minimal disjoint degeneration as be-
fore. Then either M ′ is indecomposable or M ′ ∼= U ⊕ V , where U and V are
indecomposables and there exists an exact sequence 0 → U → M → V → 0 or
0→ V →M → U → 0.
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Thus we see that all minimal degenerations are of the form W ⊕ M <mdeg

W ⊕M ′, where M and M ′ are as in the corollary, thus M ′ involves at most two
indecomposable direct summands. Translating this to the language of oriented
link patterns using Theorem 3.4, we have “localized” the problem to the consid-
eration of at most four vertices of an oriented link pattern. In this local case,
we can apply Theorem 4.3 and easily work out all minimal degenerations.

Theorem 4.6. Every minimal degeneration is of the form given in one of the
following diagrams showing parts of the degeneration posets in terms of oriented
link patterns. We assume that a < b (resp. a < b < c, resp. a < b < c < d) are
vertices of an oriented link pattern, and only indicate the changes to the arrows
incident with one of these vertices; all other arrows are left unchanged.

•
a

•
b

��

•
a

•
b

��

•
a

•
b

•
a
•
b
•
c

��

•
a
•
b
•
c

��
•
a
•
b
•
c

��

•
a
•
b
•
c




•
a
•
b
•
c





•
a
•
b
•
c

��
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a
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b
•
c
•
d

����

•
a
•
b
•
c
•
d
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•
a
•
b
•
c
•
d

����

•
a
•
b
•
c
•
d

����
•
a
•
b
•
c
•
d

�� ��
•
a
•
b
•
c
•
d

����

•
a
•
b
•
c
•
d

�� ��
•
a
•
b
•
c
•
d

����
•
a
•
b
•
c
•
d

�� ��

•
a
•
b
•
c
•
d

�� ��
•
a
•
b
•
c
•
d

�� ��

•
a
•
b
•
c
•
d

�� ��

Remark: Note that, although every minimal degeneration is of the form W ⊕
M <mdeg W ⊕M ′ as above, the choice of W is not arbitrary, that is, addition
of an arbitrary W might lead to a non-minimal degeneration. The precise
conditions onW neccessary for this degeneration to be minimal will be described
in [4]; as a consequence, it will be shown in [4] that all minimal degenerations
are of codimension 1.

We have thus obtained a constructive way of describing an orbit closure OA of
a 2-nilpotent matrix A in terms of its corresponding link pattern: by repeated
application of the local changes to the arrows as in the theorem, we produce a
list of all link patterns corresponding to matrices A′ ∈ N (2)

n such that OA′ ⊂ OA
(although this list will contain repetitions due to non-minimal degenerations).

5 Bn-orbits in arbitrary nilpotent matrices
In this section, we consider the action of Bn on Nn by conjugation in general
(for the analogous problem of the action of Bn on nn, see [6]).

The starting point is the following observation (see [5]):

Example: Consider the action of B3 on N3 via conjugation. Then the matrices
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 0 0 0
1 0 0
λ 1 0

 for λ ∈ k are pairwise non-conjugate. Furthermore, on the open

set U ⊂ N3 of nilpotent matrices A =

 a b c
d e f
g h i

 where g 6= 0 or dh 6= eg,

the map U → P1 given by A 7→ (g : dh− eg) is surjective and B3-invariant.

We generalize some aspects of this example to arbitrary n.

5.1 Generic normal form
It is appropriate to reformulate the problem as follows: we consider the action of
GL(V ) on pairs (F∗, ϕ) consisting of a complete flag 0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn =
V and a nilpotent operator ϕ ∈ End(V ) of an n-dimensional k-vector space V .
Then the orbits of this action are precisely the orbits of Bn in Nn since the
variety of complete flags is isomorphic to the homogeneous space GLn /Bn.

Theorem 5.1. The following properties of a pair (F∗, ϕ) consisting of a com-
plete flag and a nilpotent operator of an n-dimensional k-vector space V are
equivalent:

1. dimϕn−k(Fk) = k for all k = 1, . . . , n− 1,

2. dim(ϕn−k(Fk) + Fk)/Fk = k for all k = 1, . . . , n− 1, or, equivalently, all
induced maps ϕ : Fk → V/Fn−k are invertible,

3. there exists a unique basis v1, . . . , vn of V such that

(a) Fk = 〈v1, . . . , vk〉 for all k = 0, . . . , n,

(b) ϕ(vk) = vk+1 mod 〈vk+2, . . . , vn〉 for all k = 1, . . . , n.

Proof. Obviously, the second property implies the first. We show that the third
property implies the second one; so assume there exists a basis v1, . . . , vn with
the properties (a) and (b). By an easy induction, we have

ϕk(vl) = vk+l mod 〈vk+l+1, . . . , vn〉

for all k + l ≤ n, and ϕk(vl) = 0 if k + l > n. We thus have

ϕn−k(Fk) = 〈ϕn−k(v1), . . . , ϕn−k(vk)〉 = 〈vn−k+1, . . . , vn〉,

and the second property follows since Fn−k = 〈v1, . . . , vn−k〉.
Conversely, assume that dimϕn−k(Fk) = k for all k. In particular, we have
ϕn−k(V ) = ϕn−k(Fk), and thus dimϕn−k(V ) = k and dim Ker(ϕn−k) = n − k
for all k. We choose an arbitrary basis w1, . . . , wn of V which is adapted to
F∗, that is, such that Fk = 〈w1, . . . , wk〉 for all k. Then, for all k, the elements
ϕn−k(w1), . . . , ϕn−k(wk) generate the k-dimensional space ϕn−k(Fk), thus they
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form a basis of this space. We can thus write the element ϕn−1(w1) ∈ ϕn−k(Fk)
uniquely as

ϕn−1(w1) =

k∑
i=1

bk,iϕ
n−k(wi),

and we define

vk =

k∑
i=1

bk,iwi

for all k. Note that the elements vk do not depend on the choice of basis elements
w1, . . . , wn. We have bk,k 6= 0: otherwise ϕn−1(w1) =

∑
i<k bk,iϕ

n−k(wi), and
application of ϕ yields 0 =

∑
i<k bk,iϕ

n−(k−1)(wi) and thus bk,i = 0 for all i
by linear independence of the elements ϕn−(k−1)(wi). Then ϕn−1(w1) = 0, a
contradiction. Since the elements wk form a basis and the bk,k are non-zero, the
elements vk form a basis, too, which is again adapted to F∗.

We have

ϕn−k(vk) =

k∑
i=1

bk,iϕ
n−k(wi) = ϕn−1(w1) = vn

by definition. For k + l > n, we thus have

ϕk(vl) = ϕk+l−n(ϕn−l(vl)) = ϕk+l−n(ϕn−1(w1)) = 0.

It follows that vk+1, . . . , vn belong to Ker(ϕn−k), thus they form a basis of this
space for dimension reasons. It also follows that ϕn−k(v1), . . . , ϕn−k(vk) form a
basis of ϕn−k(V ).

Writing ϕk(vl) =
∑n
i=1 ck,l,ivi, we apply ϕn−k−l and calculate

ϕn−k−l(vk+l) = vn = ϕn−l(vl) =
∑
i

ck,l,iϕ
n−k−l(vi)

= ck,l,k+lϕ
n−k−l(vk+l) +

∑
i<k+l

ck,l,iϕ
n−k−l(vi),

and thus ck,l,k+l = 1 and ck,l,i = 0 for all i < k + l by linear independence of
ϕn−k−l(v1), . . . , ϕn−k−l(vk+l). We thus have

ϕk(vl) = vk+l +
∑
i>k+l

ck,l,ivi

for all k + l ≤ n, and, in particular,

ϕ(vk) = vk+1 +
∑
i>k+1

c1,k,ivi

for all k. The basis v1, . . . , vn thus has the claimed properties.

For 0 ≤ a, b ≤ n and a matrix A ∈ Nn, define A(a,b) as the submatrix formed
by the last a rows and the first b columns of A.
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Corollary 5.2. The following conditions on a matrix A ∈ Nn are equivalent:

1. for k = 1, . . . , n− 1, the first k columns of An−k are linearly independent,

2. for k = 1, . . . , n− 1, the minor det((An−k)(k,k)) is non-zero,

3. A is Bn-conjugate to a unique matrix H such that Hi,j = 0 for i ≤ j and
Hi+1,i = 1 for all i = 1, . . . , n− 1.

Proof. We apply the previous theorem to the vector space V = kn with coor-
dinate basis e1, . . . , en, the standard flag defined by Fk = 〈e1, . . . , ek〉 and the
endomorphism ϕ given by multiplication by A. The first property of the theorem
immediately translates into linear independence of column vectors, whereas the
second property translates to the non-vanishing of minors. The basis v1, . . . , vn
of the theorem yields an upper-triangular base change matrix, and representing
A with respect to this basis yields the desired Bn-conjugate H.

The conditions of Corollary 5.2 define an open subset of Nn; we have thus found
a generic normal form for nilpotent matrices up to Bn-conjugacy.

5.2 Semiinvariants
We construct a class of determinantal Bn-semiinvariants on Nn, that is, regular
functions D on Nn such that D(gAg−1) = χ(g)D(A) for all g ∈ Bn and A ∈ Nn;
here χ is a character on Bn called the weight of D. For i = 1, . . . , n, we denote
by ωi : Bn → Gm the character defined by ωi(g) = gi,i; the ωi form a basis for
the group of characters of Bn.

Fix non-negative integers a1, . . . , as, b1, . . . , bt such that a1 + . . . + as = b1 +
. . . + bt =: k ≤ n. Moreover, fix polynomials Pi,j(x) ∈ k[x] for i = 1, . . . , s
and j = 1, . . . , t, and denote the datum ((ai)i, (bj)j , (Pi,j)i,j) by P . For all
such i and j, consider the ai × bj-submatrices Pi,j(A)(ai,bj) as defined in the
previous section, and form the block matrix AP = (Pi,j(A)(ai,bj))i,j ; this is a
k × k-matrix.

Proposition 5.3. For every datum P as above, the function associating to a
matrix A ∈ Nn the determinant det(AP ) defines a Bn-semiinvariant regular
function DP of weight

∑
i(ωai + . . .+ ωn)−

∑
j(ω1 + . . .+ ωbj ) on Nn.

Proof. For g ∈ Bn and 1 ≤ a, b ≤ n, denote by g(≥a) ∈ Ba (resp. by g(≤b) ∈ Bb)
the submatrix formed by the last a rows and columns (resp. by the first b rows
and columns) of g. With these definitions, it follows immediately that

(gAg−1)(a,b) = g(≥a)A(a,b)g
−1
(≤b).

This yields the following equalities of block matrices

(gAg−1)P = (Pi,j(gAg
−1)(ai,bj))i,j = ((gPi,j(A)g−1)(ai,bj))i,j
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= (g(≥ai)Pi,j(A)(ai,bj)g(≤bj)
−1)i,j = (δi,jg(≥ai))i,jA

P (δi,jg(≤bj)
−1)i,j ,

and thus

DP (gAg−1) = det((gAg−1)P ) =
∏
i

det(g(≥ai))
∏
j

det(g(≤bj))
−1DP (A).

With the aid of these semiinvariants, we can see that the entries of the normal
form H associated to a matrix A fulfilling the conditions of Corollary 5.2 depend
polynomially on A, by describing them as the value of a special semiinvariant
DP :

Lemma 5.4. For i and j such that 1 ≤ j ≤ n− 2 and j + 2 ≤ i ≤ n, consider
the datum P as above defined by a1 = j − 1, a2 = i, b1 = j, b2 = i − 1,
P1,1(x) = xn−j+1, P1,2(x) = 0, P2,1(x) = x, P2,2(x) = xn−i+1. Then, for a
matrix H in the form of Corollary 5.2, we have DP (H) = Hi,j.

Proof. By a direct calculation, the matrix HP consists of the blocks

(HP )1,1 =

 1 0 0

· · ·
...

∗ 1 0

 , (HP )1,2 = 0,

(HP )2,1 = H(i,j), (HP )2,2 =


0 . . . 0
1 0

...
∗ 1

 .

Thus, the matrix HP is lower triangular, all diagonal entries being 1 except the
(j, j)-entry, which equals Hi,j .

It seems likely that the semiinvariants DP generate the ring of all semiinvariants
at least for a certain cone of weights. The generic normal form of Corollary 5.2
allows to find identities between the DP by evaluation on matrices H in normal
form.
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Figure 1: The Auslander-Reiten quiver of repk(Q, I)
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