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Abstract

We derive a root test for degenerations as described in the title. In the case of Dynkin quivers
this leads to a conceptual proof of the fact that the codimension of a minimal disjoint degeneration
is always one. For Euclidean quivers, it enables us to show a periodic behaviour. This reduces
the classification of all these degenerations to a finite problem that we have solved with the aid of
a computer. It turns out that the codimensions are bounded by two. Somewhat surprisingly, the
regular and preinjective modules play an essential role in our proofs.

1 Introduction

Throughout this article we are dealing with finite dimensional modules over the path algebra kQ of a
finite connected quiver without oriented cycles, i.e. with finite dimensional representations of Q. Thus
the Auslander-Reiten quiver Γ has a preprojective component containing all indecomposable projectives,
and we call a module preprojective if its indecomposable direct summands all belong to that component.
We denote by U � V the usual partial order between preprojective indecomposables saying that there is
a path from U to V . The distance d(U, V ) between U and V is then the length of a shortest path leading
from U to V .

By [4, corollary 4.2], it is easy to see when a preprojective module M degenerates to another prepro-
jective N of the same dimension vector. This happens to be true iff the inequality dim Hom(M,W ) ≤
dim Hom(N,W ) holds for all indecomposable preprojectives W that are predecessors of some indecom-
posable direct summand of M ⊕N iff there is a finite number of extensions 0 → Ui → Mi → Vi → 0 with
M = M1, Mi+1 = Ui ⊕ Vi and N = Ur ⊕ Vr. We denote this by M ≤ N . It follows from [5, theorem 4]
that the minimal degenerations M < N all come from a ’minimal’ extension 0 → U → M

′ → V → 0 with
indecomposable ends by adding an appropriate common direct summand X, i.e. by setting M = M

′ ⊕X
and N = U ⊕ V ⊕X. However, the minimal disjoint degenerations induced by 0 → U → M

′ → V → 0
and interesting invariants thereof like the codimension of the orbit closures are not known in general even
though for given U and V a computer can easily determine all possible M

′
- at least in principle. Thus for

Dynkin quivers - using the shrinking of bijectively represented arrows that reduces the infinite families
An, Dm to the cases n ≤ 3,m ≤ 6 - one ends up with a finite list that has already been determined
with the help of a computer in [10]. For a Euclidean ( or tame or extended Dynkin ) quiver of type
Ãn, D̃m, Ẽ6, Ẽ7 or Ẽ8 it is not so obvious that the classification is a finite problem that can be solved
with a computer. We now want to explain how and in which sense this can be achieved.

First of all, one can always tilt to the case where U is the only simple projective. From now on this
will be taken for granted. By shrinking some appropriate arrows one reduces further to the finite list
of quivers of type Ãn, D̃m, Ẽ6, Ẽ7 or Ẽ8 with n ≤ 3,m ≤ 8. These quivers have finite diameter d ≤ 7
and Coxeter numbers p ≤ 30, i.e. p is the order of the corresponding Coxeter-transformation modulo
the space generated by the null-root. Now, as soon as d(U, V ) ≥ 4(p + d), the following holds for any
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minimal degeneration M < U ⊕ V : M can be decomposed into M1 ⊕M2 such that all indecomposable
direct summands W of M1 satisfy d(U,W ) < 2(p + d) and dually all direct summands of M2 satisfy
d(W,V ) < 2(p + d). Furthermore, M1 ⊕ TrDpM2 has U ⊕ TrDpV as a minimal degeneration and any
minimal degeneration ending there is of this form. This correspondence preserves the codimensions.
However, finer invariants like the type of singularities are not even preserved in the simple case of the
double arrow ( see [3] ).

Since we only have to look at the finitely many modules V reachable from the finitely many U by paths
with at most 6p+4d arrows the enumeration of all minimal disjoint degenerations is now a finite problem.
In particular, there exist natural numbers n resp. c such that for any pair U, V of indecomposable
preprojective representations over any tame quiver one has at most n minimal degenerations M < U ⊕V
and the codimension of such a degeneration is always at most c. In fact, the best values for n resp. c
are 613 resp.2 as found with the help of a computer. For some more details on the numerical aspects we
refer to the tables at the end of this article, and for full details to http://wmaz.math.uni-wuppertal.de.

The above reduction and an algorithm fast enough to carry through the classification on a personal
computer are both based on the following root test for minimal degenerations that is valid for arbitrary
quivers. Let 0 → U → M = M1 ⊕ M2 → V → 0 induce a minimal degeneration. Suppose that the
decomposition of M is directed, i.e. that no direct summand of M2 is a proper predecessor of a direct
summand of M1. Then for M1 6= 0 the right end term in the induced exact sequence 0 → U → M1 →
R → 0 is indecomposable. It follows in particular that the function W 7→ dim Hom(U ⊕ V,W ) −
dim Hom(M,W ) is a root or 0 when restricted to any slice.

We use the root test also for a conceptual proof of the known fact, that the codimensions of minimal
disjoint degenerations are always one for representations of Dynkin quivers.

The problem dealt with in this article was posed by the first author to the second author as a
computer-aided ’Diplomarbeit’. However, the more or less evident algorithms used before the root-test
was available were too slow to ever reach the large bounds the first author had at that time for type Ẽ8.
He was lead to the root test by inspection of the numerical results the second author had obtained so
far. Thus the dialectical process between theory and experiment was useful for both sides ( and for both
authors ).

Throughout this article, the following notations and assumptions are valid. We work over an alge-
braically closed field k of arbitrary characteristic. All our representations and modules will be of finite
dimension over k. Basic notions from representation theory are used without any further comments, in
particular almost split sequences, Auslander-Reiten quivers and the ’functors’ DTr and TrD. Note that
for hereditary algebras like path algebras, DTr resp. TrD are indeed left resp. right exact functors.
The abbreviations [X, Y ] and [X, Y ]1 denote the dimensions of Hom(X, Y ) and Ext1(X, Y ). For two
modules M,N with the same dimension vector dimM = dimN one has for all indecomposables T the
nice formula [M,T ] − [N,T ] = [TrDT,M ] − [TrDT, N ] ( see [2, cor.4.3] ). Also the famous formula
DHom(X, Y ) ' Ext1(Y, DTrX) ( see e.g. [2, prop.4.5] ) valid for all modules is used several times. The
end of a proof is marked by q.e.d.

2 The root test for minimal disjoint degenerations

2.1 The main observation

If M < U ⊕ V is a degeneration with indecomposable preprojective modules U and V over an arbitrary
path algebra kQ that satisfy U ≺ V then there is by [5, theorem 4.5] an injection ε : U → M with
cokernel V . Now choose any directed decomposition M = M1 ⊕ M2 of M with M1 6= 0 6= M2 and
decompose ε into the corresponding components ε1 and ε2.

Theorem 1. Keep all the above notations and assumptions. Suppose furthermore that M < U ⊕ V is a
minimal degeneration. Then the cokernel of ε1 is indecomposable.

Proof: First of all, ε1 is not 0 whence injective ( U is simple ! ), because otherwise ε splits. So we
start with the following exact commutative diagram:
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0 0

0 0

0 0

0 0

U

U
ε

ε1
id

M V

'
M2

M1

M2

R- - - -

- - - -

-

? ? ?

? ?

? ?

? ?

Assume now that R = R1⊕R2 holds with an indecomposable R1. We have to show that R2 vanishes.
The inclusion of R1 and the projection onto R1 induce the following two commutative exact diagrams:

0 0

0 0

0 0

0 0

U

U M1

id

R

R2

M
′

1

R2

'

R1
- - - -

- - - -

-

6 6 6

6 6

6 6

6 6

0

0

0 0

0 0

0

0

M
′

2

M2 V

id

R

R2

V

X

R1
- - - -

- - - -

? ? ?

?

?

?

?

?

?

By the snake lemma, X is isomorphic to R2. We extract the following four short exact sequences:

(1) : 0 → U → M
′

1 → R1 → 0
(2) : 0 → M

′

1 → M1 → R2 → 0
(3) : 0 → M

′

2 → V → R1 → 0
(4) : 0 → M2 → M

′

2 → R2 → 0

Our claim is that M ≤ M
′

= M
′

1 ⊕ M
′

2 ≤ U ⊕ V holds. Thus let T ≺ V be a preprojective
indecomposable. Because of [R, T ] = 0 we obtain induced exact sequences:

(1∗) : 0 → Hom(M
′

1, T ) → Hom(U, T ) → Ext(R1, T ) → Ext(M
′

1, T )
(2∗) : 0 → Hom(M1, T ) → Hom(M

′

1, T ) → Ext(R2, T ) → Ext(M1, T )
(3∗) : 0 → Hom(V, T ) → Hom(M

′

2, T ) → Ext(R1, T ) → Ext(V, T )
(4∗) : 0 → Hom(M

′

2, T ) → Hom(M2, T ) → Ext(R2, T ) → Ext(M
′

2, T )

First suppose now, that [M2, T ] = 0. By (4∗) we also have [M
′

2, T ] = 0. Using (2∗) and (1∗) we find

[M1 ⊕M2, T ] = [M1, T ] ≤ [M
′

1, T ] = [M
′

1 ⊕M
′

2, T ] ≤ [U, T ] ≤ [U ⊕ V, T ].

Now assume that [M2, T ] 6= 0. Then we have 0 = [M1, T ]1 = [TrDT,M1], because the decomposition
of M is directed. We also have 0 = [M

′

1, T ]1 for the submodule M
′

1 of M1. Using (2∗),(4∗),(1∗) and (3∗)
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in this order we obtain:

[M1 ⊕M2, T ] ≤ [M
′

1, T ]− [R2, T ]1 + [M
′

2, T ] + [R2, T ]1 =

[M
′

1 ⊕M
′

2, T ] ≤ [U, T ]− [R1, T ]1 + [V, T ] + [R1, T ]1 = [U ⊕ V, T ].

Since M , M
′

and U ⊕ V all have the same dimension vector and contain only predecessors of V as
direct summands, we get for all indecomposable modules W that are not preprojective or not �-smaller
than DTrV the equalities

[U ⊕ V,W ]− [M,W ] = [TrDW, U ⊕ V ]− [TrDW, M ] = 0

and
[U ⊕ V,W ]− [M

′
,W ] = [TrDW, U ⊕ V ]− [TrDW, M

′
] = 0.

Thus we have proved our claim M ≤ M
′ ≤ U ⊕ V .

If M
′
is isomorphic to U⊕V we have M

′

1 ' U , whence the contradiction R1 = 0. So we have M ' M
′

by minimality and it remains to be seen that R2 = 0.
If not we have dimM2 < dimM

′

2. From the exact sequence

0 → M2 → M
′

2 → R2 → 0

we split off an exact sequence of type

0 → Z → Z → 0 → 0

with Z of maximal dimension and we denote the remaining sequence again as in (4). By the theorem
of Krull-Remak-Schmidt there is an indecomposable direct summand X in M

′

2 also occuring in M1, and
we fix such an X. We write M2 as a direct sum of indecomposables Y1, Y2, . . . Yr and we look at the
homomorphisms α(i) : Y (i) → X induced by the injection M2 → M ′

2 occurring in (4). If we have
α(i) = 0 for all i then X is a direct summand of R2 because of the exact sequence (4). So we obtain
X ≺ V � X, a contradiction. Thus we have α(i) 6= 0 for at least one index i. By the definition of a
directed decomposition, Yi ≺ X is not possible. Thus we have Yi = X. Then α(i) is invertible and we
can split off

0 → X → X → 0 → 0

once more in contradiction to the choice of Z.
q.e.d.

Remark 1. Of course, the isomorphism class of the cokernel R depends heavily on the choice of ε and
the decomposition.

2.2 The root test

Let S be a slice in the preprojective component of kQ as introduced by Ringel in [13, page 180]. Thus for
any point x in the quiver with corresponding indecomposable projective P (x) there is exactly one index
n(x) such that X = TrDn(x)P (x) belongs to S. For any minimal disjoint degeneration M < U ⊕ V with
directed decomposition M = M1 ⊕M2 we look at the vector s in NQ0 defined by

s(x) = [U,X]− [M1, X].

We claim that this vector or its negative is always a root of Q, i.e. the dimension vector of an indecom-
posable. By a deep result of Kac ( [9] ) this notion coincides with the usual definition in Lie theory. In
particular it is independent of the orientation of the quiver. For Dynkin quivers and Euclidean quivers
the situation is much easier, because the roots are precisely the non-negative integer vectors where the
quadratic form attached to the quiver takes values 1 or 0.

Lemma 1. Using the above notations we have:
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a) The vector s or its negative is a root of Q. If V is not a predecessor of some module in S, it is a
root.

b) The restriction of the function W 7→ [U ⊕ V,W ]− [M,W ] to S is a root or 0.

Proof: a) Of course, we can assume that each direct summand of M1 is a predecessor of some module
in S, because the others do not contribute to s. The direct sum T of all the modules in S is a tilting
module whose endomorphism algebra is again the path algebra of a quiver with the same underlying
graph as Q. We distinguish several possibilities.

For M1 = 0 we have s(x) = [U,X] whence dualization and tilting show that s is a dimension vector.
If M1 does not vanish we look at an exact sequence

0 → U → M1 → R → 0

with indecomposable end as in theorem 1. For any X in S we obtain an induced exact sequence

0 → Hom(R,X) → Hom(M1, X) → Hom(U,X) → Ext(R,X) → 0.

Since T is a tilting module and R is not 0 we cannot have [R,X] = 0 = [R,X]1 for all X in S.
Now suppose for a moment that we have [R,X] 6= 0 6= [R,X ′]1 for some X, X ′ in S. Then we get
X ′ � TrDX ′ � R � X so that X ′ and TrDX ′ belong to the slice S which is path closed. This
contradiction shows that there are only two possibilities left.

Either we have
s(x) = [U,X]− [M1, X] = [R,X]1 = [X, DTrR]

for all x or else
s(x) = [U,X]− [M1, X] = −[R,X].

In the first case, DTrR is generated by T as a successor of a slice module. So our claim follows directly
from tilting theory. In the second case we dualize first and apply tilting afterwards.

If V is not a predecessor of some X in S then also R is not a predecessor. This implies [R,X] = 0 for
all X and excludes the second possibility above.

b) Let M1 be the direct sum of all indecomposable summands with multiplicities of M that are
predecessor of some module on S, and let M2 be the remaining part. If V is not a predecessor of some
module on S we can apply part a) and we obtain a root. If V is a predecessor we have M = M1 and
R = V . Then our vector is 0.

q.e.d.

2.3 An application to Dynkin quivers

Here we consider a Dynkin quiver Q with associated positive definite quadratic form q and corresponding
symmetric bilinear form b. The next result has been shown in [5, 10] by a tedious calculation.

Lemma 2. A minimal disjoint degeneration between representations of a Dynkin quiver has codimension
one.

Proof: If not, there is by [5, lemma 4] a minimal degeneration induced by

0 → U → X2 ⊕ Y → V → 0

for some indecomposable X. Then no sectional path with start X ends up in a projective P because of
2 ≤ [X2 ⊕ Y, P ] ≤ [U ⊕ V, P ]. Thus there is a slice S containing X as a sink. Then we take as M1 all
indecomposable summands of M ( counted with multiplicities ) that are predecessors of some module in
S. In M ′

1 we remove two copies of X. For the corresponding vectors s and s′ we have s′ = s + 2e with
the canonical base vector e to the point x. The relations

1 = b(s′, s′) = b(s, s) + 4b(s, e) + 4b(e, e)

and
0 < b(s + e, s + e) = b(s, s) + 2b(s, e) + b(e, e)

give us the wanted contradiction.
q.e.d.
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3 Tame quivers

3.1 Some known results and the shrinking of an arrow

We recall some well-known facts that the reader can find in [7, 13]. For tame quivers, an indecomposable
representation is either preprojective or else preinjective or else regular. Accordingly, any module M can
be decomposed in an essentially unique way into its preprojective part MP , its regular part MR and
its preinjective part MI . An important fact is that there are no non-zero maps from preinjectives to
regular or preprojective modules and from regular modules to preprojectives. The full subcategory R of
all regular modules is an abelian subcategory which breaks up into a direct sum of subcategories T (p),
p εP1(k). Each of these categories is equivalent to the category N (np) of nilpotent representations of an
oriented cycle with np points. In fact for all but at most three values of p we have np = 1, i.e. T (p) has
only one simple object and these categories are called homogeneous. In the other cases the simples are
conjugate under DTr.

The tame quivers are characterized by the fact that the associated quadratic form

q(x) =
∑
iεQ0

x2
i −

∑
i—j

xixj

is positive semi-definite on RQ0 . Its radical admits a generator n in NQ0 with strictly positive entries
one of which is 1. The sum of the dimension vectors of all simple regular modules in a category T (p)
as above equals n. The global dimension of a quiver algebra is at most one so that the map (M,N) 7→
[M,N ]− [M,N ]1 induces a bilinear form on the Grothendieck-group K0(A). Identifying K0(A) and ZQ0

by dim, its associated quadratic form is q.
There is a linear form ∂ on K0(A) called defect whose values on the dimension vector of an indecom-

posable are strictly negative for a preprojective, zero for a regular and strictly positive for a preinjective.
Given any module E with dimension vector n, one has ∂(dimU) = [U,E]1− [U,E]. Quite often we simply
write ∂U instead of ∂(dimU). Another definition of the defect uses the Coxeter-transformation c. This is
the unique endomorphism of RQ0 that sends dimU to dimDTrU for each non-projective indecomposable
U . In particular, n is fixed by c which induces on the quotient space an automorphism of finite order
p = p(Q). Then there is for any indecomposable U the formula

cp(dimU) = dimU + ε(Q)∂(dimU)n,

where ε(Q) is a strictly positive natural number depending on Q.
To reduce the infinite families of quivers of type Ãn and D̃m to the cases n ≤ 3 and m ≤ 8 we

apply the known technique of shrinking an arrow to a point. Thus we look at some arrow ϕ : x → y in
Q. Then we obtain the shrinked quiver Q′ by identifying the two points x and y and by forgetting ϕ.
Clearly, the full subcategory C of all representations M of Q with bijective M(ϕ) is under the obvious
functor M 7→ M ′ equivalent to the category of all representations of Q′. If N belongs to C, then all
degenerations M to N also do because bijectivity is an open condition. Furthermore M 7→ M ′ induces a
bijection between the set of all minimal degenerations to N and the set of all minimal degenerations to
N ′. This bijection respects codimensions of orbits, decompositions into indecomposables and even finer
invariants like types of singularities occurring in orbit closures.

We want to show that this reduction applies to the direct sum U ⊕ V of two indecomposable prepro-
jectives over a path algebra of type Ãn or D̃m as soon as n ≥ 4 or m ≥ 9. By our general convention, U is
the projective simple P (ω) to the only sink ω in Q. To find an arrow ϕ : x → y represented by a bijection
in U and V we only have to check whether dimV (x) = dimV (y) holds for some arrow not ending in ω (
see [13, page 76] ). Then the quiver Q′ contains again no oriented cycle, and V ′ is still preprojective.

Now, by a result of Moody in [11] or [7, lemma 1.8], the dimension vector dimV of a preprojective
indecomposable can always be written as dimV = nn + v′ for some appropriate natural number n and
some root v′ 6= n with v′ ≤ n. Here v′ ≤ n means v′(i) ≤ n(i) for all points i in the quiver.

First, we look at a quiver of type Ãn. Let α be the only source in Q. Then we have v′(α) = 0 because
v′ is the dimension vector of a preprojective indecomposable. If there is a path from α to ω with at least
three arrows, one of these is represented by a bijection in U and V so that we can reduce to Q′ which is
of type Ãn−1. Thus we can reduce to the case n ≤ 3 with at most two composable arrows.
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Similarly, for a quiver of type D̃m we look at the m− 4 arrows between the two branching points. In
a preprojective indecomposable, at most two of them are not represented by a bijection. Thus we can
always reduce for m ≥ 9.

3.2 A sharpening of the root test

For tame quivers, theorem 1 can be refined as follows:

Lemma 3. Suppose we have a minimal degeneration M < U ⊕ V of preprojectives and a directed
decomposition M = M1 ⊕M2 such that the defects of U and M1 coincide. Then we have dimR ≤ n in
theorem 1.

Proof: By the additivity of the defect in short exact sequences R is a regular indecomposable module.
If dimR ≤ n is not true, we find short exact sequences of regular modules of the form

0 → R1 → R → R2 → 0

and

0 → R′
1 → R → R′

2 → 0

with dimR1 = n = dimR′
1. Namely R1 resp.R′

1 is the uniquely determined regular uniserial submodule
resp. factor module of R that contains each simple belonging to the tube of R exactly once as a regular
composition factor. As in the proof of theorem 1 we consider the two diagrams induced from the exact
sequence

0 → U → M1 → R → 0

by the inclusion R1 → R and from the exact sequence

0 → M1 → V → R → 0

by the projection R → R′
1. Then we obtain the four exact sequences

(1) : 0 → U → M
′

1 → R1 → 0
(2) : 0 → M

′

1 → M1 → R2 → 0
(3) : 0 → M

′

2 → V → R′
1 → 0

(4) : 0 → M2 → M
′

2 → R′
2 → 0

.

Since the dimension vectors of the dashed and undashed regular modules Ri and R′
i coincide we find

for all indecomposable preprojectives T the equalities

[Ri, T ]1 = [Ri, T ]1 − [Ri, T ] = [R′
i, T ]1 − [R′

i, T ] = [R′
i, T ]1.

Argueing as in the proof of theorem 1 we construct a module M ′ = M ′
1⊕M ′

2 such that M ≤ M ′ ≤ U⊕V
holds. Again, M ′ cannot be isomorphic to U ⊕ V . But this time, it cannot be isomorphic to M either
because of R2 6= 0. This contradiction to the minimality shows that dimR ≤ n is true.

q.e.d.

3.3 Direct summands of defect ≤ −2 are not far away from the ends

In the following lemma we have not tried to give the sharpest bounds that are possible, because this
would make the arguments much more involved.

Lemma 4. Let M < U⊕V be a minimal disjoint degeneration with directed decomposition M = M1⊕M2

satisfying ∂M1 > ∂U . Assume that X is a �-minimal direct summand in M2 with d(U,X) ≥ 2(p + d).
Then we have ∂X = −1.
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Proof: Suppose not. Unfortunately, we have to consider various cases so that our proof is a bit
technical. However, the reasoning runs always as follows:

We start with a �-minimal direct summand X in M2 with d(U,X) ≥ 2(p+d) and ∂X < −1. Applying
the general strategy of [1, 12] we construct another possibly trivial or decomposable direct summand X ′

of M = M ′⊕X⊕X ′ and an obvious degeneration Z of X⊕X ′ such that M < M ′⊕Z < U⊕V holds. To
show the last inequality we verify with the help of the root test that for all preprojective indecomposables
W we have

δ(W ) := [Z,W ]− [X ⊕X ′,W ] ≤ ε(W ) := [U ⊕ V,W ]− [M,W ].

Here δ(W ) is always at most one so that we only have to check that the support of δ is contained in the
support of ε.

First, we treat the difficult cases Ẽ6, Ẽ7 or Ẽ8 using the following notation with r ≥ s ≥ t ≥ 1 :

ar a1. . a0 b1
. . bs

c1
..

ct

By our assumption d(U,X) ≥ 2(p + d) the slice S through X with only one source Ar lying in the
TrD-orbit of P (ar) exists in the Auslander-Reiten quiver. Observe that the defect of Ar is always −1, so
that X is different from Ar. For all points y in the quiver, the module in S belonging to the TrD-orbit
of P (y) is simply denoted by Y . Part b) of lemma 1 says that the restriction of ε to S is a root or 0. We
claim that ε(Y ) ≥ n(y) holds for the only predecessor Y of X in S. Namely, one has

ε(Y ) = [U, Y ]− [M1, Y ]

because X is a �-minimal direct summand of M2. Since d(U,X) ≥ 2(p + d) holds, Y equals TrDbP (y)
for some point y and some b ≥ p. Thus our claim follows immediately in the case M1 = 0. In the other
case we consider the exact sequence

0 → U → M1 → R → 0

given by theorem 1. By our assumptions on the defects R equals DTraI for some injective indecomposable
I. Applying Hom( , Y ) to the above sequence gives

[U, Y ]− [M1, Y ] = [R, Y ]1 = [TrDY,R] = [P (y), DTra+b+1I] ≥ n(y).

A similar argument will be used in the sequel quite often for other modules than Y .
Now we study the different possibilities for X. We start with the simple case that X = Ai for

some i < r. If we have ε(Aj) > 0 for all j > i, we set X ′ = 0, Z = Ar ⊕ TrDAi+1 and we obtain
M < M ′ ⊕ Z < U ⊕ V . If ε(Aj) = 0 holds for some j > i we get from ε(Ai+1) ≥ n(ai+1), the shape of
the null root n and the tables of the roots for Dynkin quivers in [6] that ε vanishes only at Ar. Because
DTrpAr exists we have [U,Ar] 6= 0, whence M1 6= 0, and an application of Hom( , Ar) to the exact
sequence above shows

ε(Ar) = [U,Ar]− [M1, Ar] = [R,Ar]1 − [M1, Ar]1 = [TrDAr, R]− [TrDAr,M1] = 0.

Thus [TrDAr,M1] = [TrDAr, R] = [P (ar), DTrmI] 6= 0 holds because of m ≥ p. Therefore M1 contains
some TrDAj as a direct summand with TrDAj 6� X. We take the smallest index j with this property
and set X ′ = TrDAj and Z = Aj−1 ⊕ TrDAi+1.

Observe that by symmetry the proof is already complete for the type Ẽ6 and for Ẽ7 only the case
X = C1 remains to be done. If S lies in the support of ε, we can take X ′ = 0 and Z = A3 ⊕ TrDB3.
There remain only two possibilities for the vanishing of ε on S, because we have ε(A0) ≥ 4 and because
the restriction to S is a root ( see again the tables in [6] ). Either we have ε(A3) = 0 or else ε(B3) = 0.
In the first case, there is as in the case X = Ai treated before a smallest index j > 0 such that TrDAj

is a direct summand of M1. Then we choose X ′ = TrDAj and Z = Aj−1 ⊕ TrDB3. In the second case,
we have

[U,B3]− [M,B3] = 0.
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For M1 = 0 one gets [M2, B3] 6= 0 immediately. In the other case one obtains

[U,B3]− [M1, B3] = [R,B3]1 − [M1, B3]1 = [TrDB3, R] 6= 0,

whence again [M2, B3] 6= 0. Thus there is a smallest index j ≥ 1 such that Bj is a direct summand of
M2. Then X ′ = Bj and Z = A3 ⊕ TrDBj−1 solve our problem. Here we set B0 = A0.

For Ẽ8, three cases remain to be done. First consider X = C1. Then we have ε(A0) ≥ 6, whence ε
vanishes at most in A5. The arguments used in the last case can be applied again. Furthermore, the case
X = B1 is quite similar to the case X = Aj .

So we finally analyze in detail the most complicated case X = B2. We want to replace X by A5 ⊕
TrD7A5 as shown in the next figure.

@@R @@R @@R @@R @@R @@R @@R

@@R @@R @@R @@R @@R @@R

@@R @@R @@R @@R @@R

@@R @@R @@R @@R

@@R @@R @@R

@@R @@R

@@R

��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

��� ��� ��� ��� ���

��� ��� ��� ���

��� ��� ���

��� ���

- -- -

���

A5

A4

A3

A2

A1

A0

B1

X

C1

TrD7A5

TrD6A4

TrD5A3

TrD4A2

TrD3A1

TrD2A0

TrD1B1

This is possible provided ε does not vanish on S or on TrDi+1Ai for some i = 0, 1, . . . , 5. Because of
ε(B1) ≥ 4 and because of the root test, ε vanishes at most in A5 and in TrD6A5. If TrDA0 is a direct
summand of M , we put X ′ = TrDA0 and Z = B1 ⊕ TrDB1. So we assume from now on that TrDA0 is
not a summand of M .

If ε vanishes in A5 but not in TrD6A5, one gets [TrDA5,M1] 6= 0 and one can take the smallest index
j such that TrDAj is a direct summand of M1. The case j = 0 has just been done, and for j > 0 we
take X ′ = TrDAj and Z = Aj−1 ⊕ TrD7A5 .

If ε vanishes in TrD6A5 but not in A5 one has [M2, T rD6A5] 6= 0 because otherwise one gets 0 =
[U, TrD6A5] − [M1, T rD6A5] = [R, TrD6A5]1. So one of the modules C1 ≺ TrD2A1 ≺ TrD3A2 ≺
TrD4A3 ≺ TrD5A4 ≺ TrD6A5 is a direct summand of M2 and we choose for W the �-smallest of these
modules. We always take X ′ = W . For X ′ = C1 we set Z = A5 ⊕ TrDB2. If X ′ equals TrDi+1Ai one
defines Z as Z = A5 ⊕ TrDi+1Ai−1.

Finally, it is also possible that we have a direct summand TrDAj of M1 as well as a direct summand
W of M2. The case where TrDA0 is a direct summand of M is already solved. In all the other cases one
defines X ′ = TrDAj ⊕W . For W = C1 one has Z = Aj−1 ⊕ TrDB2 and for W = TrDi+1Ai one sets
Z = Aj−1 ⊕ TrDi+1Ai−1.

For quivers of type Ãn or D̃n the proof is similar, but much easier. Namely, for Ãn all indecomposable
preprojectives have defect −1 so that the lemma is trivial. For D̃n we argue as in the previous cases
using the following notation:

a

??
?? d

yy
yy

y

c1 c2 · · · cn−3

b

����
e

EEEEE

Let X be a �-minimal direct summand of M2 with d(U,X) ≥ 2(p + d) having defect −2.Then X
belongs to the TrD-orbit of some P (ci) and we choose X so that the index i is as small as possible.
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Using the same notational conventions as before we consider the slice through X with A as the only
source. If the ’triangle’ T in the Auslander-Reiten quiver consisting of all Y with A � Y � TrDi−2B
and of Y = TrDi−1A contains no direct summand of M2, one gets ε(Y ) ≥ 1 for all Y in T . Thus one has
M = M ′ ⊕X < M ′ ⊕A⊕Z < U ⊕ V where Z = TrDi−1B or Z = TrDiA depending on the parity of i.

If T contains a direct summand Y of M2, then Y has defect −1 by the minimal choice of i. Then we
choose such a Y that is �-minimal and we obtain M = M ′⊕X⊕Y < M ′⊕Z⊕W < U⊕V . Here Z = Cj

is the unique �-maximal predecessor of X and Y , and W lies in the TrD-orbit of A or B depending on
the parities.

q.e.d.

3.4 The periodicity

Theorem 2. Let U and V be two indecomposable preprojective representations over a tame quiver sat-
isfying d(U, V ) ≥ 4(p + d). Then the following is true:

a) Any minimal degeneration M < U ⊕ V admits a unique directed decomposition M = M1 ⊕ M2

with d(U,X) < 2(p + d) for all direct summands of M1 and with d(X, V ) < 2(p + d) for all direct
summands of M2. Here one has ∂M1 = ∂U and ∂M2 = ∂V .

b) The map M = M1 ⊕M2 7→ M1 ⊕ TrDpM2 is a bijection between the minimal degenerations M to
U ⊕ V and those to U ⊕ TrDpV . This bijection respects the codimensions.

Proof: a) Let M1 be the direct sum of all indecomposable summands W of M - counted with multiplic-
ities - such that d(U,W ) < 2(p+d) holds. Suppose we have ∂M1 > ∂U . By lemma 4, all indecomposable
summands X of M with d(U,X) ≥ 2(p + d) satisfy ∂X = −1. By adding successively enough of these to
M1 we obtain a directed decomposition M = M ′

1 ⊕M ′
2 with ∂M ′

1 = ∂U . Then lemma 3 says

dimM ′
1 − dimU ≤ n.

But M ′
1 contains at least one indecomposable X with d(U,X) ≥ 2(p + d) which implies

dimX = n + dimDTrpX.

Now the contradiction
dimDTrpX ≤ dimU

implies ∂M1 ≤ ∂U.
Dually, if we define M2 as the direct sum of all summands W of M with d(W,V ) < 2(p + d) we have

∂M2 ≤ ∂V. By construction and because of d(U, V ) ≥ 4(p + d) , M1 and M2 have no common direct
summand whence M1 ⊕M2 is a direct summand of M . We obtain

∂M = ∂(U ⊕ V ) ≥ ∂(M1 ⊕M2) ≥ ∂M,

whence M = M1⊕M2 as desired. The uniqueness - up to isomorphism - of this decomposition is obvious.
b) Let

0 → U → M1 → R → 0

be the exact sequences as in theorem 1 with regular indecomposable end R. Then we get the following
formulas for ε(T ) = [U ⊕ V, T ] − [M,T ] where T is an indecomposable. As long as d(U, T ) < 2(p + d)
holds we have ε(T ) = [U, T ] − [M1, T ]. By applying Hom( , T ) to the above exact sequence we get
ε(T ) = [U, T ]−[M1, T ] = [R, T ]1 for all T with 2(p+d) ≤ d(U, T ) ≤ d(U, V )−2(p+d). In all the remaining
cases we have ε(T ) = [U ⊕ V, T ]− [M,T ] = [TrDT,U ⊕ V ]− [TrDT,M ] = [TrDT, V ]− [TrDT,M2].

Let us compare ε with the function ε̃(T ) = [U ⊕ TrDpV, T ]− [M1 ⊕ TrDpM2, T ]. First of all,

dimV = dimM2 + dimR

implies because of dimTrDpR = dimR

dimTrDpV = dimTrDpM2 + dimR

10



and therefore also dim(U⊕TrDpV ) = dim(M1⊕TrDpM2). For d(U, T ) < 2(p+d) we have ε̃(T ) = ε(T ).
If 2(p+d) ≤ d(U, T ) ≤ d(U, TrDpV )−2(p+d) one obtains ε̃(T ) = [R, T ]1 ≥ 0. Finally, in all the remaining
cases for T = TrDpT ′, one has ε̃(T ) = [TrDT, TrDpV ]− [TrDT, TrDpM2] = ε(T ′). Thus we have shown
at least that M1 ⊕ TrDpM2 degenerates to U ⊕ TrDpV .

If this is not a minimal degeneration there is one M ′
1 ⊕M ′

2 in between, where by part a) the direct
summands of M ′

1 resp. M ′
2 have distance at most 2(p + d) from U resp. TrDpV . One sees by similar

trivial calculations as above that M ′
1 ⊕ DTrpM ′

2 is then a degeneration properly between the original
M and U ⊕ V , a contradiction. The same argument shows that the image of the injectice map M =
M1 ⊕M2 7→ M1 ⊕ TrDpM2 is the set of all minimal degenerations to U ⊕ TrDpV .

Finally, the codimensions are preserved, because we have

[U ⊕ V,U ⊕ V ]− [M,M ] = [U ⊕ V,M ]− [U ⊕ V,M ] + [U ⊕ V,M ]− [M,M ] =

1+[U⊕V,M1]−[M,M1]+[U⊕V,M2]−[M,M2] = 1+[U,M1]−[M1,M1]+[TrDM2, V ]−[TrDM2,M2] =

1 + [U,M1]− [M1,M1] + [TrDTrDpM2, T rDpV ]− [TrDTrDpM2, T rDpM2] = . . .

= [U ⊕ TrDpV,U ⊕ TrDpV ]− [M1 ⊕ TrDpM2,M1 ⊕ TrDpM2].

q.e.d.

4 The numerical results

4.1 Some remarks on the program

Given two indecomposables U ≺ V in a preprojective component of some path algebra kQ one has the
following obvious algorithm to determine the set of predecessors of U⊕V with respect to the degeneration
order.

• S1: Determine the finite set K1 of all modules M with dimM = dimU ⊕ V such that all indecom-
posable direct summands X of M satisfy U ≺ X ≺ V .

• S2: Consider then the subset K2 of K1 that contains only the modules M satisfying [M,X] ≤
[U ⊕ V,X] for all indecomposables X with U ≺ X ≺ V .These are just all modules M 6= U ⊕ V
degenerating to U ⊕ V .

• S3: Determine the wanted set K3 of all immediate predecessors M < U ⊕ V .

The trouble with this naive algorithm is that the small set K3 we are interested in is constructed with
the help of the much bigger sets K1 and K2. So we refined the algorithm as follows:

• R1: The candidates for M are built by adding a new indecomposable direct summand X to a
’partial candidate’ M̃ , and then one checks immediately whether [M̃ ⊕X, Y ] ≤ [U ⊕V, Y ] holds for
all Y or not. Thus one constructs only K2.

• R2: For each element M of K2 one considers the codimension c(M) = [U ⊕ V,U ⊕ V ] − [M,M ].
Then modules with codimension one are automatically minimal extensions and it is much easier to
find afterwards all the remaining minimal extensions.

But also this refined algorithm is by far not fast enough to perform the calculations necessary for
type Ẽ8 in a reasonable time on a personal computer. Apart from some additional tricks described in
[8] the root test of section 2.2 makes the algorithm work for tame quivers. This is by chance because
theorem 1 gives only a necessary condition for minimal degenerations. However the root test can be
checked immediately after the addition of a new direct summand as in R1 and it turns out that most of
the non-minimal degenerations are thrown away immediately.

Of course, there might be mistakes in our program, but the following facts indicate that it is correct:

a) We confirmed the results found by U.Markolf in [10] for Dynkin quivers ( within a few seconds ).
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b) We did not implement symmetries of the quiver into our program, but the results reflected all
symmetries and dualities.

c) We checked some small cases by hand.

d) We checked the periodicity guaranteed by theorem 2 not only by comparing the numbers but also
by verifying the bijection described in theorem 2.

4.2 Some facts found by computer and some tables

The best of these results is that the codimensions of the minimal extensions are at most 2. By theoretical
means we could only show that 1− ∂(U ⊕ V ) is an upper bound.

Next, the numbers e(U, V ) resp. c(U, V ) of all minimal extensions between U and V resp. of those with
codimension 2 are bounded by 613 resp. by 76, and both bounds are reached for certain representations
of an Ẽ8-quiver. Moreover, the highest multiplicity of a direct summand occurring in M for some minimal
degeneration M < U⊕V is 2 and there are at most 12 non-isomorphic indecomposable direct summands.
The last statement is an easy consequence of the additivity of the defect in short exact sequences.

At the end of this article we include some tables to indicate the combinatorial complexity of the
problem we are dealing with. For more details we refer to [8] as well as to http://wmaz.math.uni-
wuppertal.de.

First of all, we give no table for type Ãn, because there are always at most two possible minimal
extensions all having two indecomposable direct summands. If one cannot reduce to the double-arrow by
shrinking some arrows, the codimension is one. So this case is trivial.

The tables included for type D̃8 contain the following information. In each table, we fix the simple
projective P (ω) and we look at the slice S in the Auslander-Reiten quiver with ω as the only source. Of
course, up to symmetry and duality, we only have to choose a, c1, c2 and c3 for ω. Furthermore, for ω = c1

the points a, b and the points c, d are symmetric so that we have to consider only one of these. Similar
remarks apply to the other choices of ω. The slice S contains the indecomposable projectives P (x) to
all the points in Q. The first row of the table shows the labels a, b, c1, c2, . . . , c5, d, e of these points as in
section 3.3. The two entries standing in the i+1th row under the label x are the numbers e(U, TrDiP (x))
and c(U, TrDiP (x)) separated by a backslash. Now in each table, two rows are separated by a small
gap. At this step the periodic behaviour guaranteed by theorem 2 starts. The length of the period
coincides always with the Coxeter-number p = 6 of D̃8, but the periodic behaviour starts at different
levels depending on ω. The smallest index that works for all ω’s is 13 = 2p + 1. Thus theorem 2 is best
possible for the length of the period, but not for the starting point. Each table stops 6 steps after the
periodic behaviour has started.

The tables for the other types are similar. Again we have used the occurring symmetries. To save
even more space, we have skipped the somewhat unregular beginnings and we have given the numbers
only from the smallest index onwards, where one has the periodic behaviour. This index is always 2p+1,
where p = 6 resp. p = 12 resp. p = 30 is the Coxeter-number of type Ẽ6 resp. Ẽ7 resp. Ẽ8.
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D̃8 :

a
@@@

d
~~~

c1 c2 c3 c4 c5

b

~~~
e

@@@

ω = a

a b c1 c2 c3 c4 c5 d

1 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
2 0/0 0/0 1/0 1/0 1/0 1/0 3/0 1/0
3 1/0 1/0 1/0 1/0 1/0 3/0 3/0 1/0
4 0/0 0/0 1/0 1/0 3/0 3/0 3/0 1/0
5 1/0 1/0 1/0 3/0 3/0 3/0 3/0 1/0
6 0/0 1/0 3/0 3/0 3/0 3/0 3/0 1/0
7 3/0 3/0 5/0 5/0 5/0 5/0 4/0 2/0
8 1/0 1/0 5/0 5/0 5/0 4/0 5/0 2/0
9 3/0 3/0 5/0 5/0 4/0 5/0 5/0 2/0
10 1/0 1/0 5/0 4/0 5/0 5/0 5/0 2/0
11 3/0 2/0 4/0 5/0 5/0 5/0 5/0 2/0
12 1/0 1/0 3/0 3/0 3/0 3/0 3/0 1/0

13 3/0 3/0 5/0 5/0 5/0 5/0 4/1 2/0
14 1/0 1/0 5/0 5/0 5/0 4/1 5/0 2/0
15 3/0 3/0 5/0 5/0 4/1 5/0 5/0 2/0
16 1/0 1/0 5/0 4/1 5/0 5/0 5/0 2/0
17 3/0 2/0 4/1 5/0 5/0 5/0 5/0 2/0
18 1/1 1/0 3/0 3/0 3/0 3/0 3/0 1/0

ω = c1

a c1 c2 c3 c4 c5 d

1 1/0 1/0 1/0 1/0 1/0 1/0 1/0
2 1/0 3/0 3/0 3/0 3/0 6/0 3/0
3 1/0 3/0 3/0 3/0 6/0 9/0 3/0
4 1/0 3/0 3/0 6/0 9/0 9/0 3/0
5 1/0 3/0 6/0 9/0 9/0 9/0 3/0
6 3/0 6/0 9/0 9/0 9/0 9/0 3/0
7 5/0 12/0 12/0 12/0 12/0 10/0 4/0
8 5/0 13/0 13/0 13/0 11/0 10/0 5/0
9 5/0 13/0 13/0 11/0 10/0 13/0 5/0
10 5/0 13/0 11/0 10/0 13/0 13/0 5/0
11 4/0 11/0 10/0 13/0 13/0 13/0 5/0

12 3/0 6/0 9/0 9/0 9/0 9/0 3/0
13 5/0 12/2 12/2 12/2 12/2 10/4 4/1
14 5/0 13/0 13/0 13/0 11/2 10/0 5/0
15 5/0 13/0 13/0 11/2 10/0 13/0 5/0
16 5/0 13/0 11/2 10/0 13/0 13/0 5/0
17 4/1 11/2 10/0 13/0 13/0 13/0 5/0

ω = c2

a c1 c2 c3 c4 c5 d

1 1/0 1/0 1/0 1/0 1/0 1/0 1/0
2 1/0 3/0 1/0 1/0 1/0 3/0 1/0
3 1/0 3/0 3/0 3/0 6/0 6/0 3/0
4 1/0 3/0 3/0 6/0 6/0 9/0 3/0
5 3/0 6/0 6/0 6/0 9/0 9/0 3/0
6 3/0 9/0 6/0 9/0 9/0 9/0 3/0
7 5/0 12/0 14/0 14/0 14/0 12/0 5/0
8 5/0 13/0 12/0 12/0 10/0 11/0 4/0
9 5/0 13/0 13/0 11/0 14/0 10/0 5/0
10 4/0 11/0 11/0 14/0 10/0 13/0 5/0

11 5/0 10/0 14/0 10/0 13/0 13/0 5/0
12 3/0 9/0 6/0 9/0 9/0 9/0 3/0
13 5/0 12/2 14/0 14/0 14/0 12/2 5/0
14 5/0 13/0 12/2 12/2 10/4 11/2 4/1
15 5/0 13/0 13/0 11/2 14/0 10/0 5/0
16 4/1 11/2 11/2 14/0 10/0 13/0 5/0
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ω = c3

a c1 c2 c3 c4 c5 d

1 1/0 1/0 1/0 1/0 1/0 1/0 1/0
2 1/0 3/0 1/0 1/0 1/0 3/0 1/0
3 1/0 3/0 3/0 1/0 3/0 3/0 1/0
4 3/0 6/0 6/0 6/0 6/0 6/0 3/0
5 3/0 9/0 6/0 6/0 6/0 9/0 3/0
6 3/0 9/0 9/0 6/0 9/0 9/0 3/0
7 5/0 12/0 14/0 14/0 14/0 12/0 5/0
8 5/0 13/0 12/0 14/0 12/0 13/0 5/0
9 4/0 11/0 11/0 10/0 11/0 11/0 4/0

10 5/0 10/0 14/0 14/0 14/0 10/0 5/0
11 5/0 13/0 10/0 14/0 10/0 13/0 5/0
12 3/0 9/0 9/0 6/0 9/0 9/0 3/0
13 5/0 12/2 14/0 14/0 14/0 12/2 5/0
14 5/0 13/0 12/2 14/0 12/2 13/0 5/0
15 4/1 11/2 11/2 10/4 11/2 11/2 4/1

Ẽ6 :

a2 a1 a0 b1 b2

c1

c2

ω = a2

a2 a1 a0 b1 b2
13 3/0 7/0 9/0 5/0 3/0
14 2/0 3/0 8/1 5/0 1/0
15 1/0 4/1 10/1 4/1 2/0
16 2/0 7/0 8/1 5/0 2/0
17 3/0 4/1 9/0 5/0 2/0
18 1/1 3/0 7/0 3/0 1/0

ω = a1

a2 a1 a0 b1 b2
13 7/0 15/1 23/3 12/2 5/0
14 3/0 12/0 24/4 14/1 5/0
15 4/1 10/4 23/3 11/2 4/1
16 7/0 14/0 21/1 10/0 5/0
17 4/1 13/1 20/0 13/0 5/0
18 3/0 6/0 21/1 9/0 3/0

ω = a0

a2 a1 a0
13 9/0 23/3 46/6
14 8/1 24/4 45/9
15 10/1 23/3 46/6
16 8/1 21/1 39/3
17 9/0 20/0 40/0
18 7/0 21/1 39/3

Ẽ7 :
a3 a2 a1 a0 b1 b2 b3

c1

ω = c1

a3 a2 a1 a0 c1
25 7/0 15/1 27/1 43/2 18/0
26 3/0 12/0 23/3 39/4 9/0
27 5/0 12/2 28/2 42/6 14/0
28 5/0 14/1 24/4 45/4 12/2
29 5/0 14/1 28/2 41/6 17/0
30 4/1 11/2 23/3 40/4 10/4
31 7/0 14/0 27/1 43/2 18/0
32 4/1 13/1 21/1 37/2 11/2
33 5/0 10/0 26/0 36/0 14/0
34 5/0 13/0 20/0 41/0 10/0
35 5/0 13/0 26/0 35/0 17/0
36 3/0 9/0 21/1 38/2 6/0

ω = a3

a3 a2 a1 a0 b1 b2 b3 c1
25 3/0 7/0 12/0 15/0 9/0 5/0 3/0 7/0
26 2/0 5/0 7/0 15/0 10/0 7/0 2/0 3/0
27 2/0 3/0 9/0 13/1 9/0 3/0 1/0 5/0
28 1/0 5/0 8/1 16/1 8/1 4/1 2/0 5/0
29 3/0 5/0 12/0 16/1 10/1 7/0 3/0 5/0
30 1/0 5/0 8/1 14/2 10/0 5/0 1/0 4/1
31 3/0 5/0 10/1 16/1 10/1 4/1 2/0 7/0
32 1/0 4/1 8/1 16/1 8/1 5/0 2/0 4/1
33 2/0 5/0 12/0 13/1 9/0 5/0 2/0 5/0
34 2/0 7/0 8/1 15/0 10/0 5/0 2/0 5/0
35 3/0 4/1 9/0 15/0 9/0 5/0 2/0 5/0
36 1/1 3/0 7/0 12/0 7/0 3/0 1/0 3/0
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ω = a2

a3 a2 a1 a0 b1 b2 b3 c1
25 7/0 15/1 28/2 39/4 23/3 12/2 5/0 15/1
26 5/0 16/0 24/0 43/3 28/2 17/0 7/0 12/0
27 3/0 9/0 23/3 39/5 25/1 12/0 3/0 12/2
28 5/0 12/2 24/4 40/5 24/4 10/4 4/1 14/1
29 5/0 14/1 27/1 43/3 23/3 14/0 7/0 14/1
30 5/0 13/0 26/2 38/4 26/0 16/0 5/0 11/2
31 5/0 14/1 23/3 37/2 26/2 11/2 4/1 14/0
32 4/1 11/2 21/1 41/1 21/1 10/0 5/0 13/1
33 5/0 10/0 26/0 35/1 20/0 13/0 5/0 10/0
34 7/0 17/0 25/1 36/1 27/1 13/0 5/0 13/0
35 4/1 13/1 20/0 41/1 24/0 13/0 5/0 13/0
36 3/0 6/0 21/1 36/2 21/1 9/0 3/0 9/0

ω = a1

a3 a2 a1 a0 b1 b2 b3 c1
25 12/0 28/2 53/4 79/8 46/6 23/3 9/0 27/1
26 7/0 24/0 47/4 81/10 51/6 28/2 10/0 23/3
27 9/0 23/3 51/4 81/10 51/4 25/1 9/0 28/2
28 8/1 24/4 45/9 81/10 49/6 24/4 8/1 24/4
29 12/0 27/1 53/4 79/8 46/6 23/3 10/1 28/2
30 8/1 26/2 47/4 77/6 47/2 26/0 10/0 23/3
31 10/1 23/3 51/4 75/4 49/2 26/2 10/1 27/1
32 8/1 21/1 39/3 73/2 45/2 21/1 8/1 21/1
33 12/0 26/0 49/0 73/2 40/0 20/0 9/0 26/0
34 8/1 25/1 45/2 73/2 47/2 27/1 10/0 20/0
35 9/0 20/0 47/0 75/4 49/2 24/0 9/0 26/0
36 7/0 21/1 39/3 77/6 45/2 21/1 7/0 21/1

ω = a0

a3 a2 a1 a0 c1
25 15/0 39/4 79/8 133/14 43/2
26 15/0 43/3 81/10 134/16 39/4
27 13/1 39/5 81/10 130/20 42/6
28 16/1 40/5 81/10 135/16 45/4
29 16/1 43/3 79/8 132/14 41/6
30 14/2 38/4 77/6 122/12 40/4
31 16/1 37/2 75/4 125/6 43/2
32 16/1 41/1 73/2 122/4 37/2
33 13/1 35/1 73/2 114/4 36/0
34 15/0 36/1 73/2 123/4 41/0
35 15/0 41/1 75/4 124/6 35/0
36 12/0 36/2 77/6 122/12 38/2

Ẽ8 :
b2 b1 a0 a1 a2 a3 a4 a5

c1

ω = b2

b2 b1 a0 a1 a2 a3 a4 a5 c1
61 18/0 50/1 90/4 66/3 43/2 27/1 15/1 7/0 32/0
62 13/0 36/2 90/4 64/3 45/2 28/2 16/0 5/0 21/1
63 9/0 44/1 83/7 60/5 39/4 24/0 9/0 3/0 27/1
64 18/0 43/2 93/6 68/5 49/1 27/1 15/1 7/0 27/1
65 9/0 39/4 87/10 65/4 39/4 23/3 12/0 3/0 23/3
66 14/0 47/3 93/7 62/7 42/6 28/2 12/2 5/0 32/0
67 15/1 43/3 93/7 69/6 51/2 28/2 17/0 7/0 23/3
68 12/0 44/2 87/11 66/5 39/5 25/1 12/0 3/0 28/2
69 14/0 42/6 95/8 63/8 46/3 28/2 12/2 5/0 28/2
70 12/2 45/4 88/11 68/5 45/4 24/4 14/1 5/0 24/4
71 17/0 46/3 93/7 67/6 41/6 28/2 14/1 5/0 32/0
72 12/2 40/5 93/7 62/7 46/2 27/1 13/0 5/0 24/4
73 14/1 50/2 86/10 67/4 43/3 26/2 14/1 5/0 28/2
74 17/0 41/6 93/6 66/5 45/3 28/2 14/1 5/0 28/2
75 10/4 40/4 84/7 60/5 40/4 23/3 11/2 4/1 23/3
76 18/0 50/1 90/4 66/3 43/2 27/1 14/0 7/0 32/0
77 14/1 38/4 90/4 64/3 44/1 26/0 16/0 5/0 23/3
78 11/2 45/2 81/5 58/3 37/2 26/2 11/2 4/1 27/1
79 18/0 43/2 89/2 64/1 49/1 27/1 14/0 7/0 27/1
80 11/2 37/2 79/2 63/2 37/2 21/1 13/1 4/1 21/1
81 14/0 44/0 87/1 56/1 36/0 26/0 10/0 5/0 32/0
82 14/0 41/1 87/1 63/0 49/0 26/0 17/0 7/0 21/1
83 13/1 43/1 77/1 62/1 35/1 25/1 13/1 4/1 26/0
84 14/0 36/0 87/0 55/0 43/0 26/0 10/0 5/0 26/0
85 10/0 41/0 78/1 64/1 41/0 20/0 13/0 5/0 20/0
86 17/0 43/0 87/1 61/0 35/0 26/0 13/0 5/0 32/0
87 10/0 36/1 87/1 56/1 45/1 27/1 13/0 5/0 20/0
88 13/0 48/0 78/2 65/2 41/1 24/0 13/0 5/0 26/0
89 17/0 35/0 89/2 62/1 42/0 26/0 13/0 5/0 26/0
90 6/0 38/2 82/5 58/3 38/2 21/1 9/0 3/0 21/1
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ω = b1

b2 b1 a0 a1 a2 a3 a4 a5 c1
61 50/1 145/10 285/27 204/18 133/14 79/8 39/4 15/0 88/5
62 36/2 140/9 297/22 214/18 146/12 90/7 50/2 19/0 85/4
63 44/1 132/10 284/29 204/20 136/13 83/4 39/0 12/0 79/8
64 43/2 143/11 289/31 208/22 142/11 84/5 39/4 15/0 89/6
65 39/4 134/16 292/33 215/19 143/12 81/10 43/3 15/0 81/10
66 47/3 140/14 289/31 206/22 130/20 81/10 39/5 13/1 89/6
67 43/3 144/12 300/25 209/23 147/12 89/6 45/2 19/0 88/7
68 44/2 141/11 287/32 214/18 142/11 84/5 46/1 15/0 81/10
69 42/6 139/16 288/30 205/21 135/13 86/7 39/5 13/1 90/7
70 45/4 135/16 287/28 205/19 144/12 81/10 40/5 16/1 81/10
71 46/3 144/10 282/24 212/16 132/14 79/8 43/3 16/1 88/5
72 40/5 135/12 294/19 201/17 135/9 86/3 43/1 16/0 88/7
73 50/2 141/10 278/23 200/14 139/7 84/5 43/3 16/1 79/8
74 41/6 142/11 277/19 207/11 138/8 85/6 43/3 16/1 88/5
75 40/4 122/12 274/15 196/12 132/9 77/6 38/4 14/2 77/6
76 50/1 140/5 271/13 196/10 125/6 75/4 37/2 16/1 86/3
77 38/4 137/6 285/10 202/6 137/3 84/1 48/0 19/0 85/4
78 45/2 130/8 266/11 192/8 128/5 83/4 42/3 14/2 75/4
79 43/2 136/4 267/9 192/6 135/4 82/3 37/2 16/1 85/2
80 37/2 122/4 266/7 201/5 134/3 73/2 41/1 16/1 73/2
81 44/0 130/4 267/9 190/6 114/4 73/2 35/1 13/1 85/2
82 41/1 135/3 282/7 191/5 138/3 85/2 44/1 19/0 82/1
83 43/1 134/4 263/8 202/6 135/4 82/3 46/1 16/1 73/2
84 36/0 125/2 268/10 191/7 127/5 80/1 35/1 13/1 84/1
85 41/0 123/4 271/12 195/9 135/3 73/2 36/1 15/0 73/2
86 43/0 139/5 274/16 204/8 124/6 75/4 41/1 15/0 86/3
87 36/1 129/6 288/13 195/11 135/9 88/5 44/2 16/0 82/1
88 48/0 136/5 272/17 200/14 140/8 82/3 40/0 15/0 75/4
89 35/0 135/4 279/21 209/13 137/7 81/2 41/1 15/0 86/3
90 38/2 122/12 284/25 200/16 132/9 77/6 36/2 12/0 77/6

ω = a0

b2 b1 a0 a1 a2 a3 a4 a5 c1
61 90/4 285/27 607/60 432/42 286/28 170/16 84/8 31/0 180/11
62 90/4 297/22 606/62 434/44 289/30 172/18 88/5 31/0 170/16
63 83/7 284/29 607/64 436/46 290/32 178/13 88/5 31/0 182/13
64 93/6 289/31 610/66 438/48 300/25 178/13 88/5 31/0 172/18
65 87/10 292/33 598/76 436/46 286/31 168/18 81/8 27/1 176/20
66 93/7 289/31 613/66 438/48 291/33 174/20 86/10 32/1 184/15
67 93/7 300/25 608/64 436/46 290/31 172/18 89/6 32/1 174/20
68 87/11 287/32 605/62 434/44 287/29 178/13 89/6 32/1 184/15
69 95/8 288/30 604/60 432/42 297/22 178/13 89/6 32/1 174/20
70 88/11 287/28 584/62 428/38 282/27 168/18 83/10 29/3 174/18
71 93/7 282/24 595/48 426/36 283/25 170/16 84/8 33/2 182/13
72 93/7 294/19 588/44 422/32 280/21 166/12 88/5 33/2 170/16
73 86/10 278/23 583/40 418/28 275/17 174/9 88/5 33/2 180/11
74 93/6 277/19 580/36 414/24 288/13 174/9 88/5 33/2 168/14
75 84/7 274/15 556/34 412/22 271/16 162/12 81/8 30/4 166/10
76 90/4 271/13 571/24 408/18 270/12 162/8 80/4 33/2 176/7
77 90/4 285/10 566/22 406/16 269/10 160/6 86/3 33/2 162/8
78 81/5 266/11 563/20 404/14 266/8 170/5 86/3 33/2 174/5
79 89/2 267/9 562/18 402/12 282/7 170/5 86/3 33/2 160/6
80 79/2 266/7 542/20 404/14 264/9 156/6 77/4 29/3 160/4
81 87/1 267/9 565/18 402/12 265/7 158/4 78/2 32/1 172/3
82 87/1 282/7 564/20 404/14 268/9 160/6 85/2 32/1 158/4
83 77/1 263/8 565/22 406/16 269/11 170/5 85/2 32/1 172/3
84 87/0 268/10 568/24 408/18 285/10 170/5 85/2 32/1 158/4
85 78/1 271/12 556/34 412/22 268/13 156/6 75/2 27/1 162/6
86 87/1 274/16 583/36 414/24 273/15 162/8 80/4 31/0 174/5
87 87/1 288/13 584/40 418/28 278/19 166/12 86/3 31/0 162/8
88 78/2 272/17 587/44 422/32 281/23 174/9 86/3 31/0 176/7
89 89/2 279/21 592/48 426/36 294/19 174/9 86/3 31/0 164/10
90 82/5 284/25 584/62 428/38 279/24 162/12 77/4 26/0 170/14

ω = a1

b2 b1 a0 a1 a2 a3 a4 a5 c1
61 66/3 204/18 432/42 319/26 212/16 126/9 65/4 26/0 128/9
62 64/3 214/18 434/44 308/28 203/19 121/10 61/2 19/0 123/10
63 60/5 204/20 436/46 309/32 207/21 126/9 58/5 22/0 130/11
64 68/5 208/22 438/48 316/32 214/18 123/12 65/4 23/0 125/12
65 65/4 215/19 436/46 319/30 207/23 128/11 63/4 22/0 130/11
66 62/7 206/22 438/48 305/37 208/22 123/12 59/6 20/1 127/14
67 69/6 209/23 436/46 323/30 215/19 128/11 65/4 26/0 130/11
68 66/5 214/18 434/44 312/32 206/22 123/12 64/5 20/1 127/14
69 63/8 205/21 432/42 309/32 206/20 128/11 59/6 23/1 130/11
70 68/5 205/19 428/38 312/28 214/18 123/12 66/5 24/1 125/12
71 67/6 212/16 426/36 315/26 202/18 126/9 63/4 23/1 130/11
72 62/7 201/17 422/32 295/27 202/16 121/10 59/6 21/2 123/10
73 67/4 200/14 418/28 313/20 209/13 126/9 65/4 27/1 128/9
74 66/5 207/11 414/24 300/20 198/14 119/8 63/4 21/2 121/8
75 60/5 196/12 412/22 295/18 197/11 124/7 58/5 24/2 126/7
76 66/3 196/10 408/18 298/14 204/8 117/6 63/2 24/1 119/6
77 64/3 202/6 406/16 301/12 193/9 122/5 63/4 24/2 124/5
78 58/3 192/8 404/14 281/13 193/7 117/6 56/3 21/2 117/4
79 64/1 192/6 402/12 301/8 202/6 120/3 63/2 27/1 122/3
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80 63/2 201/5 404/14 290/10 189/5 115/4 61/2 21/2 117/4
81 56/1 190/6 402/12 285/8 192/6 120/3 55/2 23/1 120/1
82 63/0 191/5 404/14 294/10 201/5 115/4 63/2 24/1 117/4
83 62/1 202/6 406/16 297/8 190/6 120/3 60/1 23/1 120/1
84 55/0 191/7 408/18 281/13 194/8 115/4 55/2 20/1 117/4
85 64/1 195/9 412/22 305/12 202/6 120/3 62/1 26/0 122/3
86 61/0 204/8 414/24 294/14 194/10 117/6 61/2 20/1 117/4
87 56/1 195/11 418/28 295/18 198/12 122/5 55/2 22/0 124/5
88 65/2 200/14 422/32 304/20 207/11 117/6 63/2 23/0 119/6
89 62/1 209/13 426/36 309/20 198/14 124/7 61/2 22/0 126/7
90 58/3 200/16 428/38 295/27 203/17 119/8 56/3 19/0 121/8

ω = a2

b2 b1 a0 a1 a2 a3 a4 a5 c1
61 43/2 133/14 286/28 212/16 146/11 89/6 46/3 19/0 88/5
62 45/2 146/12 289/30 203/19 141/10 84/5 45/0 15/0 79/8
63 39/4 136/13 290/32 207/21 134/12 82/3 36/2 12/0 90/7
64 49/1 142/11 300/25 214/18 142/10 79/8 39/4 15/0 86/5
65 39/4 143/12 286/31 207/23 134/16 81/10 43/3 15/0 81/10
66 42/6 130/20 291/33 208/22 142/16 90/7 45/3 16/0 90/7
67 51/2 147/12 290/31 215/19 143/11 84/5 41/1 15/0 81/10
68 39/5 142/11 287/29 206/22 142/12 85/6 43/3 15/0 90/7
69 46/3 135/13 297/22 206/20 137/14 81/10 39/5 13/1 87/6
70 45/4 144/12 282/27 214/18 135/16 81/10 40/5 16/1 81/10
71 41/6 132/14 283/25 202/18 145/11 88/5 49/1 19/0 89/6
72 46/2 135/9 280/21 202/16 133/10 83/4 41/2 13/1 79/8
73 43/3 139/7 275/17 209/13 140/9 86/7 40/5 16/1 87/4
74 45/3 138/8 288/13 198/14 141/10 79/8 43/3 16/1 86/5
75 40/4 132/9 271/16 197/11 122/12 77/6 38/4 14/2 77/6
76 43/2 125/6 270/12 204/8 139/4 85/2 43/0 19/0 86/3
77 44/1 137/3 269/10 193/9 136/5 82/3 47/2 16/1 75/4
78 37/2 128/5 266/8 193/7 128/6 84/5 38/4 14/2 84/1
79 49/1 135/4 282/7 202/6 137/5 75/4 37/2 16/1 84/3
80 37/2 134/3 264/9 189/5 122/4 73/2 41/1 16/1 73/2
81 36/0 114/4 265/7 192/6 128/2 84/1 42/0 16/0 84/1
82 49/0 138/3 268/9 201/5 136/4 82/3 42/2 16/1 73/2
83 35/1 135/4 269/11 190/6 133/3 81/2 41/1 16/1 84/1
84 43/0 127/5 285/10 194/8 127/4 73/2 35/1 13/1 83/2
85 41/0 135/3 268/13 202/6 123/4 73/2 36/1 15/0 73/2
86 35/0 124/6 273/15 194/10 138/4 86/3 49/1 19/0 85/2
87 45/1 135/9 278/19 198/12 131/8 83/4 40/1 13/1 75/4
88 41/1 140/8 281/23 207/11 137/6 80/1 36/1 15/0 87/4
89 42/0 137/7 294/19 198/14 136/5 75/4 41/1 15/0 84/3
90 38/2 132/9 279/24 203/17 122/12 77/6 36/2 12/0 77/6

ω = a3

b2 b1 a0 a1 a2 a3 a4 a5 c1
61 27/1 79/8 170/16 126/9 89/6 53/4 28/2 12/0 53/4
62 28/2 90/7 172/18 121/10 84/5 55/3 30/0 10/0 47/4
63 24/0 83/4 178/13 126/9 82/3 52/0 24/0 9/0 58/2
64 27/1 84/5 178/13 123/12 79/8 45/2 21/1 7/0 47/4
65 23/3 81/10 168/18 128/11 81/10 46/6 23/3 9/0 51/4
66 28/2 81/10 174/20 123/12 90/7 51/6 28/2 10/0 51/6
67 28/2 89/6 172/18 128/11 84/5 58/2 30/0 12/0 51/4
68 25/1 84/5 178/13 123/12 85/6 49/1 24/0 7/0 55/3
69 28/2 86/7 178/13 128/11 81/10 51/4 23/3 9/0 51/4
70 24/4 81/10 168/18 123/12 81/10 45/9 24/4 8/1 49/6
71 28/2 79/8 170/16 126/9 88/5 53/4 27/1 12/0 53/4
72 27/1 86/3 166/12 121/10 83/4 53/1 30/0 10/0 47/4
73 26/2 84/5 174/9 126/9 86/7 54/2 25/1 9/0 58/2
74 28/2 85/6 174/9 119/8 79/8 49/6 24/4 8/1 47/4
75 23/3 77/6 162/12 124/7 77/6 46/6 23/3 10/1 51/4
76 27/1 75/4 162/8 117/6 85/2 47/2 26/0 10/0 47/2
77 26/0 84/1 160/6 122/5 82/3 56/0 30/0 12/0 49/2
78 26/2 83/4 170/5 117/6 84/5 51/3 26/2 8/1 53/1
79 27/1 82/3 170/5 120/3 75/4 51/4 23/3 10/1 49/2
80 21/1 73/2 156/6 115/4 73/2 39/3 21/1 8/1 45/2
81 26/0 73/2 158/4 120/3 84/1 49/0 26/0 12/0 49/0
82 26/0 85/2 160/6 115/4 82/3 53/1 30/0 10/0 45/2
83 25/1 82/3 170/5 120/3 81/2 54/2 26/2 10/1 56/0
84 26/0 80/1 170/5 115/4 73/2 45/2 21/1 8/1 45/2
85 20/0 73/2 156/6 120/3 73/2 40/0 20/0 9/0 47/0
86 26/0 75/4 162/8 117/6 86/3 47/2 27/1 10/0 47/2
87 27/1 88/5 166/12 122/5 83/4 58/2 30/0 12/0 49/2
88 24/0 82/3 174/9 117/6 80/1 49/1 25/1 8/1 53/1
89 26/0 81/2 174/9 124/7 75/4 47/0 20/0 9/0 49/2
90 21/1 77/6 162/12 119/8 77/6 39/3 21/1 7/0 45/2
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ω = a4

b2 b1 a0 a1 a2 a3 a4 a5 c1
61 15/1 39/4 84/8 65/4 46/3 28/2 15/1 7/0 28/2
62 16/0 50/2 88/5 61/2 45/0 30/0 16/0 5/0 24/0
63 9/0 39/0 88/5 58/5 36/2 24/0 13/0 5/0 28/2
64 15/1 39/4 88/5 65/4 39/4 21/1 13/0 5/0 24/0
65 12/0 43/3 81/8 63/4 43/3 23/3 9/0 3/0 23/3
66 12/2 39/5 86/10 59/6 45/3 28/2 12/2 5/0 28/2
67 17/0 45/2 89/6 65/4 41/1 30/0 17/0 7/0 25/1
68 12/0 46/1 89/6 64/5 43/3 24/0 16/0 5/0 28/2
69 12/2 39/5 89/6 59/6 39/5 23/3 9/0 3/0 25/1
70 14/1 40/5 83/10 66/5 40/5 24/4 12/2 5/0 24/4
71 14/1 43/3 84/8 63/4 49/1 27/1 14/1 5/0 27/1
72 13/0 43/1 88/5 59/6 41/2 30/0 13/0 5/0 26/2
73 14/1 43/3 88/5 65/4 40/5 25/1 17/0 7/0 27/1
74 14/1 43/3 88/5 63/4 43/3 24/4 12/0 3/0 26/2
75 11/2 38/4 81/8 58/5 38/4 23/3 10/4 4/1 23/3
76 14/0 37/2 80/4 63/2 43/0 26/0 14/0 7/0 26/0
77 16/0 48/0 86/3 63/4 47/2 30/0 16/0 5/0 26/2
78 11/2 42/3 86/3 56/3 38/4 26/2 13/0 5/0 26/0
79 14/0 37/2 86/3 63/2 37/2 23/3 14/1 5/0 26/2
80 13/1 41/1 77/4 61/2 41/1 21/1 11/2 4/1 21/1
81 10/0 35/1 78/2 55/2 42/0 26/0 10/0 5/0 26/0
82 17/0 44/1 85/2 63/2 42/2 30/0 17/0 7/0 25/1
83 13/1 46/1 85/2 60/1 41/1 26/2 16/0 5/0 26/0
84 10/0 35/1 85/2 55/2 35/1 21/1 11/2 4/1 25/1
85 13/0 36/1 75/2 62/1 36/1 20/0 10/0 5/0 20/0
86 13/0 41/1 80/4 61/2 49/1 27/1 13/0 5/0 27/1
87 13/0 44/2 86/3 55/2 40/1 30/0 13/0 5/0 24/0
88 13/0 40/0 86/3 63/2 36/1 25/1 17/0 7/0 27/1
89 13/0 41/1 86/3 61/2 41/1 20/0 13/1 4/1 24/0
90 9/0 36/2 77/4 56/3 36/2 21/1 6/0 3/0 21/1

ω = a5

b2 b1 a0 a1 a2 a3 a4 a5 c1
61 7/0 15/0 31/0 26/0 19/0 12/0 7/0 3/0 12/0
62 5/0 19/0 31/0 19/0 15/0 10/0 5/0 2/0 7/0
63 3/0 12/0 31/0 22/0 12/0 9/0 5/0 2/0 12/0
64 7/0 15/0 31/0 23/0 15/0 7/0 5/0 2/0 7/0
65 3/0 15/0 27/1 22/0 15/0 9/0 3/0 2/0 9/0
66 5/0 13/1 32/1 20/1 16/0 10/0 5/0 1/0 10/0
67 7/0 19/0 32/1 26/0 15/0 12/0 7/0 3/0 9/0
68 3/0 15/0 32/1 20/1 15/0 7/0 5/0 2/0 10/0
69 5/0 13/1 32/1 23/1 13/1 9/0 3/0 2/0 9/0
70 5/0 16/1 29/3 24/1 16/1 8/1 5/0 1/0 8/1
71 5/0 16/1 33/2 23/1 19/0 12/0 5/0 3/0 12/0
72 5/0 16/0 33/2 21/2 13/1 10/0 5/0 1/0 8/1
73 5/0 16/1 33/2 27/1 16/1 9/0 7/0 3/0 12/0
74 5/0 16/1 33/2 21/2 16/1 8/1 3/0 2/0 8/1
75 4/1 14/2 30/4 24/2 14/2 10/1 4/1 1/0 10/1
76 7/0 16/1 33/2 24/1 19/0 10/0 7/0 2/0 10/0
77 5/0 19/0 33/2 24/2 16/1 12/0 5/0 3/0 10/1
78 4/1 14/2 33/2 21/2 14/2 8/1 5/0 1/0 10/0
79 7/0 16/1 33/2 27/1 16/1 10/1 5/0 3/0 10/1
80 4/1 16/1 29/3 21/2 16/1 8/1 4/1 1/0 8/1
81 5/0 13/1 32/1 23/1 16/0 12/0 5/0 2/0 12/0
82 7/0 19/0 32/1 24/1 16/1 10/0 7/0 2/0 8/1
83 4/1 16/1 32/1 23/1 16/1 10/1 5/0 3/0 12/0
84 5/0 13/1 32/1 20/1 13/1 8/1 4/1 1/0 8/1
85 5/0 15/0 27/1 26/0 15/0 9/0 5/0 2/0 9/0
86 5/0 15/0 31/0 20/1 19/0 10/0 5/0 2/0 10/0
87 5/0 16/0 31/0 22/0 13/1 12/0 5/0 2/0 9/0
88 5/0 15/0 31/0 23/0 15/0 8/1 7/0 2/0 10/0
89 5/0 15/0 31/0 22/0 15/0 9/0 4/1 3/0 9/0
90 3/0 12/0 26/0 19/0 12/0 7/0 3/0 1/1 7/0

ω = c1

b2 b1 a0 a1 a2 a3 a4 a5 c1
61 32/0 88/5 180/11 128/9 88/5 53/4 28/2 12/0 60/2
62 21/1 85/4 170/16 123/10 79/8 47/4 24/0 7/0 45/2
63 27/1 79/8 182/13 130/11 90/7 58/2 28/2 12/0 53/4
64 27/1 89/6 172/18 125/12 86/5 47/4 24/0 7/0 53/1
65 23/3 81/10 176/20 130/11 81/10 51/4 23/3 9/0 46/6
66 32/0 89/6 184/15 127/14 90/7 51/6 28/2 10/0 57/3
67 23/3 88/7 174/20 130/11 81/10 51/4 25/1 9/0 51/4
68 28/2 81/10 184/15 127/14 90/7 55/3 28/2 10/0 51/6
69 28/2 90/7 174/20 130/11 87/6 51/4 25/1 9/0 58/2
70 24/4 81/10 174/18 125/12 81/10 49/6 24/4 8/1 45/9
71 32/0 88/5 182/13 130/11 89/6 53/4 27/1 12/0 60/2
72 24/4 88/7 170/16 123/10 79/8 47/4 26/2 8/1 49/6
73 28/2 79/8 180/11 128/9 87/4 58/2 27/1 12/0 53/4
74 28/2 88/5 168/14 121/8 86/5 47/4 26/2 8/1 55/3
75 23/3 77/6 166/10 126/7 77/6 51/4 23/3 10/1 46/6
76 32/0 86/3 176/7 119/6 86/3 47/2 26/0 10/0 55/1
77 23/3 85/4 162/8 124/5 75/4 49/2 26/2 10/1 51/4
78 27/1 75/4 174/5 117/4 84/1 53/1 26/0 10/0 47/2
79 27/1 85/2 160/6 122/3 84/3 49/2 26/2 10/1 58/2
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80 21/1 73/2 160/4 117/4 73/2 45/2 21/1 8/1 39/3
81 32/0 85/2 172/3 120/1 84/1 49/0 26/0 12/0 58/0
82 21/1 82/1 158/4 117/4 73/2 45/2 25/1 8/1 45/2
83 26/0 73/2 172/3 120/1 84/1 56/0 26/0 12/0 49/0
84 26/0 84/1 158/4 117/4 83/2 45/2 25/1 8/1 53/1
85 20/0 73/2 162/6 122/3 73/2 47/0 20/0 9/0 40/0
86 32/0 86/3 174/5 117/4 85/2 47/2 27/1 10/0 55/1
87 20/0 82/1 162/8 124/5 75/4 49/2 24/0 9/0 47/0
88 26/0 75/4 176/7 119/6 87/4 53/1 27/1 10/0 47/2
89 26/0 86/3 164/10 126/7 84/3 49/2 24/0 9/0 56/0
90 21/1 77/6 170/14 121/8 77/6 45/2 21/1 7/0 39/3

4.3 Examples of minimal degenerations

The last tables show for two modules U, V over an Ẽ6-quiver up to symmetry and duality all minimal
extensions M < U ⊕ V by marking them in the piece of the Auslander Reiten quiver lying between the
two modules. By analyzing such examples we were led to theorem 1. The interested reader can find the
same kind of pictures for all minimal disjoint degenerations at http://wmaz.math.uni-wuppertal.de.
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