Übung 3 zur Analysis I

Georg Biedermann 2.5.2018

Aufgabe 1:[10 Punkte]

Schreiben die ersten sieben Zeilen des Pascalschen Dreiecks auf. Benutzen Sie Binomialformel und lesen Sie daraus die Darstellung von $(a+b)^6$ für $a,b \in \mathbb{C}$ als Summe ab. Berechnen Sie damit $(2+i)^6, (x+1)^6, (2i-1)^6$. Dabei ist x eine Variable und i die imaginäre Einheit. (Eine Berechnung durch explizites Ausmultiplizieren wird nicht anerkannt!)

Lösung: Die Binomische Formel lautet:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

für alle $a,b\in\mathbb{C}$. Aus dem Pascalschen Dreieck kann man ablesen, dass für alle $a,b\in\mathcal{C}$ gilt:

$$(a+b)^6 = a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6.$$

Um $(2+i)^6$ auszurechnen, kann man a=2 und i=b setzen. Man beachte auch

$$i^2 = -1, i^3 = -i, i^4 = 1, i^5 = i, i^6 = -1.$$

Also:

$$(2+i)^6 = 2^6 + 6 \cdot 2^5 i + 15 \cdot 2^4 i^2 + 202^3 i^3 + 15 \cdot 2^2 i^4 + 6 \cdot 2 i^5 + i^6$$

= $64 + 192i - 240 - 160i + 60 + 12i - 1 = -117 + 44i$

Aufgabe 2:[10 Punkte]

Seien $n, k \in \mathbb{N}_0$ mit $0 \le k \le n$. Zeigen Sie:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Lösung: Wir benutzen nochmal die Binomische Formel:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

für alle $a,b\in\mathbb{C}$. Setzt man a=b=1, so folgt:

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} \binom{n}{k}.$$

Aufgabe 3:[10 Punkte]

1. Seien $a, b \in \mathbb{C}$ und $n \in \mathbb{N}$. Beweisen Sie:

$$(a-b)\sum_{k=0}^{n} a^k b^{n-k} = a^{n+1} - b^{n+1}$$

(Tipp: vollständige Induktion und Indexverschiebung)

2. Folgern Sie, dass für alle $x \in \mathbb{R} - \{1\}$

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$$

gilt.

- 3. Berechnen Sie die Summe für n=1,2,3 und $x=\pm 1,0,\pm \frac{1}{2},2.$
- 4. Formulieren Sie (ohne Beweis) eine Vermutung, was passiert, wenn in 3. jeweils n größer und größer werden läßt.

Lösung: Zu Teil 1: Es gilt für alle $a, b \in \mathcal{C}$:

$$(a-b)\sum_{k=0}^{n} a^k b^{n-k} = \sum_{k=0}^{n} a^{k+1} b^{n-k} - \sum_{k=0}^{n} a^k b^{n-k+1}$$

$$= a^{n+1} + \sum_{k=0}^{n-1} a^{k+1} b^{n-k} - \sum_{k=1}^{n} a^k b^{n-k+1} - b^{n+1}$$

$$= a^{n+1} + \sum_{k=1}^{n} a^k b^{n-k+1} - \sum_{k=1}^{n} a^k b^{n-k+1} - b^{n+1}$$

$$= a^{n+1} - b^{n+1}$$

Zu Teil 2: Wir setzen a=1 und b=x. Dann folgt aus Teil 1:

$$(1-x)\sum_{k=0}^{n} x^k = 1 - x^{n+1}.$$

Für $x \neq 1$ können wir dann durch (1-x) teilen und die gewünschte Formel steht da.

Teil 3/4: Wir berechnen entweder mit der rechten Seite aus Teil 2, oder mit der Summe links (und das ist für x=1 notwendig, denn die rechte Seite ist dann nicht definiert):

	n=1	2	3	$\lim_{n \to \infty}$
x = -1	1	0	1	konvergiert nicht
$-\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{1}{1 - (-\frac{1}{2})} = \frac{2}{3}$
0	1	1	1	1
$\frac{1}{2}$	1	1,5	1,75	$\frac{1}{1-\frac{1}{2}} = 2$
1	1	2	3	$+\infty$
2	1	3	7	$+\infty$

Aufgabe 4:[10 Punkte]

Überlegen Sie sich, ob die folgenden Folgen in $\mathbb C$ beschränkt sind, und begründen Sie Ihre Antwort sorgfältig.

$$(a_n)_{n \in \mathbb{N}}$$
 mit $a_n = \left(-\frac{1}{2}\right)^n$
 $(b_n)_{n \in \mathbb{N}}$ mit $b_n = i^n$
 $(c_n)_{n \in \mathbb{N}}$ mit $c_n = (2+i)^n$
 $(d_n)_{n \in \mathbb{N}}$ mit $d_n = \sum_{k=0}^n \frac{1}{2^k}$

Lösung: 1. Die Folge $\left[\left(-\frac{1}{2}\right)^n\right]_{n\in\mathbb{N}}$ ist beschränkt. Als untere Schranke kann man -1 oder auch $-\frac{1}{2}$ nehmen. Als obere Schranke bietet sich 1 an.

2. Die Folge $(i^n)_{n\in\mathbb{N}}$ sieht folgendermaßen aus:

$$(1, i, -1, -i, 1, i, -1, -i, 1, \ldots)$$

Sie nimmet also nur 4 Werte an und deswegen beschränkt. Eine Schranke kann man folgendermaßen bestimmen: für alle $n \in \mathbb{N}$ gilt:

$$|i^n| = |i|^n = 1^n = 1.$$

3. Die Folge $(c_n)_{n\in\mathbb{N}}$ mit $c_n=(2+i)^n$ ist nicht beschränkt, denn

$$|2+i| = \sqrt{2^2 + 1^1} = \sqrt{5}.$$

Damit wächst der Betrag von $(2+i)^n$ über alle Schranken.

4. Die Folge $(d_n)_{n\in\mathbb{N}}$ mit $d_n=\sum_{k=0}^n\frac{1}{2^k}$ ist eine geometrische Reihe (noch nicht definiert, aber:) Es folgt aus der Formel in Aufgabe 3 (2) mit $x=\frac{1}{2}$:

$$\lim_{n} \sum_{k=0}^{n} \frac{1}{2^k} = 2.$$

Außerdem gilt:

$$1 = d_0 \le d_1 \le d_2 \le d_3 \le \dots \le \lim_{n \to \infty} d_n = 2.$$

Dies liefert Schranken für die Folge $(d_n)_{n\in\mathbb{N}}$.

Abgabe: 9.5.2018 bis 10:00 Uhr in D.13.08