
ABSTRACT CUBICAL HOMOTOPY THEORY
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Abstract. Triangulations and higher triangulations axiomatize the calculus

of derived cokernels when applied to strings of composable morphisms. While

there are no cubical versions of (higher) triangulations, in this paper we use
coherent diagrams to develop some aspects of a rich cubical calculus. Ap-

plied to the models in the background, this enhances the typical examples of

triangulated and tensor-triangulated categories.
The main players are the cardinality filtration of n-cubes, the induced inter-

polation between cocartesian and strongly cocartesian n-cubes, and the yoga

of iterated cone constructions. In the stable case, the representation theories of
chunks of n-cubes are related by compatible strong stable equivalences and ad-

mit a global form of Serre duality. As sample applications, we use these Serre
equivalences to express colimits in terms of limits and to relate the abstract

representation theories of chunks by infinite chains of adjunctions.

On a more abstract side, along the way we establish a general decomposition
result for colimits, which specializes to the classical Bousfield–Kan formulas.

We also include a short discussion of abstract formulas and their compati-

bility with morphisms, leading to the idea of universal formulas in monoidal
homotopy theories.
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1. Motivation via higher triangulations

Since their introduction in the 1960’s [Ver67, Ver96, Pup67], triangulated cat-
egories have proved extremely useful in various areas of mathematics. One of
their nice features is their ubiquity. Triangulated categories arise naturally in al-
gebraic geometry as derived categories of schemes ([Ver67, Ver96] or [Huy06]), in
representation theory as derived categories of algebras (see [Hap88] or [AHHK07]),
in modular representation theory as stable module categories [BCR97], in homo-
topy theory as homotopy categories of spectra or related (stable model) categories
([Vog70] or [Hov99]), and in algebraic analysis ([Sch10a]). A nice survey on this
ubiquity of triangulated categories can be found in [HJR10], while an additional
nice survey from the tensor-triangulated perspective is in [Bal10].

For reasons that will become clear in a moment, we revisit the main reasoning
behind the axioms of triangulated categories. For concreteness, let us consider the
case of the derived category D(A) of an abelian category A. The basic idea is to
try to capture at the level of D(A) some shadows of the calculus of derived cokernel
constructions of chain maps — as encoded by distinguished triangles. A first key
axiom asks for the fact that all morphisms in D(A) can be extended to distinguished
triangles. And a second key axiom asks for the weak functoriality of this passage
to distinguished triangles (for simplicity, we ignore the remaining axioms).

Correspondingly, a crucial step in one of the proofs of the existence of the classical
Verdier triangulation on D(A) (and similarly in other examples [Fra96, Mal01a,
Gro13]) consists of the following. Starting with a morphism f : C → D in D(A),
we can find a chain map F : X → Y in Ch(A) such that its image under the
localization functor γ : Ch(A)→ D(A) is isomorphic to f . This allows us to apply
functorial iterated derived cokernel constructions to F and then to pass back to
D(A) in order to obtain a distinguished triangle extending f .

To put this more abstractly, let [1] denote the partially ordered set (0 < 1) con-
sidered as a category, and let us use exponential notation for categories of diagrams.
Presented this way, the existence of triangles relies in an essential way on the fact
that the forgetful functor

(1.1) dia[1] : D(A[1])→ D(A)[1]

which sends a chain map to its image under the localization functor is essentially
surjective. Similarly, the weak functoriality of distinguished triangles in D(A) is a
consequence of (1.1) also being full (and this functor is hence an epivalence in the
sense of Keller [Kel91]).

These nice properties of (1.1) extend to more general shapes. For instance, if we
denote by [n] the partially ordered set (0 < 1 < . . . < n), then the functor

(1.2) dia[n] : D(A[n])→ D(A)[n]

which sends a string of composable chain maps to its image under the localization
functor is an epivalence (it is full and essentially surjective). And in fact, these
properties of (1.2) in the case of n = 2 yield a clean proof not only of the existence
of octahedron diagrams in D(A) but also of their weak functorial dependence on
the pair of composable morphisms in D(A) [Fra96, Mal01a, Gro13].

Triangulated categories encode aspects of the calculus of derived cokernels of
morphisms and of pairs of composable morphisms. Going beyond this and taking
into account longer strings of composable morphisms, there is the related idea of
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considering higher versions of octahedron diagrams. This idea goes back at least
to [BBD82] and was axiomatized by Maltsiniotis [Mal05a] in a notion of higher
triangulation. If one follows the above reasoning more systematically, then one can
use the epivalences (1.2) to construct canonical higher triangulations on D(A). In
fact, this works more generally for the values of strong, stable derivators [Mal05a,
GŠ16, Gro18] such as homotopy derivators of exact categories [Gil11, Šťo14], stable
cofibration categories [Sch13, Len17], stable model categories [Hov99], or stable
∞-categories [Lur09, Lur11, Len17] (hence, in particular, in the specific examples
mentioned at the beginning of this introduction).

Now, the main goal of this paper and its sequels is to generalize the calculus of
morphisms and finite strings of composable morphisms in a different direction. We
want to study the calculus of morphisms, squares, cubes, and higher dimensional
n-cubes in abstract homotopy theories (with a certain focus on pointed or stable
homotopy theories). This is partially motivated as an attempt to systematically
study compatibility properties satisfied by enhancements of the typical monoidal,
triangulated categories (aka. tensor-triangulated categories) arising in nature. In
fact, forming iterated pointwise tensor products of morphisms leads very naturally
to representations of n-cubes. However, the cubical calculus is also interesting in
Goodwillie calculus [Goo92, MV15] as well as in not necessarily monoidal or stable
homotopy theories, and the ultimate goal of this project is to contribute to the
understanding of this calculus.

Following the examples of triangulations and higher triangulations, a first at-
tempt could consist of trying to axiomatize such a calculus at the level of cubical
diagrams in D(A). Let us denote by �n, n ≥ 0, the n-cube, which is to say the n-
fold power of [1]. The previous situations suggest that, whatever the precise axioms
of “cubical triangulations” would be, one would be led to consider the functor

(1.3) dia�n : D(A�
n

)→ D(A)�
n

which sends representations of n-cubes with values in chain complexes to the un-
derlying representations in the derived category. The problem now is that, even in
the case of vector spaces over a field and already for n = 2, the functor (1.3) is
not an epivalence. Hence, unlike the previous cases, the pattern of lifting diagrams
against (1.3) in order to then apply certain functorial constructions to them does
not work. (See §3 for a more detailed discussion of this failure and of an attempt to
partially sail around this problem.) As an upshot, in order to develop the intended
calculus, we proceed differently and work with representations of n-cubes in chain
complexes, considered as objects in derived categories D(A�n

) for n ≥ 0. And to
allow for additional flexibility for constructions, we work with the entire derivator
of the abelian category

DA : B 7→ D(AB),

which encodes the derived categories of various B-shaped diagram categories.
More generally, the main theme is to develop the calculus of n-cubes in deriva-

tors, pointed derivators, and mostly stable derivators (such as homotopy derivators
of exact categories, stable cofibration categories, stable model categories, or sta-
ble ∞-categories). Consequently, this paper and the sequels belong to abstract
representation theory [GŠ14, GŠ15, GŠ16, GŠ18], the formal study of stability
[Gro13, GPS14b, GS17], and to the formal study of the interaction of stability
and monoidality with its applications to fairly general additivity of traces results
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Figure 1. The cardinality filtration of the n-cube �n

[GPS14a, PS16, PS14, GAdS14]. The search for good compatibility axioms to be
imposed on monoidality and stability has already quite some history; it goes back
at least to [Mar83] and was pushed significantly further in [HPS97, May01, KN02].

We now turn to a more detailed description of the content of this paper.

2. Introduction

The key organizational tool for abstract cubical homotopy theory is the cardi-
nality filtration of n-cubes. The n-cube �n can be realized as the power set of
{1, . . . , n}, and correspondingly it admits a filtration by the full subcategories �n0≤l
spanned by the subsets of cardinality at most l. The differences between the layers
of this filtration are measured, using suggestive notation, by the chunks �nk≤l, and
the natural inclusions between these chunks are conveniently organized by means
of Figure 1. In this paper we aim for an understanding of stable representations
of these chunks �nk≤l for arbitrary but fixed n, while in [BG18a] we investigate
how the representation theories of the various chunks for the various n assemble
together.

In the first part of this paper (consisting of §§3-8) we prepare the discussion
of more general chunks by first turning to representations of the posets �n0≤k and

�nk≤n in derivators D (see the first row and the final column in Figure 1). Let us
begin by the first row. We introduce k-cotruncated n-cubes as the essential image
of the fully faithful left Kan extension morphism D�

n
0≤k → D�

n

. These classes
of n-cubes interpolate between constant n-cubes (for k = 0), strongly cocartesian
n-cubes (for k = 1), cocartesian n-cubes (for k = n − 1), and generic n-cubes (for
k = n). The class of k-cotruncated n-cubes can be characterized as those n-cubes
for which all (k + 1)-dimensional subcubes are cocartesian (Theorem 7.15). To
study this interpolation more carefully, we pass to pointed derivators and develop
the yoga of iterated partial cones. Partial cones commute with each other (a variant
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of the 3-by-3-lemma), and n-fold cones are canonically isomorphic to total cofibers
(Theorem 8.25). As a consequence we conclude that all (k + 1)-fold cones vanish
on k-cotruncated n-cubes.

The duality principle from derivator theory immediately yields the picture dual
to the one we just sketched. At the level of shapes in Figure 1 this corresponds
to the passage from the first row to the final column. We define k-truncated n-
cubes as the essential image of the right Kan extension morphism D�

n
k≤n → D�

n

.
The reason why we stress this duality principle is that for stable derivators these
two pictures fit together particularly nicely (see [GPS14b, GS17, GŠ14] for related
facts). In the stable case, an n-cube X ∈ D�

n

is k-cotruncated iff all (k + 1)-fold
cones of X vanish iff all (k + 1)-fold fibers of X vanish iff X is (n − k)-truncated.
As a consequence we conclude that the posets �n0≤k and �nn−k≤n have the same

abstract stable representation theories (Theorem 9.4), i.e., they are strongly stably
equivalent in the sense of [GŠ14].

In the second part of this paper (consisting of §§9-12) we focus on the stable
picture, and this part relies in an essential way on the various calculational tools
for iterated cones collected in §8. One goal is to expand on the strong stable

equivalences �n0≤k
s∼ �nn−k≤n. It turns out that the entire mirror symmetry of

Figure 1 can be realized at the level of abstract stable representations. As an
incarnation of this chunk symmetry, we show that for all 0 ≤ k ≤ l ≤ n the chunks
�nk≤l and �nn−l≤n−k are strongly stably equivalent (Theorem 10.15). In order to
make precise in which sense these strong stable equivalences

(2.1) Φk,l = Φ
(n)
k,l : D�

n
k≤l ∼−→ D�

n
n−l≤n−k

are compatible for the various chunks, it is convenient to organize the chunks them-
selves in a category chunk(�n). This is the twisted morphism category of [n], it
agrees with the shape of Figure 1, and the chunk symmetry is simply induced by
the self-duality of [n]. For a fixed stable derivator D , the assignments

R(n)(D) : �nk≤l 7→ D�
n
k≤l and (Z(n))∨(D) : �nk≤l 7→ D�

n
n−l≤n−k

encoding the abstract representation theories of the various chunks can be extended
to pseudo-functors chunk(�n) → DERSt,ex with values in the 2-category of stable
derivators and exact morphisms. (The notation for these pseudo-functors is moti-
vated by their construction; see §12.) We show in Theorem 12.15 that the strong
stable equivalences (2.1) can be assembled to a pseudo-natural equivalence

Φ = Φ(n) : R(n)(D) ∼−→ (Z(n))∨(D) : chunk(�n)→ DERSt,ex,

and we also obtain variants of these equivalences.
An additional interesting symmetry comes from abstract or spectral Serre dual-

ity. Stable derivators of representations of chunks admit Serre equivalences

(2.2) Sk,l = S
(n)
k,l : D�

n
k≤l ∼−→ D�

n
k≤l .

Furthermore, similar to the case of the strong stable equivalences, we establish
in Theorem 12.6 that these Serre equivalences (2.2) assemble to suitable pseudo-
natural equivalences

S = S(n) : R(n)(D) ∼−→ L(n)(D) : chunk(�n)→ DERSt,ex.
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More specifically, this means that for every morphism i : �nk′,l′ → �nk,l in Figure 1

the left and right Kan extension morphisms i!, i∗ : D�
n
k′,l′ → D�

n
k,l correspond to

each other under conjugation by the Serre equivalences

(2.3) Sk,l ◦ i∗ ∼= i! ◦ Sk′,l′ .

These equivalences (2.2) are examples of the more general concept of global Serre
duality, a notion we introduce formally and study more systematically in [BG18b].
Here we content ourselves by indicating two directions of application, both of which
deserve additional exploration. First, in our specific situation, the Serre equiva-
lences (2.2) induce canonical isomorphisms

(2.4) colim�n
k≤l

∼−→ lim�n
k≤l
◦ S(n)

k,l : D�
n
k≤l → D ,

thereby again making precise that “in stable land the distinction between (homo-
topy finite) colimits and limits is blurred”. We recall that by [GS17] the defining
feature of stability is that homotopy finite colimits are weighted limits. In view of
this result, the canonical isomorphisms (2.4) can be interpreted by saying that the
Serre equivalences transform the weighted limit back into an actual limit, thereby
making the “blurring more direct”. The natural isomorphisms (2.3) provide an
additional incarnation of this principle for homotopy finite Kan extensions.

As a second application we note that for every morphism i : �nk′,l′ → �nk,l in

chunk(�n) the restriction morphism

i∗ : D�
n
k≤l → D�

n
k′≤l′

generates an infinite chain of adjunctions. Some chunks enjoy an abstract fraction-
ally Calabi–Yau property, and in those cases the formulas for these iterated adjoints
admit a particularly simple form.

In this paper we also establish two results on derivators which are of independent
interest and which we want to stress in this introduction. These results are certainly
well-known to experts, but we could not find citable references containing them and
hence include the results here.

First, in §13 we show that the cubical calculus is compatible with exact mor-
phisms of derivators. In fact, this turns out to be a special case of a more gen-
eral (seemingly technical, but actually quite convenient) result concerning the
compatibility of morphisms of derivators with canonical mates (Proposition 13.2).
Roughly speaking, this result says that morphisms of derivators enjoy a “lax-oplax
compatibility with formulas”, and this immediately specializes to the “pseudo-
compatibility” of the cubical calculus with exact morphisms. More generally, ap-
plied to actions of monoidal derivators, this implies that “formulas” propagate from
a monoidal derivator V to V -modules, thereby making precise the universality of
“formulas” in monoidal homotopy theories. For example, by the universality of
spectra [Hel88, Hel97, Fra96, Cis08, Tab08, CT11, CT12], all “exact formulas”
(such as (2.3) and (2.4)) propagate from spectra to stable derivators.

Second, in §5 we stress the philosophy that a combination of homotopy finality
arguments with the smoothness/properness of Grothendieck (op)fibrations leads
to fairly general decomposition results for (co)limits. This abstract philosophy is
formulated as a decomposition theorem (Theorem 5.8). We illustrate this theo-
rem by showing that the classical Bousfield–Kan formulas for homotopy (co)limits
[BK72] hold in derivators (Theorem 5.19). As a further illustration we obtain a
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decomposition result related to exhaustive filtrations of categories (Theorem 5.32).
As a sample application of this latter result, and this was our original motivation
for including these decomposition techniques in this paper, we obtain in §6 a fairly
systematic proof of the inductive formula for colimits of punctured n-cubes.

In this paper we freely use the basic theory of derivators (see [Gro, Fra96, Kel91]
and [Cis03, Cis08, Mal01b, Mal07]) and follow the conventions and notation from
[GŠ15, Gro18]. For a more detailed introduction to derivators we refer the reader
to [Gro13]. For convenience, we conclude the introduction by the following list of
conventions, notation, and key facts which will be used throughout this paper.

• We denote by Cat the 2-category of small categories and by CAT the 2-category
of not necessarily small categories.

• We follow the convention of Heller [Hel88] and Franke [Fra96] that derivators
are suitable 2-functors D : Catop → CAT with domain Catop, thereby modeling
derivators on diagrams in homotopy theories. There is an equivalent approach
based on presheaves and in that case the domain is the 2-category Catcoop (as
used, for example, by Grothendieck [Gro] and Cisinski [Cis03, Cis08]). Both
conventions yield isomorphic 2-categories of derivators.

• We denote by 1 the terminal category, and we tacitly use the canonical iso-
morphisms A ∼= A1 for A ∈ Cat . The unique functors to terminal categories
are denoted by π = πA : A→ 1.

• Given a derivator D and A ∈ Cat , we write DA : B 7→ D(A × B) for the
derivator of coherent A-shaped diagrams in D . For every functor u : A → B
in Cat , we denote by

u∗ : DB → DA, u! : DA → DB , and u∗ : DA → DB

the corresponding precomposition, left Kan extension, and right Kan extension
morphism. Kan extensions along functors π = πA : A → 1 are denoted by
colimA : DA → D and limA : DA → D , respectively, and referred to as colimits
and limits. Precomposition along a : 1 → A is referred to as evaluation at a,
and its effect on morphisms is denoted by (f : X → Y ) 7→ (fa : Xa → Ya).

• In this paper we systematically use parametrized Kan extensions and restric-
tions, resulting in the use of morphisms of derivators instead of underlying
functors. In particular, we write X ∈ D in case there is a category A ∈ Cat
such that X ∈ D(A). The motivation is that we want to formulate the re-
sults in the language of abstract homotopy theories in contrast to homotopy
categories. An interpretation in terms of actual categories can be obtained by
evaluation at 1.

• Kan extensions along fully faithful functors are fully faithful and hence restrict
to equivalences. It is convenient to distinguish these notationally. More gen-
erally, given a fully faithful morphism F : D → E of derivators we denote by
F' : D ∼−→ Im(F ) the induced equivalence onto the essential image Im(F ) ⊆ E .

• Given a pointed derivator D , A ∈ Cat , and a subcategory B ⊆ A, we denote
by DA,B ⊆ DA the prederivator spanned by all X ∈ DA such that X|B = 0.

• We denote by DER the 2-category of derivators, morphisms of derivators
(pseudo-natural transformations) and natural transformations (modifications),
and by DERSt,ex ⊆ DER the 2-full subcategory spanned by stable derivators,
exact morphisms and all natural transformations.
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• Finally, we denote by yC the prederivator represented by a category C, by DA
the derivator of an abelian category (defined on homotopy finite categories
only), by HoM the homotopy derivator of a Quillen model category M, and
by HoD the homotopy derivator of a bicomplete ∞-category D.

3. Coherent versus incoherent n-cubes

In this section we stress the difference between coherent and incoherent n-cubes.
Even in the case of a field and already in dimension two, the corresponding forgetful
functor does not reflect isomorphism types. This illustrates that, in contrast to
triangulations and higher triangulations, it is not possible to capture the cubical
calculus at the level of incoherent diagrams.

Notation 3.1. Let n ∈ N≥0 be a natural number. We denote by

�n = P({1, . . . , n})

the power set of {1, . . . , n} and refer to this poset as the n-cube. The n-cube is,
of course, isomorphic to the n-th power [1]n of the poset [1] = (0 < 1). Hence,
elements of �n can be described as subsets or as tuples. The correspondence is
realized by the characteristic function and will be used tacitly without additional
notation. Occasionally, it will be useful to emphasize notationally the set {1, . . . , n}
of which we form the power set, and in that case we also write

(3.2) �{1,...,n} = �n

for the n-cube.

Definition 3.3. Given a derivator D and n ∈ N≥0, we refer to D�
n

as the deriva-
tor of (coherent) n-cubes in D .

Examples 3.4. The passage from categories, abelian categories, Quillen model cat-
egories, and ∞-categories to derivators is compatible with the formation of expo-
nentials. Hence, given a bicomplete category C, a Grothendieck abelian category
A, a Quillen model category M, or a bicomplete ∞-category D, for n ≥ 0 there
are equivalences of derivators

y�
n

C ' yC�n , D�
n

A ' DA�n , Ho�
n

M 'HoM�n , and Ho�
n

D 'HoD�n .

Using derivators of more restricted types this extends to more general input data
such as exact categories in the sense of Quillen [Qui73] or cofibration categories (see
[Kel07, Cis10]).

Remark 3.5. For every prederivator D and B ∈ Cat there is an underlying diagram
functor

diaB : D(B)→ D(1)B

defined by diaB(X)b = Xb, b ∈ B [Gro13, §1]. These functors assemble to a strict
underlying diagram morphism to the prederivator represented by the underlying
category D(1),

(3.6) dia : D → yD(1).

The prederivator D is (equivalent to) a represented prederivator if and only if the
underlying diagram morphism (3.6) is an equivalence.
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Thus, in the examples not arising from ordinary category theory (hence, the mo-
tivational examples for the theory of derivators), the underlying diagram morphisms
fail to be equivalences. In order to illustrate this by specific examples related to
n-cubes we include the following proposition. Therein, we denote by Z the integers
considered as a discrete category, so that (−)Z is the passage to the category of
Z-graded objects.

Proposition 3.7. Let A be a semisimple abelian category and let B ∈ Cat. The
underlying diagram functor

diaB : D(AB)→ D(A)B

is equivalent to the graded homology functor

H∗ : D(AB)→ (AB)Z.

Proof. Unraveling definitions it is immediate that the square

(3.8)

D(AB)
diaB //

H∗

��

D(A)B

H∗

��

(AB)Z '
// (AZ)B

is commutative, where the bottom horizontal map is the categorical exponential law.
Since A is semisimple, the homology functor H∗ : D(A)→ AZ is an equivalence of
categories ([GM03, §III.2]) and hence so is the vertical morphism on the right. �

Corollary 3.9. Let R be a semisimple ring, let B be a category with finitely many
objects, and let RB be the category algebra. The underlying diagram functor

diaB : D(Mod(R)B)→ D(R)B

is equivalent to the graded homology functor

H∗ : D(RB)→ Mod(RB)Z.

Proof. The equivalence of categories Mod(RB) ∼−→ Mod(R)B allows us to extend
diagram (3.8) to

D(RB)
' //

H∗

��

∼=

D(Mod(R)B)
diaB //

H∗

��

D(Mod(R))B

H∗'
��

Mod(RB)Z '
// (Mod(R)B)Z '

// (Mod(R)Z)B .

The square on the left commutes up to a natural isomorphism by additivity of
homology, and this diagram hence concludes the proof. �

Remark 3.10. Since underlying diagram functors generalize graded homology func-
tors, these functors tend to fail to be equivalences. But for certain shapes they
are reasonably well-behaved: Derivators arising in nature (such as the ones in Ex-
amples 3.4) are strong. Thus, in those cases, for every free category F and every
A ∈ Cat the partial underlying diagram functor

(3.11) diaF,A : D(F ×A)→ D(A)F
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(which makes diagrams incoherent in the F -direction but remembers the coherence
in the A-direction) is essentially surjective and full. In the stable case, this allows us
to lift incoherent morphisms and chains of composable such morphisms to coherent
diagrams and then to establish the existence of distinguished triangles and higher
triangles [Fra96, Mal01a, Gro13, Gro18, GŠ16].

Remark 3.12. We note that, even for a semisimple abelian category A, the under-
lying diagram morphism

dia: DA → yD(A)

is not an equivalence of derivators. An indirect way to see this is as follows. If the
morphism were an equivalence, then D(AB), B ∈ Cat , would be triangulated and
abelian, and hence semisimple. But at the level of algebras, this exponentiation
specializes to the passage from a field to path algebras of quivers, group algebras
and incidence algebras of posets. And clearly these algebras fail to be semisimple.

We also want to give a specific counter-example.

Example 3.13. Let us consider a field k and the poset [1] = (0 < 1). In this
case the underlying diagram functor is equivalent to H∗ : D(k[1]) → (Mod(k[1]))Z

(Corollary 3.9). While this functor is full and essentially surjective (Remark 3.12),
it is not faithful. In fact, it kills

(3.14) HomD(k[1])((k → 0),Σ(0→ k)) ∼= Ext1
k[1]((k → 0), (0→ k)) ∼= k

since in Mod(k[1])Z we have HomMod(k[1])Z((k → 0),Σ(0→ k)) ∼= 0.

Remark 3.15. By means of Auslander–Reiten theory one can show that in a certain
sense precisely the group (3.14) is responsable for the lack of faithfulness of H∗
[Hap88, §§4-5]. Moreover, this group is also the reason why the left derived cokernel

Lcoker ∼= C : D(k[1])→ D(k)

does not factor through the morphism category D(k)[1]. (Recall that every abelian
category A admits a left derived cokernel functor given by the classical cone con-
struction Lcoker ∼= C : D(A[1])→ D(A).)

Remark 3.16. For derivators arising in nature (such as homotopy derivators of
exact categories, abelian categories, model categories, or ∞-categories), the partial
underlying diagram functors (3.11) fail to be essentially surjective and full for more
general shapes. In related situations obstruction theories studying the existence of
lifts have been developed (see [DK84b, DK84a, DKS89] and [BM03, BJT10]).

We again illustrate this by a specific example.

Example 3.17. Let Dk be the derivator of a field and let k� be the path alge-
bra of the commutative square �. The functor dia�,1 : Dk(�) → Dk(1)� is by
Corollary 3.9 equivalent to the graded homology functor

H∗ : D(k�)→ Mod(k�)Z

which is not an epivalence. In fact, otherwise it would preserve isomorphism types
in the sense that H∗(X) ∼= H∗(Y ) implies that there is an isomorphism X ∼= Y , and
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this is impossible by the following example. Let us consider the following complexes
which are concentrated in homological degree 0 and 1,

0 //

��

0

��

→

k //

��

0

��

0 //

��

0

��

→

k //

��

0

��

0 // k 0 // 0 k // k k // 0.

Here, all structure maps of representations and all components of differentials are
identities as soon as possible and they vanish otherwise. Both complexes have
isomorphic homology which is concentrated in degree zero where it agrees with
the indecomposable injective representation corresponding to the vertex (0, 0) ∈ �.
However, these chain complexes are not quasi-isomorphic.

Remark 3.18. Note that this example is not in contradiction to the fact that dia[1]

is always an epivalence in strong derivators. For every derivator D the functor dia�
factors as

dia� : D(�)→ D([1])[1] → D(1)�.

Here, the first functor is a diagram functor for the derivator D [1] while the second
one is the exponential

(dia[1])
[1] : D([1])[1] → D(1)�.

Strong derivators are by definition closed under exponentials, and for such deriva-
tors the first functor is hence an epivalence. However, even for strong derivators,
the second functor is not necessarily an epivalence, since epivalences are not closed
under exponentials.

Remark 3.19. As we have just seen, in general, incoherent cubes can not be lifted to
coherent cubes (at least not uniquely up to isomorphism). However, in the case of
strong, stable, monoidal derivators we can lift those cubes which arise as iterated
pointwise products of morphisms, and this suggests that certain aspects of the
cubical calculus can be encoded at the level of incoherent diagrams. An excellent
illustration of this is provided by [May01]. In loc. cit., May proposes very well-
chosen axioms for monoidal, triangulated categories which capture an additivity
result for Euler characteristics. (An extension to more general traces, however, is
impossible [Fer06].)

4. Cocartesian and strongly cocartesian n-cubes

The main purpose of this section is to establish some basic notation related to
coherent n-cubes in derivators and to collect first facts on (strongly) cocartesian
n-cubes.

Notation 4.1. For every n ∈ N≥0 and 0 ≤ k ≤ n we denote by

ι≤k : �n≤k → �n

the inclusion of the full subposet spanned by all subsets with at most k elements.
We agree on the convention that ι≤−1 : �n≤−1 → �n is the empty functor. We also
use obvious variants of this notation such as

ι<k : �n<k → �n, ι=k : �n=k → �n, ι≥k : �n≥k → �n, and ι>k : �n>k → �n.
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∅ //

!!

��

{1} ∅ //

##

��

{1}

$$

��

{2} {2} //

��

{1, 2}

{3} {3}

##

// {1, 3}

{2, 3}

Figure 2. The source of valence three and the punctured 3-cube.

As a special case there are the inclusions

(4.2) ι≤1 : �n≤1 → �n and ι≤n−1 : �n≤n−1 → �n

of the source of valence n and of the punctured n-cube, respectively (see
Figure 2).

Coherent n-cubes in the essential image of the left Kan extensions along the
functors in (4.2) deserve particular names.

Definition 4.3. Let D be a derivator, n ≥ 2, and X ∈ D�
n

.

(i) The n-cube X is cocartesian if it lies in the essential image of (ι≤n−1)!.
(ii) The n-cube X is strongly cocartesian if it lies in the essential image of

(ι≤1)!.

There are dual notions of (strongly) cartesian n-cubes, and the duality prin-
ciple allows us to focus on the notions in Definition 4.3.

Remark 4.4. Let D be a derivator, n ≥ 2, and X ∈ D�
n

.

(i) A square is cocartesian if and only if it is strongly cocartesian.
(ii) Since ι≤1 : �n≤1 → �n factors through ι≤n−1 : �n≤n−1 → �n, every strongly

cocartesian n-cube is cocartesian. But from dimension three on there is no
converse to this implication (Theorem 4.6).

(iii) Since left Kan extensions along fully faithful functors are fully faithful, we
note that X is cocartesian resp. strongly cocartesian if and only if the ad-
junction counit

ε : (ι≤n−1)!ι
∗
≤n−1X → X resp. ε : (ι≤1)!ι

∗
≤1X → X

is invertible. In the first case this amounts to saying that X is cocartesian if
and only if the canonical mate

colim�n
≤n−1

ι∗≤n−1X → X{1,...,n}

is an isomorphism. (In §6 we extend to derivators a well-known inductive
formula for (homotopy) colimits of punctured n-cubes.)

Notation 4.5. Let n ∈ N≥0 be a natural number. We denote by

[n] = (0 < 1 < . . . < n)

the finite ordinal. Moreover, for 0 ≤ j ≤ k ≤ n there is a unique monotone map

ijk : [1]→ [n]

such that 0 7→ j and 1 7→ k.
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We recall the following basic facts related to these notions ([GŠ14, §8]).

Theorem 4.6. Let D be a derivator and let n ≥ 2.

(i) Let X ∈ D�
n×[1] be such that the n-cube X0 ∈ D�

n

is cocartesian. Then X
is cocartesian if and only if X1 is cocartesian.

(ii) An n-cube X ∈ D�
n

is strongly cocartesian if and only if all k-dimensional
subcubes, 2 ≤ k ≤ n, are cocartesian if and only if all subsquares are cocarte-
sian.

(iii) Let X ∈ D�
n×[2] be such that i∗01X is (strongly) cocartesian. Then i∗12X is

(strongly) cocartesian if and only if i∗02X is (strongly) cocartesian.

Proof. The first statement is [GŠ14, Thm. 8.11] and the second one is a combination
of [GŠ14, Thm. 8.4] and [GŠ14, Cor. 8.12]. The remaining statement is [GŠ14,
Prop. 8.15]. �

Obviously, the classes of (strongly) cocartesian n-cubes should be invariant under
the swapping of coordinates. A formal proof of this relies on Lemma 4.8, which we
include in a generality which is also suitable for later applications.

Notation 4.7. Let n ≥ 2 be a natural number.

(i) For natural numbers 0 ≤ k ≤ l ≤ n, we denote by

ιl,k : �n≤k → �n≤l and ιk,l : �
n
≥l → �n≥k

the obvious inclusions. (The notation is only overloaded in the case of l = k
and then both functors are identities anyhow.)

(ii) For natural numbers 1 ≤ i, j ≤ n, we denote by

σi,j : �n ∼−→ �n

the symmetry constraint which swaps the i-th and the j-th coordinates. We
also use the same symbol for suitable restrictions, for instance to the sub-
posets in Notation 4.1 such as

σi,j : �n≤k
∼−→ �n≤k for 0 ≤ k ≤ n.

Lemma 4.8. For natural numbers n ≥ 2, 0 ≤ k ≤ l ≤ n, and 1 ≤ i, j ≤ n the
following commutative squares are homotopy exact,

�n≤k
σi,j
//

ιl,k

��

~� id

�n≤k

ιl,k

��

�n≥l
σi,j

//

ιk,l

��

�n≥l

ιk,l

��

�n≤l σi,j

// �n≤l, �n≥k σi,j

// �n≥k.

>Fid

Proof. We give a proof for the square on the left, the other case is similar. In
order to show that the canonical mate (ιl,k)!σ

∗
i,j → σ∗i,j(ιl,k)! is an isomorphism, we

consider its component at an arbitrary object x ∈ �n≤l. In the pasting on the left
in the diagram

(ιl,k/x) //

π

��

��

�n≤k
σi,j
//

ιl,k

��

~� id

�n≤k

ιl,k

��

=

(ιl,k/x)
σi,j
//

π

��

�
 id

(ιl,k/σi,jx) //

π

��

�	

�n≤k

ιl,k

��

1
x

// �n≤l σi,j

// �n≤l 1 =
// 1

σi,jx
// �n≤l,
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the square on the left is a slice square and it hence remains to show that this pasting
is homotopy exact. Since ιl,k commutes with σi,j , there is an induced functor

σi,j : (ιl,k/x)→ (ιl,k/σi,jx) : (y, f : ιl,ky → x) 7→ (σi,jy, σi,jf : ιl,kσi,jy → σi,jx),

which clearly is an isomorphism and hence homotopy final. In the above pasting on
the right the square on the right is a slice square, and we deduce that that pasting
is homotopy exact. Since both pastings agree, this concludes the proof. �

Thus, in every derivator there are canonical isomorphism

(4.9) (ιl,k)!σ
∗
i,j
∼−→ σ∗i,j(ιl,k)! and σ∗i,j(ιk,l)∗

∼−→ (ιk,l)∗σ
∗
i,j .

Corollary 4.10. Let D be a derivator, let n ≥ 2, and let 1 ≤ i, j ≤ n. The restric-
tion morphism σ∗i,j : D�

n → D�
n

preserves and reflects cocartesian and cartesian
n-cubes.

Proof. Let ι = ι≤n−1 and let X ∈ D�
n

. By Remark 4.4, the n-cubes X and σ∗i,jX
are cocartesian if and only if the corresponding component of the adjunction counit
ε : ι!ι

∗ → id is invertible. To relate theses two characterization, we consider the
following pastings

�n≤n−1
ι //

ι

��
�� id

�n
σi,j
//

=

��
}� id

�n

=

��

=

�n≤n−1

σi,j
//

ι

��
�	 id

�n≤n−1
ι //

ι

��
�� id

�n

=

��

�n =
// �n

σi,j

// �n �n
σi,j

// �n =
// �n

which trivially agree. The functoriality of canonical mates with respect to pasting
implies that

ι!σ
∗
i,jι
∗ ∼ //

=

��

σ∗i,jι!ι
∗

σ∗i,jε

��

ι!ι
∗σ∗i,j εσ∗i,j

// σ∗i,j

commutes. The horizontal morphism is invertible by Lemma 4.8, and we conclude
the proof by observing that σ∗i,j reflects isomorphisms. The case of cartesian n-cubes
is dual. �

Corollary 4.11. Let D be a derivator, let n ≥ 2, and let 1 ≤ i, j ≤ n. The
restriction morphism σ∗i,j : D�

n → D�
n

preserves and reflects strongly cocartesian
and strongly cartesian n-cubes.

Proof. Invoking Lemma 4.8 in the case of k = 1 and l = n this time, the proof is
completely parallel to the one of Corollary 4.10. Alternatively, the result follows
from Corollary 4.10 and Theorem 4.6. �

Remark 4.12. Since canonical mates are compatible with respect to pasting, these
results extend from σi,j to more general symmetries induced by permutations.
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5. Decompositions of colimits

In this section we establish a general decomposition result for colimits in deriva-
tors (Theorem 5.8). As a special case, we deduce that the classical Bousfield–Kan
formulas for homotopy colimits [BK72] hold in every derivator (Theorem 5.19). As
an additional application we obtain a decomposition result for suitable exhaustive
filtrations of small categories (Theorem 5.32). In §6 we specialize the latter result
to more specific situations related to n-cubes.

Notation 5.1. Let C ∈ Cat and F : C → Cat . We denote by
∫
C
F =

∫
c∈C Fc ∈ Cat

the Grothendieck construction with objects the pairs (c ∈ C, x ∈ Fc). A morphism
(f, g) : (c, x) → (c′, x′) is a pair consisting of a morphism f : c → c′ in C and a
morphism g : (Ff)(x)→ x′ in Fc′. We denote by

q = qF :

∫
C

F → C : (c, x) 7→ c

the canonical projection functor, which is a Grothendieck opfibration.
For every c ∈ C there is a canonical inclusion functor ic : Fc→

∫
C
F : x 7→ (c, x)

and which sends a morphism g : x → x′ to (idc, g). We note that ic induces an
isomorphism of categories Fc ∼−→ q−1(c), as is witnessed by the pullback square

(5.2)

Fc
ic //

π

��

∫
C
F

q

��

1
c
// C.

One nice feature of Grothendieck opfibrations is that left Kan extensions along
them are given by ‘integration over fibers’ in the following precise sense.

Lemma 5.3. For every Grothendieck opfibration q : E → B in Cat and every
functor f : B′ → B the pullback square

E′ //

��
|� id

E

q

��

B′
f
// B

is homotopy exact.

Proof. This is [Gro13, Prop. 1.24]. �

Corollary 5.4. Let D be a derivator and let q : E → B be a Grothendieck opfibra-
tion in Cat. For every X ∈ DE

(i) there is a canonical isomorphism colimB q!(X) ∼−→ colimE X and
(ii) for b ∈ B there are canonical isomorphisms colimq−1(b) i

∗
bX

∼−→ q!(X)b, where

ib : q−1(b)→ E is the inclusion functor.

Proof. The first statement is immediate from uniqueness of left adjoints applied to
πE = πB ◦ q : E → 1. We obtain in every derivator D a canonical isomorphism

colimq−1(b) i
∗
b
∼−→ b∗q!

by specializing Lemma 5.3 to f = b : 1 → B (hence essentially to diagrams of the
form (5.2)). �
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The Fubini theorem colimA colimB
∼−→ colimA×B can be considered as a special

case of this result (the case of the ‘untwisted product’).

Remark 5.5. Corollary 5.4 makes more precise in which sense left Kan extension
along a Grothendieck opfibration q : E → B is calculated by ‘integration over fibers’.
One can calculate colimE by first calculating the colimits over q−1(b), b ∈ B, and
then forming a colimit over these. Given a derivator D and X ∈ DE we write
X|q−1(b) for i∗bX, and, for simplicity, we refer to the conclusion of Corollary 5.4 by
saying that there is a canonical isomorphism

colimb∈B colimq−1(b)

(
X|q−1(b)

) ∼−→ colimE X.

This is a bit vague in view of the necessary distinction between coherent and inco-
herent diagrams; but whenever we write such a formula, this implicitly means that
there is coherent lift of the (partially) incoherent diagram

b 7→ colimq−1(b)

(
X|q−1(b)

)
.

A combination of these integrations over fibers together with the concept of
homotopy finality provides a rather rich supply of more general decomposition
results for colimits, and we hence make the following definition.

Definition 5.6. A left decomposition of a small category A is a triple (C,F, u)
consisting of

(i) a small category C,
(ii) a functor F : C → Cat ,
(iii) and a homotopy final functor u :

∫
C
F → A.

Notation 5.7. The cocone AB ∈ Cat of a small category A ∈ Cat is obtained from
A by freely adjoining a new terminal object ∞. It is the join AB = A ∗ 1 of A and
the terminal category 1, and there are hence fully faithful inclusions iA : A → AB

and ∞ : 1→ AB which are jointly surjective on objects.
Correspondingly, given a derivator D , associated to iA there is the fully faithful

left Kan extension morphism (iA)! : DA → DAB . The essential image of (iA)!

consists by definition of the colimiting cocones. A diagram X ∈ DAB is a colimiting
cocone if and only if the counit ε : (iA)!i

∗
AX

∼−→ X is invertible if and only if the
canonical mate colimX(X |A) ∼−→ X∞ is an isomorphism (see [Gro18, §2] for more
details).

Theorem 5.8 (Decomposition theorem). Let A ∈ Cat, let (C,F, u) be a left
decomposition of A, and let D be a derivator. There is a morphism of derivators

d : DA → DCB

such that for every X ∈ DA

(i) the cocone d(X) ∈ DCB is colimiting,
(ii) there is a canonical isomorphism d(X)∞

∼−→ colimAX, and
(iii) there are canonical isomorphisms colimF (c)(X|F (c))

∼−→ d(X)c, c ∈ C, where
X|F (c) is shorthand notation for (i∗cu

∗)X.
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Proof. The homotopy finality of u :
∫
C
F → A is equivalent to the homotopy ex-

actness of the square

(5.9)

∫
C
F

u //

q

��

A

π

��

C

π

��

1
id
// 1.

Thus, for X ∈ DA and Z = q!u
∗(X) ∈ DC there is a canonical isomorphism

(5.10) colimC Z
∼−→ colimAX.

Moreover, since q is a Grothendieck opfibration, for every c ∈ C the homotopy
exactness of (5.2) yields canonical isomorphisms

(5.11) colimF (c)(X |F (c))
∼−→ Zc,

where X |F (c) is shorthand notation for i∗cu
∗X. To conclude the construction of

d : DA → DCB we combine the above with the left Kan extension along the inclusion
functor iC : C → CB, i.e., we define the decomposition morphism as

d = (iC)!q!u
∗ : DA → D

∫
C
F → DC → DCB .

The homotopy exactness of the slice square

C
id //

π

��
}�

C

iC

��

1 ∞
// CB

and the homotopy exactness of (5.9) yield canonical isomorphisms

∞∗d =∞∗(iC)!q!u
∗ ∼= colimC q!u

∗ ∼= colimA .

This settles the second property and the first one is obvious by definition of colim-
iting cocones (see Notation 5.7). Since iC : C → CB is fully faithful, the bottom
square in

F (c)
ic //

π

��

�� id

∫
C
F

q

��

1
c

//

id

��
�� id

C

iC

��

1
c
// CB

is homotopy exact. This yields canonical isomorphism

c∗d = c∗(iC)!q!u
∗ ∼= c∗q!u

∗ ∼= colimF (c) i
∗
cu
∗,

thereby concluding the proof. �
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Remark 5.12. (i) Formulas (5.10) and (5.11) jointly indicate in which sense a
left decomposition of A allows us to decompose the calculation of colimA into
intermediate steps. While this is made precise by the statement of Theo-
rem 5.8, following Remark 5.5 we refer to this by saying that for X ∈ DA

there are canonical isomorphisms

(5.13) colimc∈C colimFc(X|Fc) ∼−→ colimAX.

(ii) There is a dual notion of right decompositions, based on homotopy initial
functors defined on Grothendieck constructions associated to presheaves of
small categories, and there is a dual decomposition theorem.

(iii) Both versions of the decomposition theorem can be generalized to decompo-
sitions which are based on smooth and proper functors instead (see [Mal05b,
Mal05c]).

Remark 5.14. Let us recall that a functor u : A → B in Cat is homotopy final if
and only if for every b ∈ B the comma category (b/u) has a weakly contractible
nerve (see [GPS14b, §3] which relies on [Hel88, Cis06]). Thus, in the situation of
Theorem 5.8, we obtain a decomposition result for colimits whenever we can show
that the slice categories (a/q), a ∈ A, have weakly contractible nerves. This is, in
particular, the case whenever (a/q) can be connected to the terminal category 1 by
a string of adjoint functors (possibly pointing in different directions).

As a first application we note that the classical Bousfield–Kan formulas [BK72]
are consequences of having a derivator. In fact, we obtain this by specializing
the two-sided simplicial bar resolutions for coends ([GPS14a, Appendix A]) to the
case of dummy variables in the sense of [ML98]. We begin by recalling coends in
derivators and the corresponding bar construction.

Construction 5.15. Let A ∈ Cat and let tw(A) be the twisted morphism category of
A with objects the morphisms f : a→ b in A and morphisms f → f ′ the two-sided
factorizations of f ′ through f ,

a
f
// b

��

a′

OO

f ′
// b′.

For every derivator D the coend morphism is defined by∫ A

= colimtw(A)op ◦(top, sop) : DAop×A → D tw(A)op → D ,

where t and s are the evaluation maps at targets and sources, respectively [GPS14a,
§5]. We denote by (∆/A) the category of simplices of A (the category of elements
of the nerve NA) with objects the strings ([n], a0 → . . . → an) of composable
morphisms in A. Forming the compositions ([n], a0 → . . . → an) 7→ (a0 → an)
defines a functor

c : (∆/A)op → tw(A)op,

which is known to be homotopy final ([GPS14a, Appendix A]). Finally, the functor

p : (∆/A)op → ∆op : ([n], a0 → . . .→ an) 7→ [n]
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is a Grothendieck opfibration with discrete fibers, and the two-sided simplicial bar
construction for coends in derivators is obtained by contemplating the homotopy
exact square

(∆/A)op

p

��

c // tw(A)op

π

��

∆op

π

��

1
id

// 1

Proposition 5.16. Let D be a derivator and A ∈ Cat. There is a simplicial
resolution morphism

s : DAop×A → D∆op

such that for every X ∈ DAop×A

(i) there is a canonical isomorphism colim∆op sX ∼−→
∫ A

X and
(ii) for every [n] ∈ ∆op there are canonical isomorphisms

(sX)n
∼−→

∐
(a0→...→an)∈(NA)n

X(an, a0).

Proof. This follows from the claims made in Construction 5.15 and which are proved
in [GPS14a, Appendix A]. �

Lemma 5.17. For every A ∈ Cat the functor sop : tw(A)op → A is homotopy final.

Proof. This follows from the proof of [GPS14a, Lem. 5.4] �

We recall that we denote by πA : A × B → B the functor which projects away
the category A.

Corollary 5.18. For every derivator D and A ∈ Cat there is a canonical isomor-

phism
∫ A ◦π∗Aop

∼= colimA : DA → D ,

DA
π∗Aop

//

colimA
$$

DAop×A

∫ A

��

D

Proof. By Lemma 5.17 the square

tw(A)op
(top,sop)

//

π

��
�
 id

Aop ×A πAop
// A

π

��

1
id

// 1

is homotopy exact and the result hence follows from the definition of coends in
derivators (see Construction 5.15). �

This is a derivator version of the categorical result that coends with dummy
variables are colimits. The following result is now an immediate consequence of
earlier results but because of its importance we formulate it as a theorem.
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Theorem 5.19 (Bousfield–Kan formulas). Let D be a derivator and A ∈ Cat.
There is a simplicial resolution morphism

s : DA → D∆op

such that for every X ∈ DA

(i) there is a canonical isomorphism colim∆op sX ∼−→ colimAX and
(ii) for every [n] ∈ ∆op there are canonical isomorphisms

(sX)n
∼−→

∐
(a0→...→an)∈(NA)n

Xa0 .

Proof. This follows from Proposition 5.16 and Corollary 5.18. �

Following the conventions for (5.13), there is hence a canonical isomorphism

colim[n]∈∆op

( ∐
a0→...→an

Xa0

) ∼−→ colimAX.

In low dimensions this simplicial diagram looks like

· · · oo

oo
//

//

//

∐
a0→a1

Xa0

//

//
oo

∐
a

Xa,

as we expect of a Bousfield–Kan formula [BK72].

Remark 5.20. Presenting the arguments in a slightly different way, we see that
Theorem 5.19 and Proposition 5.16 are special cases of the decomposition theorem
(Theorem 5.8).

Definition 5.21. Let F : D → E be a morphism of derivators.

(i) The colimit morphism colim∆op : D∆op → D is the geometric realization
morphism of D .

(ii) The morphism F preserves geometric realizations if F preserves colimits
of shape ∆op.

Corollary 5.22. Let F : D → E be a morphism of derivators.

(i) The morphism F preserves all colimits if and only if F preserves coproducts
and geometric realizations.

(ii) A replete subcategory C ⊆ D(1) is closed under all colimits if and only if it
is closed under coproducts and geometric realizations.

Proof. Let F : D → E be a morphism of derivators which preserves coproducts and
geometric realizations, and let A ∈ Cat . We begin by noting that

sop ◦ c : (∆/A)op → tw(A)op → A : (a0 → . . .→ an) 7→ a0

is homotopy final as composition of the homotopy final functors sop (Lemma 5.17)
and c (Construction 5.15). By [Gro18, Lem. 5.8] it remains to show that F preserves
colimits of shape (∆/A)op. By assumption we only have to verify that F preserves
left Kan extensions along p : (∆/A)op → ∆op. By [Gro13, Prop. 2.3] this is the case
as soon as F preserves colimits of shape (p/[n]), [n] ∈ ∆op. Since p is a discrete
opfibration, the functors p−1([n])→ (p/[n]) are homotopy final with domains given
by discrete categories, and the claim follows from our assumption on F and an
additional application of [Gro18, Lem. 5.8]. The second statement is similar. �
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We now specialize the decomposition theorem (Theorem 5.8) to suitable filtra-
tions of small categories.

Definition 5.23. For every A ∈ Cat we denote by Sub(A) ∈ Cat the following
small category.

(i) Objects are subcategories A′ → A of A.
(ii) Given two subcategories A′ → A and A′′ → A, a morphism from A′ to A′′ is

a functor A′ → A′′ such that

A′

  

// A′′

~~

A

commutes.

The category Sub(A) is the category of subcategories of A.

Definition 5.24. A filtration of a small category A is a pair (C,F ) consisting of

(i) a small category C and
(ii) a functor F : C → Sub(A).

A filtration by full subcategories is a filtration (C,F ) such that all Fc, c ∈ C,
are full subcategories of C. A filtration (C,F ) is exhaustive if

⋃
c∈C Fc = A.

Remark 5.25. Let A ∈ Cat and let (F,C) be a filtration of A.

(i) Morphisms in Sub(A) are necessarily faithful functors which are injective on
objects. Hence, this applies to the functors Ff : Fc → Fc′ in a filtration
F : C → Sub(A), thereby justifying the above terminology.

(ii) Note that whenever (C,F ) is a filtration by full subcategories, then all struc-
ture maps Ff : Fc→ Fc′ are fully faithful and injective on objects.

Construction 5.26. Let A be a small category and let (C,F ) be a filtration of A.
The inclusion functors ic = iFc : Fc→ A, c ∈ C, define a natural transformation to
the constant diagram κA : C → Cat : c 7→ A. The functoriality of the Grothendieck
construction yields a functor

∫
C
i :
∫
C
F →

∫
C
κA = C×A, and by postcomposition

with the projection π : C ×A→ A we obtain

(5.27) u = uC,F :

∫
C

F →
∫
C

κA = C ×A→ A.

Definition 5.28. A filtration (C,F ) of a small category A is a left filtration if the
resulting functor (5.27) is homotopy final, i.e., if (C,F, uC,F ) is a left decomposition
of A.

Theorem 5.29 (Decomposition by left filtrations). Let A ∈ Cat, let (C,F ) be
a left filtration of A, and let D be a derivator. There is a decomposition morphism

d : DA → DC

such that for every X ∈ DA

(i) there is a canonical isomorphism colimC dX
∼−→ colimAX and

(ii) for every c ∈ C there is a canonical isomorphism

(dX)c
∼−→ colimFc i

∗
cX,

where ic : Fc→ A is the inclusion functor.
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Proof. Since (5.27) is by assumption homotopy final, (C,F, uC,F ) is a left decom-
position of A and the result follows from Theorem 5.8. �

We now show that an important class of left filtrations can be constructed from
functors to posets.

Construction 5.30. Let A ∈ Cat , let P be a small poset, and let f : A → P be a
functor. For every p ∈ P we consider the full subcategories

ι≤p : A≤p = {x ∈ A | f(x) ≤ p} → A.

For p ≤ p′ in P there is a fully faithful inclusion functor ιp′,p : A≤p → A≤p′ , and
this assignment defines a functor

(5.31) F = Ff : P → Sub(A) : p 7→ A≤p.

F is an exhaustive filtration by full subcategories.

Theorem 5.32 (Decomposition by exhaustive filtrations). Let A ∈ Cat, let
P ∈ Cat be a poset, and let f : A → P be a functor. The filtration (5.31) is a
left filtration of A, the left filtration associated to f . In particular, for every
derivator D there is a decomposition morphism d : DA → DP such that for every
X ∈ DA

(i) there is a canonical isomorphism colimP dX
∼−→ colimAX and

(ii) for every p ∈ P there is a canonical isomorphism

(dX)p
∼−→ colimA≤p

ι∗≤pX.

Proof. For every functor f : A→ P we contemplate the following diagram

A≤p //

��

(f/P )
u //

q

��
~�

A

f

��

1
p

// P
id

//

��

P

��

1 =
// 1

in Cat . The top square on the right is homotopy exact as a comma square ([Gro13,
Prop. 1.26]) and the functor q is a Grothendieck opfibration. Since P is a poset,
the slice category (f/p) can be identified with A≤p. Hence, for Ff as in (5.31) we
obtain the identification

∫
P
Ff = (f/P ). The bottom square is homotopy exact

as a constant square (alternatively, equivalences are homotopy final), and hence so
is the vertical pasting of the two squares. But this is equivalent to the homotopy
finality of u, which is to say that (P, Ff ) is a left filtration. The rest follows from
Theorem 5.29. �

The decompositions of colimits (Theorem 5.8) and hence the formulas obtained
in this section (such as Theorem 5.19, Theorem 5.29 or Theorem 5.32) enjoy a
certain compatibility with respect to morphisms of derivators, and we come back
to this idea in §13.
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6. Punctured n-cubes

In order to manipulate cocartesian n-cubes, by Remark 4.4 it is convenient to
have a better understanding of colimits of punctured n-cubes. In this short sec-
tion we extend to derivators a well-known inductive formula for such colimits and
illutrate it by some toy examples.

Construction 6.1. Let A,B ∈ Cat , and let iA : A → AB, iB : B → BB be the fully
faithful inclusion functors. The punctured product of the cocones AB and BB is the
full subcategory (AB ×BB)− {(∞,∞)} obtained from AB ×BB by removing the
terminal object (∞,∞). There are fully faithful inclusion functors

A×B iA //

iB

��

AB ×B

iB

��

A×BB
iA
// (AB ×BB)− {(∞,∞)},

and this defines a diagram

FA,B : p→ Sub((AB ×BB)− {(∞,∞)}).

Proposition 6.2 (Colimits of punctured products of cocones). Let D be a
derivator and A,B ∈ Cat. There is a morphism of derivators

d : D (AB×BB)−{(∞,∞)} → D�

such that for every X ∈ D (AB×BB)−{(∞,∞)} the square d(X) ∈ D� is cocartesian
with underlying diagram

colimA×B(X|A×B) //

��

colimB∞∗AX

��

colimA∞∗BX // colim(AB×BB)−{(∞,∞)}X.

Proof. There is a unique functor fA,B : (AB×BB)−{(∞,∞)} → p determined by

(a, b) 7→ (0, 0), (∞, b) 7→ (1, 0), and (a,∞) 7→ (0, 1)

for all a ∈ A and b ∈ B. Sticking to the notation of Construction 5.30, we have
FA,B = FfA,B

and the result follows immediately from Theorem 5.32 and the ho-
motopy finality of final objects. �

The formula for colimits of punctured n-cubes follows immediately from a for-
mula for colimits of punctured cylinders of cones. Let us establish the relevant
notation.

Construction 6.3. Given a small category A ∈ Cat , the punctured cylinder on the
cocone is the punctured product of the cocones AB and 1B = [1], i.e., the category

(AB × [1])− {(∞, 1)}
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obtained from the cylinder AB× [1] by removing the final object (∞, 1). There are
fully faithful inclusion functors

A
iA //

i0

��

AB

i0

��

A× [1]
iA
// (AB × [1])− {(∞, 1)},

In particular, for k = 0, 1 there are fully faithful inclusion functors

jk : A→ (AB × [1])− {(∞, 1)} : a 7→ (a, k).

Corollary 6.4 (Colimits of punctured cylinders of cocones). Let D be a
derivator and A,B ∈ Cat. There is a morphism of derivators

d : D (AB×[1])−{(∞,1)} → D�

such that for every X ∈ D (AB×[1])−{(∞,1)} the square d(X) ∈ D� is cocartesian
with underlying diagram

colimA j
∗
0X

��

// X∞,0

��

colimA j
∗
1X // colimX.

Proof. This is a special case of Proposition 6.2. �

We now specialize further to the case thatA = �n−1
≤n−2 is a punctured (n−1)-cube.

Its cocone is �n−1 and the punctured cylinder on �n−1 is the punctured n-cube
�n≤n−1. In the following corollary we denote the object (1, . . . , 1, 0) ∈ �n≤n−1 by

(∞, 0).

Corollary 6.5 (Colimits of punctured n-cubes). For every derivator D and

n ≥ 2 there is a morphism of derivators d : D�
n
≤n−1 → D� such that for every

X ∈ D�
n
≤n−1 the square d(X) ∈ D� is cocartesian with underlying diagram

colim�n−1
≤n−2

j∗0X

��

// X∞,0

��

colim�n−1
≤n−2

j∗1X // colim�n
≤n−1

X.

Proof. This is a special case of Corollary 6.4. �

Remark 6.6. (i) Corollary 6.5 yields an inductive procedure to calculate colimits
of higher dimensional punctured n-cubes in terms of colimits of lower dimen-
sional ones. If we specialize to the degenerate case n = 2, then the corollary
reconfirms that we can compute a pushout as a pushout.

(ii) Despite having been presented this way, the final coordinate in the punctured
n-cube, of course, does not play a particular role (as one checks by invoking
the restriction along the symmetries σi,j from Notation 4.7).

We illustrate this inductive recipe by the following two examples.
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Example 6.7. For every pointed derivator D and n ≥ 1 there is a natural isomor-
phism

Σn−1 ∼= colim�n
≤n−1

◦∅∗ : D → D .

Moreover, the canonical isomorphisms (4.9) induce the action of the symmetric
group Σn−1 given by the signatures of the permutations,

Σn−1 → Aut(Σn−1x) : σ 7→ sign(σ)id, x ∈ D .

Proof. The inclusion ∅ = ι≤0 : 1 → �n≤n−1, n ≥ 2, of the initial object is a sieve.

Hence, for every pointed derivator D , the morphism ∅∗ : D → D�
n
≤n−1 is right

extension by zero objects ([Gro13, Prop. 3.6]). For n = 2 the claim follows by
definition of suspension in pointed derivators. For n ≥ 3 and x ∈ D , we obtain by
Corollary 6.5 a cocartesian square

colim�n−1
≤n−2

∅∗x //

��

0

��

0 // colim�n
≤n−1

∅∗x.

By induction this suspension square induces the intended natural isomorphism.
The symmetry σi,j coming from the transposition (ij) acts by the sign −1 (as it
follows from [Gro13, Prop. 4.12] by passing to parametrized Kan extensions), and
the general case follows from the functoriality of canonical mates with respect to
pasting. �

Example 6.8. Let D be derivator and let n ≥ 2. Since �n=1 is discrete on n objects,
there is an equivalence of derivators D�

n
=1
∼−→ D × . . . × D , and (ι=1)! induces a

morphism

D × . . .×D ' D�
n
=1 → D�

n

.

This morphism forms strongly cocartesian coproduct n-cubes (see [GŠ15, §4]), and
the inductive formula Corollary 6.5 reduces to the calculation of finite coprod-
ucts. The canonical mates (4.9) induce the symmetry constraints of the cocartesian
monoidal structure.

As a closely related example we also collect the following one dealing with iter-
ated pushouts of sources of higher valence.

Example 6.9. Let D be a derivator, let n ≥ 2, and let X ∈ D�
n
≤1 be a representation

of the source of valence n with underlying diagram looking like

X0

))""~~vv

···

X1 X2 . . . Xn−1 Xn.

We denote the colimit of the coherent source X (or, equivalently, the colimit of the
punctured n-cube (ιn−1,1)!X) by

colim�n
≤1
X = X1 ∪X0

X2 ∪X0
. . . ∪X0

Xn.
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This notation is justified by the existence of canonical isomorphisms

colim�n
≤1
X = X1 ∪X0

X2 ∪X0
. . . ∪X0

Xn

∼= X1 ∪X0

(
X2 ∪X0

. . . ∪X0
Xn

)
.

In fact, this follows from Theorem 4.6 applied to the strongly cocartesian n-cube
(ιn,1)!X together with the pasting property of cocartesian squares. For instance, in
the case of n = 3 this isomorphism is induced from ‘the diagonal square’ in (6.10)
(diagonal in the (2− 3)-direction).

(6.10)

X0
//

%%

��

X1

((

��

X2
//

��

X1 ∪X0
X2

��

X3

%%

// X1 ∪X0 X3

((

X2 ∪X0 X3
// colimX

An alternative way to calculate this colimit, again using the pasting property, is
as

colim�n
≤1
X ∼= X1 ∪X0

(
X2 ∪X0 . . . ∪X0 Xn

)
∼=
(
X1 ∪X0 X2) ∪X2

(
X2 ∪X0 . . . ∪X0 Xn

)
∼=
(
X1 ∪X0 X2) ∪X2

(
X2 ∪X0 X3

)
∪X3 . . . ∪Xn−1

(
Xn−1 ∪X0 Xn

)
.

Here, the last isomorphism follows from induction from the second one. For in-
stance, again in the case of n = 3, the second isomorphism is induced from the
cocartesian square in the front of (6.10).

Moreover, the canonical mates (ιn,1)!σ
∗ ∼−→ σ∗(ιn,1)! (4.9) are invertible for every

permutation σ ∈ Σn. In particular, by evaluation at ∞ ∈ �n, this yields canonical
isomorphisms

colim�n
≤1
σ∗X ∼−→ colim�n

≤1
X,

which, in the above notation, can be read as isomorphisms

Xσ(1) ∪X0 Xσ(2) ∪X0 . . . ∪X0 Xσ(n)
∼−→ X1 ∪X0 X2 ∪X0 . . . ∪X0 Xn.

7. Cotruncated n-cubes

In this section we revisit the cardinality filtration of the n-cube �n (see Figure 1).
More specifically, we focus on left Kan extensions along functors in the first row,

∅ // �n=0
// �n≤1

// . . . // �n≤n−1
// �n.

By means of these left Kan extensions, at the level of coherent n-cubes in derivators
we obtain an interpolation between cocartesian and strongly cocartesian n-cubes.

We keep using the notation as in Notation 4.1 and Notation 4.7. In particular,
for indices n ≥ 0 and −1 ≤ k ≤ l ≤ m ≤ n we clearly have

ιm,l ◦ ιl,k = ιm,k : �n≤k → �n≤m.
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Definition 7.1. Let D be a derivator, n ≥ 0, and −1 ≤ k ≤ l ≤ n. A coherent
diagram X ∈ D�

n
≤l is k-cotruncated if it lies in the essential image of

(ιl,k)! : D�
n
≤k → D�

n
≤l .

Remark 7.2. Let D be a derivator, n ≥ 0, and −1 ≤ l ≤ k ≤ n.

(i) Similarly, X ∈ D�
n
≥l is k-truncated if it lies in the essential image of the

corresponding right Kan extension.
(ii) For n ≥ 2, an n-cube is cocartesian if and only if it is (n − 1)-cotruncated,

and it is strongly cocartesian if and only if it is 1-cotruncated.

In the case of proper n-cubes we use the following notation.

Notation 7.3. Let D be a derivator, let n ≥ 0, and let −1 ≤ k ≤ n. We denote
the essential image of (ι≤k)! : D�

n
≤k → D�

n

by

D�
n,cotrk = essim((ι≤k)! : D�

n
≤k → D�

n

).

The left Kan extension yields an equivalence (ι≤k)'! : D�
n
≤k ∼−→ D�

n,cotrk , showing

that there is a derivator D�
n,cotrk of k-cotruncated n-cubes (and not merely a

prederivator). Dually, we write

D�
n,trk = essim((ι≥k)∗) : D�

n
≥k → D�

n

)

for the derivator of k-truncated n-cubes.

Definition 7.4. Let D be a derivator, let n ≥ 0, and 0 ≤ k ≤ n. The morphism
of derivator

cotrk = (ι≤k)!ι
∗
≤k : D�

n

→ D�
n

is k-th cotruncation morphism.

Lemma 7.5. Let D be a derivator, let n ≥ 0, and 0 ≤ k ≤ n.

(i) The morphisms cotrk are idempotent comonads on D�
n

(the comultiplica-
tions cotrk

∼−→ cotrk ◦ cotrk are invertible) with essential image D�
n,cotrk .

(ii) The counit ε : cotrn
∼−→ id is an isomorphism.

(iii) The morphism cotr0 : D�
n → D�

n

sends X to the constant n-cube on X∅.
(iv) The counit ε : (ιk,k−1)!ι

∗
k,k−1 → id induces a natural transformation

cotrk−1 → cotrk, 1 ≤ k ≤ n.
Proof. For every k there is an adjunction

((ι≤k)!, ι
∗
≤k) : D�

n
≤k � D�

n

with a fully faithful left adjoint. Hence the unit η is an isomorphism and so is
the comultiplication of the resulting comonad. The second statement is obvious
and the third one is immediate from the pointwise formula for left Kan extensions
(axiom (Der4)). For the final statement, we note that ι≤k−1 factors as

ι≤k−1 = ι≤k ◦ ιk,k−1 : �n≤k−1 → �n≤k → �n,
and we obtain cotrk−1

∼= (ι≤k)!(ιk,k−1)!ι
∗
k,k−1ι

∗
≤k → (ι≤k)!ι

∗
≤k = cotrk. �

The main goal of this section is to establish Theorem 7.15, thereby generalizing
Theorem 4.6 to k-cotruncated n-cubes. As a preparation we recall the follow-
ing generalization of Franke’s detection result for (co)cartesian squares ([Fra96,
Prop. 1.4.5]). Despite its technical character, it allows us in many situations to
detect colimiting cocones in larger diagrams.
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Lemma 7.6. Let D be a derivator, let C ∈ Cat, and let u : A→ B and v : CB → B
be functors. Suppose that there is a full subcategory B′ ⊆ B such that

(i) u(A) ⊆ B′,
(ii) v(C) ⊆ B′ and v(∞) /∈ B′, and

(iii) the functor C → (B′/v(∞)) induced by v is a right adjoint.

Then for any X ∈ D(A) the cocone v∗u!(X) ∈ D(CB) is colimiting.

Proof. This is [GPS14b, Lemma 4.5]. �

Often it is useful to analyze Kan extensions along fully faithful functors by a
factorization into intermediate steps, each of them adding one object at a time.
For those intermediate steps the following refinement of the detection result is
convenient (as will be illustrated in the proof of Theorem 7.15).

Proposition 7.7. Let D be a derivator, let C ∈ Cat , and let u : A→ B be a fully
faithful functor between small categories such that the following two conditions are
satisfied.

(i) The complement B − u(A) consists of precisely one object b0.
(ii) There is a small category C and a homotopy exact square

(7.8)

C

iC

��

j
//

}� id

A

u

��

CB
k
// B

such that k satisfies k(∞) = b0.

The morphism u! : DA → DB is fully faithful and induces an equivalence onto the

full subderivator DB,ex ⊆ DB spanned by all X ∈ DB such that k∗(X) ∈ DCB is a
colimiting cocone. The equivalence DA ∼−→ DB,ex is pseudo-natural with respect to
morphisms of derivators which preserve colimits of shape C.

Proof. Since u : A → B is fully faithful, the same is true for u! : DA → DB , and
X ∈ DB lie in the essential image of u! if and only if ε : u!u

∗(X) → X is an
isomorphism. By [Gro13, Lem. 1.21] this is the case if and only if the component
εb0 is invertible. To re-express this differently, let us consider the pasting on the
left in

C
j
//

iC

��
}� id

A
u //

u

��
{� id

B

id

��

=

C
iC //

iC

��
~� id

CB
k //

id

��
}� id

B

id

��

CB
k
// B

id
// B CB

id
// CB

k
// B.

The functoriality of mates with respect to pasting and the homotopy exactness of
the square to the very left imply that X lies in the essential image of u! if and
only if the canonical mate associated to the pasting on the left is an isomorphism
on X. Since the above two pastings agree, the functoriality of mates implies that

this is the case if and only if k∗X lies in the essential image of (iC)! : DC → DCB

which is to say that k∗X is a colimiting cocone. It follows from [Gro18, Lemma 3.7
and Prop. 3.9] that a morphism of derivators preserves left Kan extensions along
u if and only if it preserves colimits of shape C, thereby establishing the intended
pseudo-naturality. �
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Remark 7.9. In the situation of Proposition 7.7, the square (7.8) is homotopy exact
as soon as the induced functor r : C → (u/b0) is homotopy final (such as a right
adjoint). In fact, this follows from the functoriality of mates with respect to pastings
and [Gro18, Lemma 2.12] applied to the following situation

C
id //

π

��

|�

C

iC

��

j
//

|� id

A

u

��

=

C
r //

π

��

~� id

(u/b0)
p
//

π

��

��

A

u

��

1 ∞
// CB

k
// B 1

id
// 1

b0

// B.

With this preparation we can now attack the proof of Theorem 7.15. The proof
is an adaptation of the proof of [GŠ14, Thm. 8.4], and the following is the key step.

Notation 7.10. For n ≥ 0, −1 ≤ k ≤ n, and x ∈ �n≤k we denote by d(x) the

cardinality of the subset x ⊆ {1, . . . , n}. Moreover, for x ⊆ y ⊆ {1, . . . , n} let
[x, y] ⊆ �n≤k be the closed interval between x, y in �n≤k, i.e., we set

[x, y] = {w ∈ �n≤k | x ≤ w ≤ y} ⊆ �n≤k,

and we denote the above inclusion by j[x,y] : [x, y] → �n≤k. If for x ≤ y ∈ �n≤k we

write d(x, y) = d(y)− d(x) for the cardinality of the complement y − x, then there
is a preferred isomorphism

�d(x,y) ∼= [x, y].

In fact, invoking our notational convention (3.2), the inclusion y − x ⊆ {1, . . . , n}
induces a monomorphism of posets

�d(x,y) = �y−x → �{1,...,n} = �n,

and its image factorization gives the preferred isomorphism. By abuse of notation
we also denote this monomorphism of posets by j[x,y] : �d(x,y) → �n.

Construction 7.11. Let n ≥ 2 and let 1 ≤ k < l ≤ n be natural numbers. We
consider x ≤ y ∈ �n≤l with k < d(x, y) ≤ l (thereby avoiding that x and y both lie

in �n≤k). Associated to this, there are the following full subposets of �n≤l.

(i) The poset A1 ⊆ �n≤l is obtained from �n≤k by adding the objects of the

d(x)-cube [∅, x].
(ii) The poset A2 contains A1 and also the punctured d(x, y)-cube [x, y]− {y}.
(iii) Finally, A3 is obtained from A2 by adding the object y.

These full subcategories come with inclusion functors which allow us to factor the
inclusion ιl,k : �n≤k → �n≤l as

(7.12) ιl,k : �n≤k
j1→ A1

j2→ A2
j3→ A3

j4→ �n≤l.

(We note that j1 and j2 are potentially identities but that this is impossible for j3.)
In particular, for every derivator D there is a left Kan extension morphism

(j3)! : DA2 → DA3 ,
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and associated to j3 there is the following commutative square

(7.13)

[x, y]− {y} //

��

A2

j3

��

[x, y]
j[x,y]

// A3.

Lemma 7.14. Let n ≥ 2, 1 ≤ k < l ≤ n, and x ≤ y ∈ �n≤l with k < d(x, y) ≤ l. For

every derivator D and j3 : A2 → A3 as in (7.12), the morphism (j3)! : DA2 → DA3

is fully faithful and the essential image consists precisely of those X ∈ DA3 such
that j∗[x,y](X) is cocartesian.

Proof. By Proposition 7.7 it suffices to show that (7.13) is homotopy exact, and
this can be reduced to showing that the functor [x, y] − {y} → (j3/y) is a right
adjoint (Remark 7.9). We note that (j3/y) can be identified with [∅, y]∩A2, and it
remains to show that i : [x, y]− {y} → [∅, y] ∩A2 is a right adjoint. We claim that

l : [∅, y] ∩A2 → [x, y]− {y} : z 7→ x ∪ z
is well-defined and left adjoint to i. Let us recall from Construction 7.11 that the
category [∅, y] ∩ A2 contains three types of objects, namely those in [∅, y] ∩ �n≤k,

those in [∅, x], and those in [x, y]− {y}. To show that l is well-defined amounts to
showing that x ∪ z is different from y in all three cases. The last two cases being
trivial, let us consider z ∈ [∅, y]∩�n≤k and show that y−x is not contained in x∪z.
In fact, (x ∪ z) ∩ (y − x) ⊆ z ∩ (y − x) ⊆ z implies |(x ∪ z) ∩ (y − x)| ≤ k while
|y − x| ≥ k + 1 showing that x ∪ z does not contain y − x and thereby x ∪ z 6= y.
Since id ≤ il and li = id, we indeed obtain the desired adjunction. �

Theorem 7.15. Let D be a derivator, n ≥ 2, and 1 ≤ k ≤ l ≤ n. The following
are equivalent for a restricted n-cube X ∈ D�

n
≤l .

(i) The restricted n-cube X is k-cotruncated.
(ii) All m-subcubes of X, k < m ≤ l, are cocartesian.

(iii) All (k + 1)-subcubes of X are cocartesian.

Proof. We begin with the equivalence of the first two statements. Let X ∈ D�
n
≤l

be k-cotruncated, i.e., X lies in the essential image of (ιl,k)! : D�
n
≤k → D�

n
≤l , and

let [x, y] ⊆ �n≤l be a subcube of dimension m = d(x, y) ≥ k + 1. In order to show

that j∗[x,y]X ∈ D�
m

is cocartesian we consider the factorization of ιl,k as in (7.12).

Consequently, the left Kan extension morphism (ιl,k)! factors as

(ιl,k)! : D�
n
≤k

(j1)!→ DA1
(j2)!→ DA2

(j3)!→ DA3
(j4)!→ D�

n
≤l .

The fully faithfulness of j4 and our assumption on X imply that ε : (j4)!j
∗
4X → X

is invertible. And it hence remains to show that for Y = j∗4X the m-cube j∗[x,y]Y is

cocartesian. But since Y lies in the essential image of (j3)! this is immediate from
Lemma 7.14.

For the converse direction, a finite induction implies that it is enough to consider
the case that l = k + 1. Hence, let us consider X ∈ D�

n
≤k+1 such that all (k + 1)-

subcubes of X are cocartesian, and our aim is to show that X lies in the essential
image of (ιk+1,k)!. Since ιk+1,k is fully faithful, this is the case if and only if the
components of the adjunction counit εy :

(
(ιk+1,k)!ι

∗
k+1,kX

)
y
→ Xy are invertible



ABSTRACT CUBICAL HOMOTOPY THEORY 31

for all y ∈ �n=k+1. To reformulate this for a fixed such y, we consider the following
pasting

[∅, y]− {y} //

π

��

�


�n≤k
ιk+1,k

//

ιk+1,k

��

�� id

�n≤k+1

=

��

1
y
// �n≤k+1 =

// �n≤k+1

in which the square on the left is a slice square. The functoriality of canonical mates
with pasting and the homotopy exactness of slice squares imply that εy is invertible

if and only if the canonical mate of the above pasting is invertible at X ∈ D�
n
≤k+1 .

This pasting agrees with the pasting

[∅, y]− {y} = //

π

��

��

[∅, y]− {y} //

��

�	 id

[∅, y]

=

��

j[∅,y]
//

�� id

�n≤k+1

=

��

1
y

// [∅, y] =
// [∅, y]

j[∅,y]

// �n≤k+1

in which the square to the left is again a slice square. We conclude this part by
observing that the canonical mate of this pasting is invertible on X ∈ D�

n
≤k+1 if

and only if the (k + 1)-cube j∗[∅,y]X is cocartesian.

Finally, the equivalence of (ii) and (iii) is immediate from the first statement of
Theorem 4.6. �

Corollary 7.16. Let D be a derivator, n ≥ 2, and 1 ≤ k ≤ n. The following are
equivalent for an n-cube X ∈ D�

n

.

(i) The n-cube X is k-cotruncated.
(ii) All m-subcubes of X, k < m ≤ n, are cocartesian.

(iii) All (k + 1)-subcubes of X are cocartesian.

Proof. This is a special case of Theorem 7.15. �

Convention 7.17. Let D be a derivator and n ≥ 2. By Definition 4.3, an n-cube
X ∈ D�

n

is referred to as being cocartesian if it lies in the essential image of the
left Kan extension morphism

(ι≤n−1)! : D�
n
≤n−1 → D�

n

.

We extend this terminology to the degenerate cases of n = 1 and n = 0. Thus, we
say that a morphism X ∈ D [1] (or a 1-cube) is cocartesian if it is an isomorphism
and that an object X ∈ D (a 0-cube) is cocartesian if it is initial.

The point of this convention is that we now obtain the following more complete
description of the filtration of derivators of coherent n-cubes.

Remark 7.18. Let D be a derivator and n ≥ 0. The derivator D�
n

is filtered by
the essential images of the left Kan extension morphisms

(ι≤k)! : D�
n
≤k → D�

n

, −1 ≤ k ≤ n.
In the case of k = n we obtain all n-cubes, for k = n − 1 the cocartesian n-
cubes, for k = 1 the strongly cocartesian ones, for k = 0 the constant n-cubes (all
structure maps are invertible by Lemma 7.5), and for k = −1 the initial n-cubes.
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By means of Convention 7.17, this can be reformulated by saying that for every
fixed −1 ≤ k ≤ n the respective essential image consists precisely of those n-cubes
such that all (k + 1)-subcubes are cocartesian.

In §8 we discuss a relation between these derivators and the vanishing of iterated
cone constructions in the case of pointed and stable derivators. We conclude this
section by a short discussion of closure properties.

Corollary 7.19. Let D be a derivator, n ≥ 2, 1 ≤ i, j ≤ n, and 1 ≤ k < l ≤ n. A
restricted coherent n-cube X ∈ D�

n
≤l is k-cotruncated if and only if this is the case

for σ∗i,jX. In particular, in the case of l = n, we obtain that X ∈ D�
n,cotrk if and

only if σ∗i,jX ∈ D�
n,cotrk .

Proof. This is immediate from Corollary 4.10 and Theorem 7.15. �

Proposition 7.20. Let D be a derivator, n ≥ 2, 1 ≤ k ≤ n, and let X ∈ D�
n−1×[2]

with ι∗01X ∈ D�
n,cotrk . Then ι∗12X ∈ D�

n,cotrk if and only if ι∗02X ∈ D�
n,cotrk .

Proof. As of the position of a (k + 1)-cube in �n = �n−1 × [1] there are the three
cases that it lies in �n−1×{0}, in �n−1×{1}, or is the form �k× [1] for a suitable
k-subcube of �n−1. Let us assume that also ι∗12X ∈ D�

n,cotrk and let us in turn
consider the three types of (k + 1)-cubes in ι∗02X. In the first case it lies in ι∗01X,
in the second case in ι∗12X, and in the remaining case it is the composition of a
(k + 1)-cube in each of them. By Corollary 7.16 all these four (k + 1)-cubes are
cocartesian, hence so is the composition of the latter two (Theorem 4.6). Invoking
Corollary 7.16 again we deduce that ι∗02X lies in D�

n,cotrk . The converse implication
is similar. �

8. Iterated cones and total cofibers

By Corollary 7.16 an n-cube is cotruncated if and only if suitable subcubes
are cocartesian. In this and the following section we study these obstructions more
systematically in pointed and stable derivators. Total cofibers in pointed derivators
are obstructions against cocartesianness and hence against cotruncatedness, and
these obstructions are complete in the stable case. We show that total cofibers
are canonically isomorphic to n-fold cone constructions (Theorem 8.25), hence in
the stable case total cofibers are n-fold suspensions of total fibers. This leads to a
symmetric characterization of cotruncated n-cubes in stable derivators (see §9).

To begin with, we recall the following special case of the construction of canonical
comparison maps between colimiting cocones and generic cocones [Gro18, §2].

Construction 8.1. For every n ≥ 1, the n-cube �n is the cocone of the punctured
n-cube �n≤n−1 with canonical inclusion

ι≤n−1 : �n≤n−1 → �n = (�n≤n−1)B.

The cocone (�n)B = �n∗1 is obtained from �n by adjoining a new terminal object
∞ + 1, and this category corepresents morphisms of cocones on punctured cubes.
Note that in this category there is a unique morphism∞→∞+ 1 from the former
terminal object to the new terminal object. The category (�n)B comes with fully
faithful source and target inclusion functors

(8.2) s : �n → (�n)B and t : �n → (�n)B.
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Both functors are the identity on the punctured cube and they are respectively
determined by the additional relations s(∞) = ∞ and t(∞) = ∞ + 1. Given a

prederivator D and X ∈ D (�n)B , we refer to s∗X and t∗X as the source n-cube
and target n-cube, respectively.

Left Kan extension along s simply adds isomorphisms s!(X)∞
∼−→ s!(X)∞+1,

while left Kan extension along t is described in the following proposition.

Proposition 8.3. Let D be a derivator, let n ≥ 1, and let s, t : �n → (�n)B be as
in (8.2).

(i) The morphism t! : D�
n → D (�n)B is fully faithful and Y ∈ D (�n)B lies in

the essential image of t! if and only if the source cube s∗Y is cocartesian.
(ii) An n-cube X ∈ D�

n

is cocartesian if and only if the coherent morphism

t!(X)∞ → t!(X)∞+1

is an isomorphism.

Proof. This is a special case of [Gro18, Prop. 3.11] and [Gro18, Prop. 3.14]. �

Definition 8.4. Let D be a pointed derivator and let n ≥ 1. The total cofiber
of an n-cube X ∈ D�

n

is the cone of the comparison map t!(X)∞ → t!(X)∞+1,

tcof(X) = C
(
t!(X)∞ → t!(X)∞+1

)
∈ D .

Remark 8.5. Let D be a pointed derivator and let n ≥ 1.

(i) For n = 1 the total cofiber is canonically isomorphic to C.
(ii) There is the dual notion of the total fiber of an n-cube.
(iii) The total cofiber and the total fiber, respectively, define morphisms of deriva-

tors
tcof : D�

n

→ D and tfib : D�
n

→ D .

The duality principle for derivators allows us to focus on total cofibers.

Corollary 8.6. Let D be a pointed derivator, let n ≥ 1, and let X ∈ D�
n

.

(i) If X is cocartesian, then the total cofiber tcof(X) vanishes.
(ii) If D is stable, then X is cocartesian if and only if the total cofiber tcof(X)

vanishes.

Proof. By Proposition 8.3 an n-cube X ∈ D�
n

is cocartesian if and only if the
canonical morphism t!(X)∞ → t!(X)∞+1 ∈ D [1] is an isomorphism. Since cones of
isomorphisms are trivial [Gro13, Prop. 3.12], the first claim follows directly from
Definition 8.4. The second claim is also immediate since isomorphisms in stable
derivators can be characterized by the vanishing of the cone. �

By Corollary 7.16 there are variants of this for cotruncated n-cubes. A systematic
approach to a symmetric characterization for stable derivators is obtained through
an identification of total cofibers as iterated cones (Theorem 8.25), and we come
back to this in §9. We now build towards this result, including some additional
tools along the way.

Construction 8.7. Let D be a pointed derivator, n ∈ N, and 1 ≤ i ≤ n. For the
n-tuple ei = (δij)

n
j=1 = (0, . . . , 0, 1, 0, . . . 0) ∈ Nn we denote by

cofei : D�
n

→ D�
n
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the morphism which forms the cofiber in the i-th coordinate. This is the cofiber
morphism with parameters in �n−1. More generally, for m = (m1, . . . ,mn) ∈ Nn
we make the definition

(8.8) cofm = (cofen)mn ◦ . . . ◦ (cofe1)m1 : D�
n

→ D�
n

.

Proposition 8.9. For every pointed derivator D and n ∈ N the formula (8.8)
extends to a pseudo-action

cof• : Nn → End(D�
n

) : m 7→ cofm.

The derivator D is stable if and only if this pseudo-action extends to a pseudo-action

cof• : Zn → Aut(D�
n

).

Proof. The cofiber morphism cof : D [1] → D [1] is a left adjoint morphism of pointed
derivators, and hence preserves cofibers. Passing to parameterized versions, this
shows that for 1 ≤ i 6= j ≤ n there are canonical isomorphisms

cofei ◦ cofej ∼−→ cofej ◦ cofei ,

and these induce the desired pseudo-action of Nn. A pointed derivator D is stable
if and only if cof : D [1] → D [1] is an equivalence, and this property allows us to
obtain the extended pseudo-action of Zn. �

Notation 8.10. Let D be a pointed derivator and n ≥ 0.

(i) For every k ∈ N we denote by k the n-tuple (k, . . . , k) ∈ Nn and the corre-

sponding iterated cofiber construction by cofk.
(ii) In order to emphasize notationally the dimension of the cubes under consid-

eration, we also write

cof1n = cof1 : D�
n

→ D�
n

.

Corollary 8.11. For every pointed derivator D and n ≥ 1 there are canonical
isomorphisms

(cof1)3 ∼= cof3 ∼= Σn : D�
n

→ D�
n

.

Proof. The first canonical isomorphism is immediate from the pseudo-action of Nn
(Proposition 8.9). The remaining one follows from [GPS14b, Lem. 5.13] by passing
to parametrized Kan extensions. �

Instead of encoding the cofiber morphisms in Construction 8.7, we can alter-
natively keep track of the cofiber objects only, thereby obtaining the following
interesting variant.

Notation 8.12. For every n ≥ 1 and m = (m1, . . . ,mn) ∈ {0, 1}n we use the
shorthand notation

|m| = m1 + . . .+mn.

Associated to every such m there are induced cubical structure maps

0 = 0m, 1 = 1m : �n−|m| → �n

defined as follows. The functors 0m, 1m add |m| copies of 0, 1, respectively, at every
i-th coordinates such that mi = 1, while they are the identity on the remaining co-
ordinates. Moreover, we denote by m∨ ∈ {0, 1}n the n-tuple whose coordinates are
given by 1−mi. (Considered as objects in �n, we simply pass to the complement.)
Finally, using this notation, the functor m : 1→ �n classifying m factors as

(8.13) m = 0m∨ ◦∞ : 1→ �|m| → �n.
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Construction 8.14. Let D be a pointed derivator and n ∈ N. For every n-tuple
m = (m1, . . . ,mn) ∈ {0, 1}n we define the corresponding iterated cone construction
as

Cm = (1m)∗ ◦ cofm : D�
n

→ D�
n−|m|

.

In the case of m = 1n we simplify notation and write

Cn = C1n =∞∗ ◦ cof1n : D�
n

→ D .

In particular, associated to the n-tuple ei = (δij)
n
j=1 = (0, . . . , 0, 1, 0, . . . 0) ∈ {0, 1}n

for every 1 ≤ i ≤ n we obtain the morphism

Cei : D�
n

→ D�
n−1

which applies the cone C in the i-th direction, while dealing the remaining copies
of [1] as parameters.

Also in this iterated construction the order does not matter up to canonical
isomorphisms.

Corollary 8.15. For every pointed derivator D , n ∈ N, and 1 ≤ i < j ≤ n there
is a canonical isomorphism

Cei ◦ Cej ∼= Cej−1 ◦ Cei : D�
n

→ D�
n−2

.

Proof. This is immediate from Proposition 8.9. �

The classical 3-by-3-lemma in triangulated categories is closely related to this
isomorphism as we discuss in the following remark.

Remark 8.16. Let D be a pointed derivator and let � ∈ Cat be the poset [1]× [2].
Two iterations of the formation of cofiber squares yield a fully faithful morphism
of derivators D [1] → D� which sends a morphism in D to its cofiber sequence. Ap-
plying this construction in both coordinates independently, we obtain a morphism
of derivators

(8.17) D�
2

→ D�×�.

The coherent diagrams in the image of this morphism give rise to underlying inco-
herent diagrams of the form of the diagrams in the 3-by-3-lemma in triangulated

categories (or its unstable analogues). To justify this claim, let us consider X ∈ D�
2

which looks like

x
f
//

g

��

y

g′

��
z

f ′
// w.

We simplify matters a bit and begin by studying the morphism of pointed derivators

(8.18) D�
2

→ D�
4

which forms cofiber hypercubes, i.e., which forms cofiber squares in both directions
independently. (This morphism is obtained from (8.17) by restriction to the first
of the four hypercubes.) The image of X under (8.18) is displayed in Figure 3, in
which the seven different zero objects are distinguished notationally by additional
indices. The large squares in the back and the front are respectively the cofiber
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squares of f and f ′, while the upper two diagonal squares are the ones of g and
g′. The small square in the front is the cofiber square for Cg → Cg′ and the lower
right diagonal square is the one of Cf → Cf ′. In these two squares, following the
notation established in Construction 8.14, we denote by C2X the corresponding
iterated cone objects

C(Cf → Cf ′) ∼= C(Cg → Cg′),

which are isomorphic by Corollary 8.15. Passing to a suitable underlying diagram
of shape [2]× [2], we obtain the corresponding part of the diagram

x //

��

y //

��

Cf

��

// Σx

��

z //

��

w //

��

Cf ′

��

// Σz

��

Cg //

��

Cg′ //

��

C2X

��

//

(−1)

ΣCg

��

Σx // Σy // ΣCf // Σ2x,

as we are used to from the 3-by-3-lemma. If we instead apply (8.17) to X, then
similar arguments yield the corresponding incoherent diagram of shape [3] × [3].
This diagram consists of eight incoherent cofiber sequences and it commutes with
the exception of the lower right square which anticommutes [GPS14a, §4]. (An
additional incarnation of this sign shows up in tensor triangulated categories and
their refinements (see [Mar83, HPS97, May01] and the derivatorish perspective on
these axioms in [GPS14a]).)

We collect a few basic facts on these iterated cone constructions. The formation
of cofibers and restrictions in unrelated variables commute with each other. The
following lemma describes what happens if both operations are applied to the same
variables.

Lemma 8.19. Let D be a pointed derivator and n ≥ 1.

(i) There are canonical isomorphisms

0∗ ◦ cof ∼= 1∗ : D [1] → D and 1∗ ◦ cof ∼= C : D [1] → D .

(ii) For every m ∈ {0, 1}n the following square commutes up to a natural isomor-
phism

D�
n cof1 //

(1m∨ )∗

��

∼=

D�
n

(0m∨ )∗

��

D�
|m|

cof1
// D�

|m|
.
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x y

z w

0g 0g′

Cg Cg′

0 01

02 C2X

0f Cf

0f ′ Cf ′

Figure 3. The cofiber hypercube of X

(iii) For every m ∈ {0, 1}n the following square commutes up to a natural isomor-
phism

D�
n cof1 //

(1m∨ )∗

��

∼=

D�
n

m∗

��

D�
|m|

C|m|
// D .

Proof. The first statement follows from construction of C and cof, and this implies
the second one by a finite induction in combination with Proposition 8.9. Finally,
for the third statement we recall from (8.13) that the classifying functor of m factors
as m = 0m∨ ◦∞, and this establishes the first equality in

m∗ ◦ cof1 =∞∗ ◦ (0m∨)∗ ◦ cof1

∼=∞∗ ◦ cof1 ◦ (1m∨)∗

= C |m| ◦ (1m∨)∗.

The isomorphism follows from the second statement and the second equality holds
by construction (Construction 8.14). �

As an application of this result, we deduce the following stability of iterated
cones under “small perturbations”.

Corollary 8.20. Let D be a pointed derivator, let n ≥ 1, and let 0 ≤ k ≤ n. If
f : X → Y is a morphism in D�

n

such that ι∗≥kf is an isomorphism, then also the

restriction ι∗≤n−k(cof1f) is an isomorphism.

Proof. Let m ∈ {0, 1}n with classifying functor m : 1→ �n. By axiom (Der2) it suf-
fices to show that m∗cof1(f) is an isomorphism whenever |m| ≤ n−k. Lemma 8.19
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implies that this morphism is isomorphic to (C |m| ◦ (1m
∨

)∗)f , and we show that

(1m
∨

)∗f is invertible. In fact, since |m∨| = n− |m| ≥ k, the inclusion 1m
∨

factors
through ι≥k, and we conclude by assumption on f . �

Remark 8.21. Corollary 8.20 applies, in particular, to the adjunction morphisms

η : idD�n → (ι≥k)∗(ι≥k)∗ and ε : (ι≥k)!(ι≥k)∗ → idD�n

which are invertible when restricted to �n≥k. In fact, this follows from the fully
faithfulness of the respective Kan extensions and the triangular identities.

As a preparation for the applications in §9, we now collect an alternative de-
scription of total cofibers.

Proposition 8.22. For every pointed derivator D and n ≥ 1 there are adjunctions

(tcof,∞!) : D�
n

� D and (∅∗, tfib) : D � D�
n

.

Proof. Let j : [1] → (�n)B be the functor classifying the morphism ∞ → ∞ + 1.
By Definition 8.4 the total cofiber morphism is given by the composition

tcof : D�
n t!→ D (�n)B j∗→ D [1] cof→ D [1] 1∗→ D .

Each of these morphisms has a right adjoint and these are respectively given by

D
1∗→ D [1] fib→ D [1] j∗→ D (�n)B t∗→ D�

n

.

It remains to calculate the effect of this chain of right adjoints. For x ∈ D we have

(fib ◦ 1∗)(x) ∼= fib(x ∼−→ x) ∼= (0→ x).

In order to calculate j∗ we invoke the pointwise formula (axiom (Der4)). For every
object a ∈ �n the slice category (a/j) contains (a, a → ∞) as initial object, and
by homotopy initiality we hence obtain

j∗(0→ x)a ∼= 0, a 6=∞+ 1 ∈ (�n)B.

As an upshot, the chain of right adjoints sends x ∈ D to a coherent n-cube sup-
ported at∞ only where it takes x as value. But since∞ : 1→ �n is a cosieve, also
the morphism ∞! is left extension by zero, yielding the adjunction (tcof,∞!). �

Remark 8.23. Let D be a pointed derivator and n ≥ 1. The adjunction

(tcof,∞!) : D�
n

� D

exhibits tcof as an exceptional inverse image morphism

(8.24) tcof ∼=∞? : D�
n

→ D .

We recall from [Gro13, §3.1] that these are additional left adjoints to left Kan
extensions along cosieves which exist for pointed derivators.

Theorem 8.25. For every pointed derivator D and n ≥ 1 there is a canonical
isomorphism

tcof ∼= Cn : D�
n

→ D .
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Proof. The cosieve ∞ : 1→ �n factors as a composition of n cosieves

∞ : 1
1→ [1]

1→ � 1→ . . .
1→ �n,

where we invoke the shorthand notation

1 = id�k × 1: �k → �k+1, 0 ≤ k ≤ n− 1.

For each of these cosieves the corresponding exceptional inverse image morphism is
given by

(8.26) 1? ∼= Cek+1 : D�
k+1

→ D�
k

,

as is immediate from [Gro13, Prop. 3.22] by dealing �k in �k × [1] as parameters.
By (8.24) and two applications of the uniqueness of left adjoints (first to left Kan
extensions and then to exceptional inverse images) we obtain the first two canonical
isomorphisms in

tcof ∼=∞?

∼= 1? ◦ . . . ◦ 1?

∼= Ce1 ◦ . . . ◦ Cen

= Cn.

The remaining isomorphism is simply (8.26). �

Remark 8.27. For every pointed derivator D there is a canonical comparison map

(8.28) Σ ◦ F → C : D [1] → D ,

and D is stable if and only if this comparison map is invertible. If n ≥ 1 and
m ∈ {0, 1}n, then an application of (8.28) in |m| coordinates independently yields
a canonical comparison map

Σ|m| ◦ Fm → Cm : D�
n

→ D�
n−|m|

,

which is invertible in stable derivators. This applies, in particular, to the canonical
comparison maps

Σn ◦ tfib→ tcof : D�
n

→ D .

Theorem 8.25 suggests that cof1 is more elementary than tcof in that the latter
can be obtained from the former by evaluation. To conclude this section we show
that this is only seemingly the case by proving that cof1 can be derived from a
parametrized version of tcof (Proposition 8.32).

Lemma 8.29. Let D be a pointed derivator, n ≥ 1, and m ∈ �n. There is a
canonical natural isomorphism tcof ∼= tcof ◦ (1m∨)!,

D�
|m| (1m∨ )!

//

tcof
##

D�
n

tcof

��

D .

Proof. By Proposition 8.22 the composition tcof ◦ (1m∨)! is left adjoint to the com-
position (1m∨)∗ ◦ ∞!

∼= ∞!. By uniqueness of adjoints the claim follows from a
second application of Proposition 8.22. �
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As a consequence of Theorem 8.25 and Lemma 8.29, the local description for the
cofiber cube cof1 provided by Lemma 8.19 (iii) admits the reformulation

m∗ ◦ cof1 ∼= tcof ◦ (1m∨)!, m ∈ �n.

To show that these natural isomorphisms are coherently compatible for m ∈ �n we
consider the following construction.

Construction 8.30. Let D be a pointed derivator, let n ≥ 0, and let A be the full
subcategory of �n ×�n spanned by the objects

{(m1,m2) ∈ �n ×�n| m∨2 ⊆ m1}.

Furthermore, let i : A→ �n×�n be the inclusion and p = π ◦ i be the composition
with the projection to the second component. We define

E = i! ◦ p∗ : D�
n

→ D�
n×�n

and observe that i! is left extension by zero since i is a cosieve. The local description

(8.31) (id×m2)∗ ◦ E ∼= (1m∨2 )! ◦ (1m∨2 )∗

follows directly from the definition and a more careful investigation shows, that for
m2 ∈ �n and im2

: [1]→ �n the map classifying m2 →∞ the inverse image

(id× im2
)∗ ◦ E : D�

n

→ D�
n×[1]

gives a coherent model for the counit of the adjunction ((1m∨2 )!, (1m∨2 )∗). This also
explains the notation E, which is meant to be reminiscent of a capital epsilon.

In the following proposition, tcof�
n

: D�
n×�n → D�

n

denotes the total cofiber
morphism for the shifted derivator D�

n

with parameters in the second component
in �n ×�n.

Proposition 8.32. Let D be a pointed derivator and n ≥ 1. There is a natural
isomorphism

tcof�
n

◦ E ∼= cof1 : D�
n

→ D�
n

.

Proof. The morphisms in the statement can be obtained from the 2n-cube

E′ = (cof1 × id) ◦ E : D�
n

→ D�
n×�n

via postcomposition with restrictions

(8.33) (∞× id)∗ ◦ E′ ∼= tcof�
n

◦ E and (id×∞)∗ ◦ E′ ∼= cof1.

The first identification follows from Lemma 8.19 and Theorem 8.25 whereas the
second one is immediate. To relate these restrictions we consider the natural trans-
formations α1 : ∆→ (∞×id) and α2 : ∆→ (id×∞) of functors �n → �n×�n. We
show that for all m ∈ �n the natural transformations m∗ ◦α∗1 ◦E′ and m∗ ◦α∗2 ◦E′
are isomorphisms. For this, it is clearly sufficient to prove that the m∨-cubes

Q1 = ((1m)∗ ×m∗) ◦ E′ and Q2 = (m∗ × (1m)∗) ◦ E′

are constant, since the natural transformations under consideration describe the
passage from the initial to the final vertex in Q1 respectively Q2.
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(i) In the case of Q1 we make the identifications

Q1

= ((1m)∗ ×m∗) ◦ E′

= ((1m)∗ ×m∗) ◦ (cof1 × id) ◦ E
∼= (1m)∗ ◦ cof1 ◦ (id×m∗) ◦ E
∼= (1m)∗ ◦ cof1 ◦ (1m∨)! ◦ (1m∨)∗

∼= Cm ◦ cofm
∨
◦ (1m∨)! ◦ (1m∨)∗

∼= Cm ◦ (πm
∨

)∗ ◦ (1m∨)∗

where πm
∨

: �n → �m is the projection. In the second isomorphism we use
(8.31), the third isomorphism is Lemma 8.19(i) and the last step follows from
the obvious relation

cof ◦ 1!
∼= π∗ : D → D [1].

These identifications show that Q1 is constant.
(ii) Similarly, in the case of Q2 we calculate

Q2

= (m∗ × (1m)∗) ◦ E′

= (m∗ × (1m)∗) ◦ (cof1 × id) ◦ E
∼= (id× (1m)∗) ◦ ((m∗ ◦ cof1)× id) ◦ E
∼= (id× (1m)∗) ◦ ((Cm ◦ (1m∨)∗)× id) ◦ E
∼= (Cm × id) ◦ ((1m∨)∗ × (1m)∗) ◦ E
∼= (Cm × id) ◦ (π

m∨

1 )∗ ◦ (1m∨)∗.

Here π
m∨

1 : �m × �m∨ → �m is the projection onto the first coordinate.
Moreover, the second isomorphism is Lemma 8.19, the third one is the com-
patibility of Kan extensions and restrictions in unrelated variables, and the
last one follows from the definition of A. Thus, these identifications show
that also Q2 is constant.

Since isomorphisms in derivators are detected pointwise (axiom (Der2)), we can
invoke the identifications (8.33) in order to conclude that

(α2 ◦ E′) ◦ (α1 ◦ E′)−1 : tcof�
n

◦ E ∼−→ cof1

yields the desired natural isomorphism. �

9. Strong stable equivalences for cotruncated n-cubes

In this short section we apply our previous results on iterated cofibers to deriva-
tors of cotruncated n-cubes. For stable derivators, we characterize cotruncated
n-cubes by the vanishing of iterated cone constructions, and this yields the strong
stable equivalences of �n≤k and �n≥n−k (Theorem 9.4). In §10 we generalize this to
arbitrary chunks of n-cubes.

Corollary 9.1. Let D be a pointed derivator, let n ≥ 1, and let X ∈ D�
n

.

(i) If X is cocartesian, then Cn(X) vanishes.
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(ii) If D is stable, then X is cocartesian if and only if Cn(X) vanishes.

Proof. By Theorem 8.25 this is merely a reformulation of Corollary 8.6. �

This allows us to collect in a uniform way the following obstructions against
cotruncatedness.

Proposition 9.2. Let D be a pointed derivator, n ≥ 1, 1 ≤ k ≤ n, and X ∈ D�
n

.

(i) If X ∈ D�
n,cotrk , then Cm(X) vanishes for all |m| = k + 1.

(ii) If D is stable, then X ∈ D�
n,cotrk if and only if Cm(X) vanishes for all

|m| = k + 1.

Proof. The n-cube X is k-cotruncated if and only if every (k + 1)-subcube of X
is cocartesian (Theorem 7.15). Such a (k + 1)-subcube is obtained by choosing
coordinates in the remaining n − k − 1 directions. For a choice of such directions
there are 2n−k−1 different subcubes of dimension (k + 1), which is to say that we

simply consider X as living in (D�
n−k−1

)�
k+1

. And by [Gro13, Cor. 2.6] X defines a

cocartesian (k+1)-cube in D�
n−k−1

if and only if the (k+1)-cubes Xa, a ∈ �n−k−1,
are cocartesian. As an upshot, X ∈ D�

n

is k-cotruncated if and only if all (k+ 1)-

cubes of the form X ∈ (D�
n−k−1

)�
k+1

are cocartesian. The result hence follows
from Corollary 9.1. �

Corollary 9.3. Let D be a stable derivator, n ≥ 1, and 1 ≤ k ≤ n. An n-cube
X ∈ D�

n

is k-cotruncated if and only if it is (n− k)-truncated. In particular, X is
strongly cocartesian if and only if X is strongly cartesian, and X is cocartesian if
and only if X is cartesian.

Proof. An n-cube X is k-cotruncated if and only if for every m ∈ {0, 1}n with
|m| = k+ 1 we have Cm(X) ∼= 0. Invoking Remark 8.27 this is the case if and only
if (Σ|m|◦Fm)X ∼= 0 which is to say that FmX ∼= 0 for all m with |m| = k+1. By the
dual of Proposition 9.2 this is the case precisely when X is (n− k)-truncated. �

The special case of strongly (co)cartesian n-cubes was already dealt with as
[GŠ14, Cor. 8.13]. This result can be reformulated in terms of abstract representa-
tion theory (see [GŠ14] and its sequels). Let us recall that two small categories A,B
are strongly stably equivalent if for every stable derivator D there is an equivalence
of derivators DA ' DB which is pseudo-natural with respect to exact morphisms
of derivators (see [GŠ14, Def. 5.1] for more details). The following is essentially a
reformulation of earlier results, but due to its importance to this cubical calculus
we formulate the result as a theorem.

Theorem 9.4. For every n ≥ 1 and 0 ≤ k ≤ n the categories �n≤k and �n≥n−k are
strongly stably equivalent.

Proof. For every derivator D there are equivalences of derivators

D�
n
≤k ' D�

n,cotrk and D�
n,trn−k ' D�

n
≥n−k

given by left and right Kan extension, respectively. If D is stable, then the derivators
D�

n,cotrk and D�
n,trn−k are equal (Corollary 9.3), and the result follows from the

compatibility of exact morphisms of stable derivators with homotopy finite Kan
extensions. �

The first statement in Proposition 9.2 admits the following generalization that
cones decrease the degree of cotruncatedness by one.
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Proposition 9.5. Let D be a pointed derivator, n ≥ 1, and 1 ≤ k ≤ n. For every

1 ≤ j ≤ n the partial cone Cej : D�
n → D�

n−1

restricts to a morphism

Cej : D�
n,cotrk → D�

n−1,cotrk−1 .

Proof. We denote by 1ej : �n−1 → �n the functor which includes a 1 in the j-th
spot. Associated to this functor, there is the commutative diagram

�n−1
≤k−1

1ej
//

ι

��

�n≤k

ι

��

�n−1

1ej

// �n

?Gid

in Cat (which we on purpose populate by the identity transformation). Note that
this square is a pullback square in which the vertical functors are sieves and the
horizontal functors are cosieves. Hence, Lemma 5.3 shows in two different ways
that this square is homotopy exact and the resulting canonical mate

D�
n−1
≤k−1

ι∗

��

D�
n
≤k

(1ej )∗
oo

ι∗

��

V^
∼=

D�
n−1

D�
n

(1ej )∗
oo

is invertible. Clearly, the vertical morphisms have second left adjoints. This is also
the case for the horizontal morphisms (Remark 8.23), hence by passing to second
left adjoints everywhere we obtain a canonical isomorphism

(9.6)

D�
n−1
≤k−1

ι!

��

D�
n
≤k

(1ej )?
oo

ι!

��

V^
∼=

D�
n−1

D�
n

,
(1ej )?
oo

We invoke (8.26) to see that the bottom morphism in this diagram is isomorphic

to Cej : D�
n → D�

n−1

, concluding the proof. �

Remark 9.7. (i) The natural isomorphism (9.6) constructed in the proof actually
offers a more precise formulation of Proposition 9.5.

(ii) The upper horizontal morphisms in (9.6) will be examined further in the
discussion of the level structure in [BG18b].

(iii) By a similar argument, there are variants for ιl,k : �n≤k → �n≤l, 1 ≤ k ≤ l ≤ n.
In fact, in that case also

�n−1
≤k−1

1ej
//

ιl−1,k−1

��

�n≤k

ιl,k

��

�n−1
≤l−1 1ej

// �n≤l

?Gid

is homotopy exact.
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The following corollary actually follows immediately from Proposition 9.2, but
we postponed it until now in order to put it into context with Proposition 9.5.

Corollary 9.8. Let D be a stable derivator, n ≥ 1, 1 ≤ k ≤ n, and X ∈ D�
n

.
The following are equivalent.

(i) The n-cube X is k-cotruncated.
(ii) The (n− 1)-cube CejX is (k − 1)-cotruncated for every 1 ≤ j ≤ n.

(iii) There exists a subset N ⊂ {1, . . . , n}, |N | = n− k, such that for every j ∈ N
the (n− 1)-cube CejX is (k − 1)-cotruncated.

Proof. By Proposition 9.2 it remains to show that (iii) implies (i), and to this
end, again by Proposition 9.2, it is enough to verify that CmX vanishes for all
|m| = k + 1. For any such m there is an index j ∈ N with mj = 1, and CmX is
by Corollary 8.15 isomorphic to a k-fold cone of CejX. Invoking Proposition 9.2
again we conclude that this iterated cone vanishes. �

As a variant of Proposition 9.2 we obtain the following result.

Corollary 9.9. Let D be a pointed derivator, n ≥ 1, 1 ≤ k ≤ n, and X ∈ D�
n

.

(i) If X ∈ D�
n,cotrk , then Cm(X) ∈ D�

n−k

is constant for all |m| = k.

(ii) If D is stable, then X ∈ D�
n,cotrk if and only if Cm(X) ∈ D�

n−k

is constant
for all |m| = k.

Proof. By pasting k squares of the type (9.6), we obtain a canonical isomorphism

D�
n−k
≤0

ι!

��

D�
n
≤k

(1m)?
oo

ι!

��

W_
∼=

D�
n−k

D�
n

,
Cm
oo

Since ι : 1 = �n−k≤0 → �n−k classifies the initial object, the corresponding left Kan

extension morphism forms constant (n− k)-cubes. �

Of particular interest is the following special case of Corollary 9.9 (k = n− 1).

Remark 9.10. Let D be a pointed derivator, n ≥ 1, and X ∈ D�
n

.

(i) If X is cocartesian, then Cm(X) ∈ D [1] is an isomorphism for all |m| = n−1.
(ii) If D is stable, then X is cocartesian if and only if Cm(X) ∈ D [1] is an

isomorphism for all |m| = n−1 if and only if this is the case for some m with
|m| = n− 1.

For the last reformulation we invoke Corollary 9.8. The first statement in the case
of n = 2 is hence a derivatorish version of the following classical fact from ordinary
category theory. Given a pushout square

x
f
//

g

��

y

g′

��

x′
f ′
// y′

in a pointed and finitely cocomplete category, then the maps cok(f)→ cok(f ′) and
cok(g)→ cok(g′) are isomorphisms.
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∅ // �n=0
// �n0≤1

// . . . // �n0≤n−1
// �n

∅ //

OO

�n=1
//

OO

. . . //

OO

�n1≤n−1
//

OO

�n1≤n

OO

. . .

OO

// . . .

OO

// . . .

OO

// . . .

OO

. . .

OO

// �n=n−1
//

OO

�nn−1≤n

OO

∅ //

OO

�n=n

OO

∅

OO

Figure 4. The cardinality filtration of the n-cube

10. Chunks of n-cubes

In this section we begin our systematic study of abstract representations of var-
ious subposets of n-cubes. For this purpose, it is convenient to consider the car-
dinality filtration of the n-cube as summarized in Figure 4. We begin to analyze
this diagram in quite some detail in the sections §§10-12 and we pursue this further
in [BG18a].

To begin with, in this section we show that for every 0 ≤ k ≤ l ≤ n the chunk
�nk≤l has the same abstract representation theory as �nn−l≤n−k. This generalizes

the corresponding result for �n≤l and �n≥n−l (Theorem 9.4) to arbitrary chunks.
As a preparation, we collect some convenient facts in the following special case.

Notation 10.1. Let D be a stable derivator, n ≥ 0 and 0 ≤ k ≤ n. By Corollary 9.3
an arbitrary X ∈ D�

n

is k-cotruncated if and only if it is (n − k)-truncated. In
this case we refer to X as a k-determined n-cube and write

D�
n,k = D�

n,cotrk = D�
n,trn−k

for the corresponding derivator.

Lemma 10.2. Let D be a stable derivator, let n ≥ 0, and 0 ≤ k ≤ n.

(i) The equivalence (cof1, fib1) : D�
n ' D�

n

restricts to an equivalence

(cof1, fib1) : D�
n,k ' D�

n,�n
≥k+1 .

(ii) The equivalence (cof1, fib1) : D�
n ' D�

n

restricts to an equivalence

(cof1, fib1) : D�
n,�n
≤n−(k+1) ' D�

n,k.

Proof. The equivalence cof1 : D�
n ∼−→ D�

n

induces by restriction an equivalence

cof1 : (cof1)−1(D�
n,�n
≥k+1) ∼−→ D�

n,�n
≥k+1 .
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For X ∈ D�
n

we note that cof1(X) vanishes on �n≥k+1 if and only if CmX ∼= 0

for all |m| ≥ k+ 1 (see Construction 8.7 and Construction 8.14) if and only if X is
k-determined (Corollary 9.8). �

Corollary 10.3. Let D be a stable derivator, let n ≥ 0, and 0 ≤ k ≤ n. The
equivalence (cof1, fib1) : D�

n ' D�
n

restricts to an equivalence

(cof1, fib1) : D�
n,�n
≥k ' D�

n,�n
≤n−k .

Proof. By restriction there is an equivalence of derivators

cof1 : (cof1)−1(D�
n,�n
≤n−k) ∼−→ D�

n,�n
≤n−k

and it suffices to identify this preimage. For X ∈ D�
n

we note that cof1(X) lies in

D�
n,�n
≤n−k if and and only if

Ωncof1(X) ∼= fib2(X) ∈ D�
n,�n
≤n−k .

Invoking Lemma 10.2 twice, this is the case if and only if fib1(X) ∈ D�
n,k−1 which

in turn is equivalent to X ∈ D�
n,�n
≥k . �

Next, we analyze to some extent the generic rectangles in Figure 4.

Lemma 10.4. For every n ≥ 0 and 0 ≤ k ≤ k′ ≤ l′ ≤ l ≤ n the fully faithful
inclusion �nk′≤l′ → �nk≤l factors as a cosieve followed by sieve

il,l′ ◦ jk,k′ : �nk′≤l′ → �nk≤l′ → �nk≤l
and as a sieve followed by a cosieve

jk,k′ ◦ il,l′ : �nk′≤l′ → �nk′≤l → �nk≤l.

The commutative square in Cat

(10.5)

�nk′≤l′

jk,k′

��

il,l′
//

�� id

�nk′≤l

jk,k′

��

�nk≤l′ il,l′
// �nk≤l

is a pullback square and is homotopy exact.

Proof. The factorizations are immediate as is the fact that the square is a pullback.
To conclude the proof it suffices to invoke Lemma 5.3. �

This shows that in every derivator there are canonical isomorphisms

(jk,k′)!(il,l′)
∗ ∼−→ (il,l′)

∗(jk,k′)!.

More interestingly, there is the following closely related observation.

Lemma 10.6. For every n ≥ 0 and 0 ≤ k ≤ k′ ≤ l′ ≤ l ≤ n and every derivator
D there are canonical isomorphisms

(10.7) (jk,k′)!(il,l′)∗
∼−→ (il,l′)∗(jk,k′)! : D�

n
k′≤l′ → D�

n
k≤l .
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Proof. Left Kan extensions along cosieves are left extensions by initial objects and
dually for right Kan extensions along sieves. Let D�

n
k≤l,ex ⊆ D�

n
k≤l be spanned by

all X such that
X|�n

l′+1≤l
= ∗ and X|�n

k≤k′−1
= ∅.

Then the above two compositions restrict to equivalences

(jk,k′)!(il,l′)∗ : D�
n
k′≤l′ ∼−→ D�

n
k≤l,ex, (il,l′)∗(jk,k′)! : D�

n
k′≤l′ ∼−→ D�

n
k≤l,ex,

and this exhibits both as inverse equivalences to the restriction morphism. �

We are mostly interested in this result for pointed derivators.

Notation 10.8. For every n ≥ 0 and 0 ≤ k ≤ k′ ≤ l′ ≤ l ≤ n and every pointed
derivator D we denote by

(10.9) z = zk≤lk′≤l′ : D�
n
k′≤l′ → D�

n
k≤l

any of the naturally isomorphic morphisms (10.7), which extends a given [k′, l′]-
chunk by zeros on both sides. (The letter z is meant to remind us of the word
‘zero’.) As a special case we have the equivalence

(10.10) z = zk≤l = z0≤n
k≤l : D�

n
k≤l ∼−→ D�

n,(�n
≤k−1∪�

n
≥l+1).

As a variant of this, we can consider only left Kan extensions or only right Kan
extensions along the functors in (10.5). By uniqueness of adjoints we hence obtain
canonical isomorphisms

(jk,k′)!(il,l′)!
∼−→ (il,l′)!(jk,k′)! : D�

n
k′≤l′ → D�

n
k≤l .

For later reference, we denote any of these naturally isomorphic compositions by

(10.11) l = lk≤lk′≤l′ : D�
n
k′≤l′ → D�

n
k≤l .

Similarly, in the case of right Kan extensions there are canonical isomorphisms

(jk,k′)∗(il,l′)∗
∼−→ (il,l′)∗(jk,k′)∗ : D�

n
k′≤l′ → D�

n
k≤l ,

and we refer to these composition by the shorthand notation

(10.12) r = rk≤lk′≤l′ : D�
n
k′≤l′ → D�

n
k≤l .

With this preparation we now show that �nk≤l and �nn−l≤n−k are strongly stably
equivalent.

Construction 10.13. Let D be a stable derivator, n ≥ 0, and 0 ≤ k ≤ l ≤ n. Up
to equivalence, the codomain of the equivalence (10.10) can be written differently.
In fact, it follows from Lemma 10.2 and Corollary 10.3 that cof1 : D�

n ∼−→ D�
n

restricts to the following three outer equivalences in

D�
n,(�n

0≤k−1∪�
n
l+1≤n)

cof1

∼
$$

D (�n,l),�n
≥n−k+1

cof1

∼

33

D�
n
k≤l

∼ z

OO

D (�n,n−k),�n
≤n−l−1 .

cof1

∼

ii

By symmetry there is a similar diagram if we start with D�
n
n−l≤n−k instead, and

these two diagrams constitute the upper and the lower part in Figure 5, respectively.
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D�
n,(�n

0≤k−1∪�
n
l+1≤n)

%%

D (�n,l),�n
≥n−k+1

33

D�
n
k≤l

OO

xx &&

D (�n,n−k),�n
≤n−l−1

ii

D (�n,l),�n
≤k−1

**

D�
n
n−l≤n−k

��

ff 88

D (�n,n−k),�n
≥l+1

ss
D�

n,(�n
0≤n−l−1∪�

n
n−k+1≤n)

cc

Figure 5. Strong stable equivalences between chunks

The two additional equivalences pointing to the northeast and the southwest are
restricted left Kan extension morphisms, while the two equivalences pointing to the
northwest and the southeast are restrictions of right Kan extension morphisms.

Warning 10.14. Note that we do not claim that Figure 5 commutes, and we come
back to a more careful discussion of Figure 5 in §11.

Theorem 10.15. For every n ≥ 0 and every 0 ≤ k ≤ l ≤ n the chunks �nk≤l and
�nn−l≤n−k are strongly stably equivalent.

Proof. It suffices to note that the graph of Figure 5 is path-connected. In fact,
by the details in Construction 10.13, all morphisms in that diagram are given by
combinations of homotopy finite Kan extensions in stable derivators, and exact mor-
phisms of stable derivators are pseudo-natural with respect to such Kan extensions
[Gro18, §9]. �

In the above proof we did not make specific a particular strong stable equivalence,
instead we merely invoked the path-connectedness of Figure 5. In the following two
sections we improve on this and, as a preparation, we conclude this section by
introducing the following notation for the morphisms in Figure 5.

Remark 10.16. Let D be a stable derivator, n ≥ 0, and 0 ≤ k ≤ l ≤ n. The six mor-
phisms in the two circles of Figure 5 are restrictions of cof1 to suitable equivalences.
For the remaining six cases, we consider the morphism i = i0≤nk≤l : (k, l) → (0, n) in

chunk(�n) and its image i∨ = i0≤nn−l≤n−k under the chunk symmetry (12.3). Then,
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using suggestive notation, we have

↘ : i'∗ = r',

↙ : i'! = l',

↖ : (i∨)'∗ = (r∨)',

↗ : (i∨)'! = (l∨)',

↑ : z', and

↓ : (z∨)'.

11. Strong stable equivalences and Serre equivalences

In this section we address the lack of commutativity of Figure 5. Traveling along
one of the circles gives rise to the auto-equivalence Σn (Corollary 8.11). There are
two other types of elementary subcells in Figure 5:

(i) There are two triangles in the central part of the diagram.
(ii) There are two hexagons, one of them is concentrated in the left part and the

other one in the right part of Figure 5.

These respective subcells give rise to Serre equivalences and to two different strong
stable equivalences for chunks. Let us begin by studying the two triangles more
carefully (see Remark 10.16 for an explanation of the notation).

Definition 11.1. Let D be a stable derivator, n ≥ 0, and 0 ≤ k ≤ l ≤ n.

(i) The Serre morphism S := Sk,l := S
(n)
k,l : D�

n
k≤l ∼−→ D�

n
k≤l is given by

(r')−1 ◦ cof1 ◦ l' : D�
n
k≤l ∼−→ D�

n
k≤l .

(ii) The morphism S̃ := S̃k,l := S̃
(n)
k,l : D�

n
n−l≤n−k ∼−→ D�

n
n−l≤n−k is given by

((r∨)')−1 ◦ cof1 ◦ (l∨)'

and called the opposite Serre morphism.

Before we justify the terminology by some examples, we make the following
remark.

Remark 11.2. Let n ≥ 0 and 0 ≤ k ≤ l ≤ n. The category �n is self-dual, and
under this equivalence the chunk �nk≤l is identified with the dual chunk

(�nk≤l)
∨ = �nn−l≤n−k.

This duality corresponds in Figure 5 to a rotation by π, and we obtain a corre-
sponding identification

S̃k,l = Sn−l,n−k.

We now relate these Serre morphisms to other instances of Serre morphisms in
abstract representation theory. A more detailed discussion of these Serre morphisms
and global versions of them will appear in [BG18b]. In the cases where a chunk �nk≤l
is (strongly stably equivalent to) a product of Am-quivers we can compare the Serre
morphisms of Definition 11.1 with the Serre morphisms discussed in [GŠ16]. This
shows, in particular, that these Serre equivalences are not necessarily identities.
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Example 11.3. For n ≥ 0 the full cube �n is the nth power of the A2-quiver [1].
For A2-quivers Serre equivalences are given by the cofiber morphism cof ([GŠ16,

Lem. 5.16]), and since S
(n)
0,n = cof1, we immediately see that both definitions are

compatible.

Example 11.4. The chunk �2
≤1 is an A3-quiver, and in this example we show that

the corresponding Serre morphisms from Definition 11.1 agrees with the one from
[GŠ16, §5] (and hence with the classical one from representation theory). To distin-

guish these notationally, we temporarily write Ŝ for these latter Serre morphisms.

(i) We begin with a calculation of S
(2)
0,1 , and to this end we consider the diagram

x∅
f

//

g

��

x1
//

��

Cf

∼
��

x2
//

��

x1 ∪x∅ x2
//

��

Cf

��

Cg ∼
// Cg // 0.

By definition of S
(2)
0,1 , we first complete the span X = (x2 ← x∅ → x1) to

a cocartesian square. We next extend all morphisms to cofiber sequences in
order to obtain cof1l'(X) as the lower right square in the above diagram.
By abuse of notation we wrote Cf and Cg twice, and this is justified by

Corollary 9.9. To conclude the description of S
(2)
0,1(X) we restrict this square

to the span (Cg ← x1 ∪x∅ x2 → Cf).

(ii) On the other hand the Serre morphism Ŝ for the A3-quiver is up to a suspen-
sion constructed by iterated reflections at an admissible sequence of sinks. In
our case of the source of valence two this amounts to two reflections at the
outer vertices followed by a reflection at the central one. To describe this we
consider the following diagram consisting of bicartesian squares:

Fg ×x∅ Ff //

��

Ff //

��

0

��
Fg //

��

x∅
f
//

g

��

x1

0 // x2

We obtain Ŝ(X) as the supension of the span (Fg ← Fg×x∅ Ff → Ff). Up
to a flip, this suspension is obtained by extending the previous diagram to
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the following mesh

(11.5)

Fg ×x∅ Ff //

��

Ff //

��

0

��
Fg //

��

x∅
f

//

g

��

x1

��

// 0

��

0 // x2
//

��

x1 ∪x∅ x2
//

��

Cg

��

0 // Cf // Σx∅

in turn by adding bicartesian squares (see [GŠ16, §4]).

These calculations show that the two Serre morphisms are naturally isomorphic. In
particular, recycling the fractionally Calabi–Yau property from [GŠ16, Thm. 5.19]

we conclude that (S
(2)
0,1)4 ∼= Σ2. Moreover, (11.5) shows that there is a natural

isomorphism (S
(2)
0,1)2 ∼= σ∗1,2Σ.

Dual arguments apply to the case of �n≥1.

Example 11.6. The chunk �3
≤1 is the trivalent source and hence strongly stably

equivalent to the product of two A2-quivers ([GŠ14, Thm. 9.2]). Using arguments
similar to (but more involved than) the ones in Example 11.4, one shows that the
Serre morphisms are also compatible in this case. As a consequence of [GŠ16,

Thm. 5.19] we obtain the fractionally Calabi–Yau property (S
(3)
0,1)3 ∼= Σ2.

Remark 11.7. In contrast to the previous cases, it is not always true that suitable

powers of the Serre morphisms S
(n)
k,l and the suspensions are isomorphic. For in-

stance, this is impossible for the chunk �3
1≤2 as we can already see at the level of

underlying diagrams. In fact, let X ∈ D�
3
1≤2 be obtained from x ∈ D by applying

ι∗1≤2 ◦ cof1 ◦ (ι=2)! ◦ π∗�3
=2

. The underlying diagram is given by:

Xm =

{
x2 = x⊕ x, if |m| = 1,

x, if |m| = 2

Inductively, one can show that

(S
(3)
1,2)nXm =

{
Σnx2+2n, if |m| = 1,

Σnx1+2n, if |m| = 2.

We thank Jan Šťov́ıček for pointing out to us, that there are also purely repre-
sentation theoretic arguments to obtain the same conclusion. In fact, over a field k
the poset �3

1≤2 is derived equivalent to the extended Dynkin quiver of type Ã5,
which has tame infinite representation type and these are not fractionally Calabi–
Yau. And by passing to the derivator Dk of the field k, the abstract fractionally
Calabi–Yau property would imply the classical one which is impossible.

Next, we turn to a discussion of the hexagons in Figure 5 which will lead to
two different strong stable equivalences. We again refer to Remark 10.16 for the
notation.
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Construction 11.8. Let D be a stable derivator, n ≥ 0, and 0 ≤ k ≤ l ≤ n. The
hexagon on the right in Figure 5 gives rise to the two equivalences

Hr1, Hr2 : D�
n
k≤l ∼−→ D�

n
n−l≤n−k

which are respectively given by

Hr1 = ((l∨)')−1 ◦ cof1 ◦ z' and Hr2 = ((z∨)')−1 ◦ cof1 ◦ r'.

Similarly, the hexagon on the left yields the two equivalences

H l1, H l2 : D�
n
n−l≤n−k ∼−→ D�

n
k≤l

defined by the formulas

H l1 = (l')−1 ◦ cof1 ◦ (z∨)' and H l2 = (z')−1 ◦ cof1 ◦ (r∨)'.

To distinguish these equivalences for the various chunks �nk≤l notationally, we
also write

Hr1 = Hr1
k,l = (Hr1

k,l)
(n),

and similarly in the remaining three cases. Similar to Remark 11.2, we note that
the self-duality of �n yields the identifications

H l1
k,l = Hr1

n−l,n−k and H l2
k,l = Hr2

n−l,n−k.

We observe that the compositions Hr1 and Hr2 are exactly the boundary of right
hexagon in Figure 5. Thus the following result is equivalent to the commutativity
of this hexagon.

Lemma 11.9. Let D be a stable derivator, n ≥ 0, and 0 ≤ k ≤ l ≤ n. The two
strong stable equivalences Hr1, Hr2 : D�

n
k≤l ∼−→ D�

n
n−l≤n−k are canonically isomor-

phic.

Proof. Since all morphisms in Figure 5 are equivalences, it is sufficient to show that
the compositions

(11.10) cof1 ◦ (r)' ◦ ((z)')−1 and (z∨)' ◦ ((l∨)')−1 ◦ cof1

are naturally isomorphic. We see immediately that there are natural isomorphisms

(r)' ◦ ((z)')−1 ∼= (ι≥k)∗(ι≥k)∗ and (z∨)' ◦ ((l∨)')−1 ∼= (ι≤n−k)∗(ι≤n−k)∗.

Thus, for X ∈ D�
n,(�n

0≤k−1∪�
n
l+1≤n), the unit η of the adjunction ((ι≥k)∗, (ι≥k)∗)

can be identified with a morphism X
ηX−−→ (r)' ◦ ((z)')−1X such that (ι≥k)∗(ηX) is

an isomorphism. Then Corollary 8.20 implies that (ι≤n−k)∗cof1(ηX) isomorphism,

hence so is (ι≤n−k)∗(ι≤n−k)∗cof1(ηX). Since (ι≤n−k)∗ is right extension by zero,

the corresponding unit yields id ∼−→ (ι≤n−k)∗(ι≤n−k)∗ on D�
n,(�n

0≤n−l−1∪�
n
n−k+1≤n),

and this yields the natural isomorphism of the compositions in (11.10). �

Remark 11.11. Let D be a stable derivator, n ≥ 0, and 0 ≤ k ≤ l ≤ n. By precisely
the same argument one shows that the equivalences H l1 and H l2 constituting the
hexagon on the left in Figure 5 are canonically isomorphic.

Definition 11.12. Let D be a stable derivator, n ≥ 0, and 0 ≤ k ≤ l ≤ n. We
write

Φk,l = Φ
(n)
k,l : D�

n
k≤l ∼−→ D�

n
n−l≤n−k
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for any of the naturally isomorphic equivalences Hr1 ∼= Hr2, and refer to it as the
right strong stable equivalence. Similarly, the left strong stable equivalence

Ψk,l = Ψ
(n)
k,l : D�

n
n−l≤n−k ∼−→ D�

n
k≤l

is defined to be any of the naturally isomorphic H l1 ∼= H l2.

Corollary 11.13. Let D be a stable derivator, n ≥ 0, and 0 ≤ k ≤ l ≤ n. Then
there is a natural isomorphism

Σn ∼= Ψk,l ◦ S̃k,l ◦ Φk,l : D�
n
k≤l ∼−→ D�

n
k≤l

and

Σn ∼= Φk,l ◦ Sk,l ◦Ψk,l : D�
n
n−l≤n−k ∼−→ D�

n
n−l≤n−k .

Proof. This follows by unraveling definitions and Corollary 8.11. �

Corollary 11.14. Let D be a stable derivator, n ≥ 0, and 0 ≤ k ≤ l ≤ n. Then
there are natural isomorphisms

Sk,l ∼= Ψk,l ◦ S̃k,l ◦Ψ−1
k,l
∼= Φ−1

k,l ◦ S̃k,l ◦ Φk,l.

Proof. In the proof we drop indices from notation and use H l1 as a model for Ψ.
We show that id ∼= H l1 ◦ S̃ ◦ (H l1)−1 ◦ S−1, and begin by observing that the right
hand side is given by

(l')−1◦cof1◦(z∨)'◦((r∨)')−1◦cof1◦(l∨)'◦((z∨)')−1◦fib1◦ l'◦(l')−1◦fib1◦r'.
The two morphisms l' and (l')−1 at the end of this expression cancel and we are
left with the first line in

(l')−1 ◦ cof1 ◦ (z∨)' ◦ ((r∨)')−1 ◦ cof1 ◦ (l∨)' ◦ ((z∨)')−1 ◦ fib1 ◦ fib1 ◦ r'

∼= Ωn ◦ (l')−1 ◦ cof1 ◦ (z∨)' ◦ ((r∨)')−1 ◦ cof1 ◦ (l∨)' ◦ ((z∨)')−1 ◦ cof1 ◦ r'

∼= Ωn ◦ (l')−1 ◦ cof1 ◦ (z∨)' ◦ ((r∨)')−1 ◦ cof1 ◦ (l∨)' ◦ ((l∨)')−1 ◦ cof1 ◦ z'

∼= Ωn ◦ (l')−1 ◦ cof1 ◦ (z∨)' ◦ ((r∨)')−1 ◦ cof1 ◦ cof1 ◦ z'

∼= (l')−1 ◦ cof1 ◦ (z∨)' ◦ ((r∨)')−1 ◦ fib1 ◦ z'
∼= id.

Since all morphisms under consideration are exact, we invoke the natural isomor-
phism fib3 ∼= Ωn (Corollary 8.11) in order to obtain the first isomorphism. The sec-
ond isomorphism is given by the commutativity of the right hexagon (Lemma 11.9).
The third and the forth isomorphisms are again a cancellation and an application
of Corollary 8.11, while the remaining one is the commutativity of the hexagon on
the left (Remark 11.11). The second natural isomorphism follows from the chain

Ψk,l ◦ S̃k,l ◦Ψ−1
k,l
∼= Ψk,l ◦ S̃k,l ◦ Φk,l ◦ Φ−1

k,l ◦Ψ−1
k,l

∼= Σn ◦ Φ−1
k,l ◦Ψ−1

k,l

∼= Φ−1
k,l ◦Ψ−1

k,l ◦ Σn

∼= Φ−1
k,l ◦Ψ−1

k,l ◦Ψk,l ◦ S̃k,l ◦ Φk,l

∼= Φ−1
k,l ◦ S̃k,l ◦ Φk,l.

Here, the second and fourth natural isomorphisms are by Corollary 11.13, the third
one is by exactness and the remaining two are trivial. �
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Remark 11.15. Let D be a stable derivator, n ≥ 0, and 0 ≤ k ≤ l ≤ n. If
F : D�

n
k≤l → D�

n
k≤l is a composition of morphisms appearing in Figure 5, then

there are p, q ∈ Z such that F ∼= (Σn)p ◦Sq. The key step to this is Corollary 11.14.

In the following section we make precise in which sense these strong stable equiv-
alences and Serre morphisms are compatible for the various chunks of �n.

12. Global Serre duality

In this section we show that for every fixed dimension n, the Serre equiva-
lences and the strong stable equivalences introduced in the previous section depend
pseudo-naturally on the chunks �nk≤l. To this end we begin by defining the category

chunk(�n) of chunks in �n.

Definition 12.1. The category chunk(�n) ∈ Cat of chunks in �n, n ≥ 0, is the
following partially ordered set, considered as a category.

(i) Objects are pairs (k, l) of natural numbers such that 0 ≤ k ≤ l ≤ n.
(ii) For pairs (k, l), (k′, l′) we set (k′, l′) ≤ (k, l) if and only if k ≤ k′ ≤ l′ ≤ l′.

We denote the unique morphism by

i = ik≤lk′≤l′ : (k′, l′)→ (k, l).

Remark 12.2. (i) The category chunk(�n) is the twisted morphism category of
the simplex [n] = (0 < . . . < n). This perspective on chunk(�n) is closely
related to the paracyclic S•-construction, and we come back to this in more
detail in [BG18a].

(ii) The category [n] is uniquely isomorphic to its opposite category by means of
the assignment [n] ∼−→ [n]op : k 7→ n− k. Considering this isomorphism as an
identification, the functoriality of the twisted morphism category again yields
the chunk symmetry

(12.3) (−)∨ : chunk(�n) ∼−→ chunk(�n) : (k, l) 7→ (n− l, n− k),

which already appeared in Remark 11.2.

Let us recall from the introduction that DERSt,ex denotes the 2-category of
stable derivators, exact morphisms, and natural transformations.

Proposition 12.4. Let D be a stable derivator and n ≥ 0. There are three pseudo-
functors

Z = Z(n)(D), L = L(n)(D), R = R(n)(D) : chunk(�n)→ DERSt,ex

defined as follows.

(i) On objects (k, l) ∈ chunk(�n) they are defined uniformly by

Z(k, l) = R(k, l) = L(k, l) = D�
n
k≤l .

(ii) Invoking (10.9), (10.11), and (10.12), respectively, the images of a morphism

ik≤lk′≤l′ in chunk(�n) are defined by

Z(ik≤lk′≤l′) = zk≤lk′≤l′ , L(ik≤lk′≤l′) = lk≤lk′≤l′ , and R(ik≤lk′≤l′) = rk≤lk′≤l′ .

Proof. Stable derivators are closed under exponentials, and compositions of Kan
extensions between stable derivators are exact morphisms, showing that the as-
signments indeed take values in DERSt,ex. The pseudo-functoriality follows from
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D�
n
k′≤l′

(Li)'

��

Li // D�
n
k≤l

(Li)'

��

D (�n,l′),�n
≤k′−1

cof1

��

⊆
// D (�n,l),�n

≤k−1

cof1

��

D (�n,n−k′),�n
≥l′+1

⊆
// D (�n,n−k),�n

≥l+1

D�
n
k′≤l′

(Ri)'

OO

Ri
// D�

n
k≤l

(Ri)'

OO

Figure 6. Global Serre duality S(n) for chunk(�n)

uniqueness of adjoints and from the compatibility of canonical mates with past-
ing. �

Notation 12.5. Let D be a stable derivator and n ≥ 0. We denote by

Z∨ = Z∨(D), R∨ = R∨(D), L∨ = L∨(D) : chunk(�n)→ DERSt,ex

the pseudo-functors which are obtained from the corresponding pseudo-functors in
Proposition 12.4 by precomposition with the chunk symmetry (12.3),

Z∨(D) = Z(D) ◦ (−)∨, R∨(D) = R(D) ◦ (−)∨, L∨(D) = L(D) ◦ (−)∨.

We now show that the equivalences from §11 assemble into pseudonatural equiv-
alences and we begin with the Serre morphisms.

Theorem 12.6. Let D be a stable derivator and n ≥ 0. The local Serre equivalences
Sk,l for (k, l) ∈ chunk(�n) assemble to a pseudo-natural equivalence

S = S(n) : L(n)(D) ∼−→ R(n)(D) : chunk(�n)→ DERSt,ex.

Proof. We already know that the Serre morphisms are equivalences, and it remains
to establish the pseudo-naturality. For this purpose, let i : (k′, l′) → (k, l) be a
morphism in chunk(�n). Unraveling definitions, we have to show that Figure 6
commutes up to coherent natural isomorphisms, thereby yielding natural isomor-
phisms

(12.7) Sk,l ◦ i! ∼= i∗ ◦ Sk′,l′ .

In this diagram the horizontal morphisms in the middle are the natural inclusions
which exist by the assumption that 0 ≤ k ≤ k′ ≤ l′ ≤ l ≤ n. Hence, the square in
the middle can be chosen to commute on the nose. The upper square and the lower
square, respectively, commute up to canonical natural isomorphism by uniqueness
of adjoints. Since the pseudo-functoriality constraints of L(D) and R(D) are also
induced by uniqueness of adjoints (Proposition 12.4), this establishes the pseudo-
naturality of the local Serre equivalences. �
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Remark 12.8. Let D be a stable derivator and n ≥ 0. Dually, also the opposite
local Serre morphisms S̃k,l for (k, l) ∈ chunk(�n) assemble to a pseudo-natural
equivalence

S̃ : L∨(D) ∼−→ R∨(D) : chunk(�n)→ DERSt,ex,

and Corollary 11.14 immediately implies that S∨ = S̃.

The formalism of these compatible Serre equivalences is fairly rich, and we now
discuss some immediate consequences. We intend to come back to this more sys-
tematically in [BG18b]. By (12.7) left and right Kan extensions along morphisms
in chunk(�n) correspond to each other under conjugation by Serre equivalences.
This immediately yields the existence of infinite chains of adjunctions.

Notation 12.9. Let f be a morphism in a 2-category, such that all iterated adjoints
of f exist. Then f [n] denotes the nth iterated right adjoint of f , if n ∈ Z is positive,
or the −nth iterated left adjoint of f if n ∈ Z is negative.

Corollary 12.10. Let D be a stable derivator, let n ≥ 0, and let i : (k′, l′)→ (k, l)

be a morphism in chunk(�n). The restriction morphism i∗ : D�
n
k≤l → D�

n
k′≤l′

generates an infinite chain of adjunctions which for n ∈ Z is given by

(i) i∗[2n] = Snk′,l′i
∗S−nk,l ,

(ii) i∗[2n+ 1] = Snk,li∗S
−n
k′,l′
∼= Sn+1

k,l i!S
−n−1
k′,l′ .

Proof. This follows from Theorem 12.6 and the corresponding equation (12.7). �

One can see immediately from the definition that the Serre equivalences

S
(n)
0,0 : D�

n
=0 ∼−→ D�

n
=0 and S(n)

n,n : D�
n
=n ∼−→ D�

n
=n

are naturally isomorphic to the identity morphisms. In fact, we show that this

holds for S
(n)
k,k for all 0 ≤ k ≤ n.

Proposition 12.11. Let D be a stable derivator, n ≥ 0, and 0 ≤ k ≤ n. There
are natural isomorphisms

S
(n)
k,k
∼= id: D�

n
=k ∼−→ D�

n
=k .

Proof. Since �n=k is a discrete category, axiom (Der1) exhibits D�
n
=k as a corre-

sponding power of D ,

D�
n
=k ∼−→

∏
m∈�n

=k

D .

Hence, it suffices to show that for every m ∈ �n=k there is a natural isomorphism

m∗Sk,k ∼= m∗ : D�
n
=k → D . For every such m with complement m∨ we make the

calculation

m∗ ◦ Sk,k
= m∗ ◦ ((Ri)')−1 ◦ cof1 ◦ (Li)'

= m∗ ◦ cof1 ◦ (Li)'

∼= C |m| ◦ (1m∨)∗ ◦ (Li)'.

The first equation is by Definition 11.1, the second equation holds since ((Ri)')−1

is a restriction morphism, and the isomorphism comes from Lemma 8.19. Since
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Kan extensions and restrictions in unrelated variables commute, we can continue
the calculation by the first isomorphism in

C |m| ◦ (1m∨)∗ ◦ (Li)'

∼= (1m∨)∗ ◦ Cm ◦ (Li)'

∼= (0m∨)∗ ◦ Cm ◦ (Li)'

∼= C |m| ◦ (0m∨)∗ ◦ (Li)'.

The morphism (Li)' : D�
n
=k

∼−→ D (�n,k),�n
≤k−1 takes, in particular, values in k-

determined n-cubes. Hence, all k-fold partial cones of n-cubes in the image of
(Li)' are constant (Corollary 9.9), and an application of this to Cm yields the
second isomorphism in the above chain. The third isomorphism holds by the same
arguments as the first one. Since n-cubes in the image of (Li)' vanish on �n≤k−1,

the same is true for k-cubes in the image of (0m∨)∗ ◦ (Li)'. But ∞ : 1 → �k is a
cosieve, and we conclude that the image of (0m∨)∗ ◦(Li)' lies in the essential image
of ∞!. Thus, the counit ∞!∞∗ → id is invertible on this image, thereby inducing
the first isomorphism in

C |m| ◦ (0m∨)∗ ◦ (Li)'

∼= C |m| ◦∞! ◦∞∗ ◦ (0m∨)∗ ◦ (Li)'

= C |m| ◦∞! ◦m∗ ◦ (Li)'

∼= C |m| ◦∞! ◦m∗

= ∞∗ ◦ cof1k ◦∞! ◦m∗

The second isomorphism is by fully faithfulness of i!. Since the k-cubes in the image
of ∞! ◦m∗ vanish on �k≤k−1, Lemma 10.2 implies that the image of cof1k ◦∞! ◦m∗
consists of 0-determined k-cubes, which is to say constant k-cubes. This gives the
first isomorphism in

∞∗ ◦ cof1k ◦∞! ◦m∗

∼= 0∗ ◦ cof1k ◦∞! ◦m∗
∼= ∞∗ ◦∞! ◦m∗
∼= m∗,

the second one follows from Lemma 8.19 and the third one since ∞! is fully faith-
ful. To conclude the proof it suffices to put these chains of natural isomorphisms
together. �

As a more specific application, we can now use Corollary 12.10 to prove a relation
between limits and colimits of chunks.

Corollary 12.12. Let D be a stable derivator, n ≥ 0, and 0 ≤ k ≤ l ≤ n. There
are natural isomorphisms

colim�n
k≤l

∼−→ lim�n
k≤l
◦ S(n)

k,l : D�
n
k≤l → D .

Proof. Let i : �nk≤l → �n be the inclusion. By uniqueness of left adjoints and
homotopy finality of final objects, there is a canonical isomorphism

colim�n
k≤l

∼=∞∗ ◦ Li.
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We note that∞∗ is the right adjoint of Lj for the inclusion j : �n=n → �n. Applying
Theorem 12.6 to j yields the relation

S0,n ◦ Lj ∼= Rj ◦ Sn,n.

By passing to right adjoints we obtain the corresponding invertible total mate

Lj[1] ◦ S−1
0,n
∼= S−1

n,n ◦Rj[1].

Hence precomposition with S0,n and postcomposition with Sn,n yields the relation

Sn,n ◦ Lj[1] ∼= Rj[1] ◦ S0,n,

which is to say that the square on the right in the diagram

D�
n
k≤l

Li //

Sk,l

��

D�
n Lj[1]

//

S0,n

��

D

Sn,n

��

D�
n
k≤l

Ri // D�
n Rj[1]

// D

commutes up to an invertible natural transformation. The same is true for the
left square by an application of Theorem 12.6 to i. We observe that lim�n

k≤l
is

the double right adjoint of colim�n
k≤l

. By an application of Corollary 12.10 to

both subsquares of the diagram, the bottom horizontal morphisms are double right
adjoint to the respective top horizontal morphism. By the above, the top row is
isomorphic to colim�n

k≤l
, and the pseudo-functoriality of taking adjoints implies

that the bottom row is isomorphic to lim�n
k≤l

. In order to conclude the proof we

invoke Sn,n ∼= id (Proposition 12.11). �

Remark 12.13. Let us recall from [GS17] that the defining feature of stability is
that the distinction between homotopy finite limits and colimits is blurred. One
way to make this precise is as follows: a derivator is stable if and only if homotopy
finite colimits are weighted limits (and there are variants using homotopy finite Kan
extensions). For chunks of n-cubes the Serre equivalences can be used to translate
these weighted limits back into actual limits. This way the blurring is made even
more specific.

We illustrate Corollary 12.12 in the case of �3
1≤2.

Example 12.14. Let D be a stable derivator and let X ∈ D�
3
1≤2 be an object with

underlying diagram

X3
//

��

X13

X1

<<

��

X23

X2

==

// X12.
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• //

��

• //

��

•

��

X3

<<

//

��

X13

::

//

��

•

;;

��

0

<<

//

��

X1

;;

//

��

•

>>

��

• //

��

S3
//

��

S13

��

X23

==

//

��

Z

;;

//

��

S1

<<

��

X2

<<

//

��

X12

;;

//

��

•

>>

��

• // S23
// 0

•

==

// S2

;;

// S12

<<

•

;;

// •

::

// •

==

Figure 7. The [2]3-diagram induced by X

We can calculate the colimit of X by first left extending by zero to a punctured cube
and then applying the inductive formula for colimits of punctured cubes (Corol-
lary 6.5). As an upshot we obtain a cocartesian square

X1 ⊕X2
//

��

X12

��

X13 ∪X3 X23
// colim�3

1≤2
X.

In order to describe this colimit as a limit, we calculate lim�3
1≤2

S
(3)
1,2X. For this

purpose, we add cofibers in all three coordinates to the 3-cube (Li)'(X) to obtain
a diagram of [2]3-shape (Figure 7). Hence (Li)'(X) is the front upper left cube in
Figure 7, whereas cof1(Li)'(X) is the back lower right cube. Moreover, we see that
colim�3

1≤2
X is the final vertex of (Li)'(X), hence the central vertex Z of Figure 7.

We observe that S := S
(3)
1,2(X) is by definition the restriction i∗cof1(Li)'(X) as

indicated in Figure 7. Furthermore, we know that the back lower right cube is 2-
determined and that it vanishes at the final vertex, since the cube lies in the image
of the morphism

cof1 : D (�3,2),�3
=0 ∼−→ D (�3,2),�3

=3

Consequently, this cube is cartesian and it exhibits the central vertex Z of Figure 7

also as the limit lim�3
1≤2
◦S(3)

1,2(X). More explicitly, by the dual of Corollary 6.5
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D�
n
k′≤l′

(Ri′)'

��

Rj
// D�

n
k≤l

(Ri)'

��

D (�n,n−k′),�n
≥l′+1

cof1

��

⊆
// D (�n,n−k),�n

≥l+1

cof1

��

D�
n,�n

0≤n−l′−1
∪�n

n−k′+1≤n

⊆
// D�

n,�n
0≤n−l−1∪�

n
n−k+1≤n

D�
n
n−l′≤n−k′

Z((i′)∨)'

OO

Z(j∨)

// D�
n
n−l≤n−k

Z(i∨)'

OO

Figure 8. Global standard equivalence Φ(n) for chunk(�n)

there is a cartesian square

colim�3
1≤2

X //

��

S1 ×S12
S2

��

S3
// S13 × S23.

We now turn to the pseudo-naturality of the strong stable equivalences from
Definition 11.12.

Theorem 12.15. Let D be a stable derivator and n ≥ 0.

(i) The right strong stable equivalences Φk,l = Φ
(n)
k,l for (k, l) ∈ chunk(�n) as-

semble to a pseudo-natural equivalence

Φ = Φ(n) : R(D) ∼−→ Z∨(D) : chunk(�n)→ DERSt,ex.

(ii) The left strong stable equivalences Ψk,l = Ψ
(n)
k,l for (k, l) ∈ chunk(�n) assem-

ble to a pseudo-natural equivalence

Ψ = Ψ(n) : Z∨(D) ∼−→ L(D) : chunk(�n)→ DERSt,ex.

Proof. We prove only (i), the proof of (ii) is very similar, and for definitiveness we

choose Hr2
k,l from Construction 11.8 as our local models for the components Φ

(n)
k,l of

the desired pseudo-natural equivalence Φ(n). For every 0 ≤ k ≤ k′ ≤ l′ ≤ l ≤ n we

consider the morphism j = ik≤lk′≤l′ in chunk(�n). Moreover, let us use the shorthand
notation

i′ = i0≤nk′≤l′ : (k′, l′)→ (0, n) and i = i0≤nk≤l : (k, l)→ (0, n),

so that the relation i′ = i◦j holds in chunk(�n). Unraveling definitions, we have to
show that Figure 8 commutes up to coherent natural isomorphisms. The upper two
squares are dealt with as in the case of Serre equivalences, and in the case of the
bottom square it suffices to invoke the pseudo-functoriality constraints of Z∨. �

Remark 12.16. Let D be a stable derivator and 0 ≤ n. For every chunk �nk≤l we

can invoke the remaining strong stable equivalences H l2
k,l (resp. Hr1

k,l). Arguments
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dual to the ones in the proof of Theorem 12.15 show that these assemble to a
pseudo-natural equivalence

Ψ̃ = Ψ̃(n) : R∨(D) ∼−→ Z(D) : chunk(�n)→ DERSt,ex,

resp.

Φ̃ = Φ̃(n) : Z(D) ∼−→ L∨(D) : chunk(�n)→ DERSt,ex.

We invoke Corollary 11.14 again to see that

Ψ̃ = Φ∨ and Φ̃ = Ψ∨.

Corollary 12.17. There are invertible modifications:

Φ ◦ S ◦Ψ ∼−→ Σn : idZ∨(D) → idZ∨(D) and Ψ̃ ◦ S̃ ◦ Φ̃ ∼−→ Σn : idZ(D) → idZ(D)

Proof. This is an immediate consequence from the corresponding local statements
(Corollary 11.13). �

Remark 12.18. Let D be a stable derivator, n ≥ 0, and 0 ≤ l ≤ n (the case

of k = 0). We have already seen that D�
n
≤l and D�

n
≥n−l are both equivalent

to the derivator D�
n,l of l-determined n-cubes (Theorem 9.4). Moreover, these

equivalences are induced by left Kan extension along ι≤l and right Kan extension
along ι≥n−l. More explicitly, in this special case the two circles of Figure 5 collapse
to a single one and the diagram simplifies to:

D�
n,l

cof1

��

D�
n
≤l

(ι≤l)
'
!

//

(ι≤l)
'
∗

,,

D�
n
≥n−l

(ι≥n−l)
'
∗

oo

(ι≥n−l)
'
!

rrD�
n,�n
≥l+1

cof1

::D�
n,�n
≥l+1 .

cof1

jj

Hence, in contrast to the situation of general chunks, here we obtain a natural
choice of a strong stable equivalence D�

n
≤l ∼−→ D�

n
≥n−l , namely by composing the

two previous equivalences. As a consequence we can explicitly describe the adjoint
quintuple

ιk≤l[−2] a ιk≤l[−1] a ιk≤l a ιk≤l[1] a ιk≤l[2]

which is associated to the natural inclusion ιk≤l : D�
n,k → D�

n,l. The ad-
joint triple ιk≤l[−2] a ιk≤l[−1] a ιk≤l is induced by (ιn−l,n−k)! a (ιn−l,n−k)∗ a
(ιn−l,n−k)∗ whereas ιk≤l a ιk≤l[1] a ιk≤l[2] is induced by (ιl,k)! a (ιl,k)∗ a (ιl,k)∗.
Therefore an application of Theorem 12.6 to either

ιl,k : �n≤k → �n≤l or ιn−l,n−k : �n≥n−l → �n≥n−k

yields a description of the infinite chain of adjunctions generated by ιk≤l. These are
dual to each other but not symmetric by themselves. Alternatively, we can apply
Theorem 12.6 to both inclusions of chunks simultaneously. More explicitly, one can
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show that the diagram

D�
n,k Fk //

ιk≤l[−2]
��

D�
n,k

ιk≤l[2]
��

D�
n,l Fl // D�

n,l

commutes, where Fk : D�
n,k → D�

n,k is the composition

D�
n,k

((ι≥n−k)'∗ )−1

// D�
n
≥n−k

(ι≥n−k)'!

// D�
n,�n
≤n−k−1

fib1
// D�

n,�n
≥k+1

((ι≤k)'∗ )−1

// D�
n
≤k

(ι≤k)'!

// D�
n,k.

This yields a symmetric description of the infinite chain of adjunctions, which more-
over is 4-periodic, since the morphisms Fk are strongly related to compositions of
two iterations of Serre equivalences.

Example 12.19. We now provide some explicit computations of iterated adjoints of
morphisms of the form ιk≤l in specific cases where we have the fractionally Calabi–
Yau property.

(i) By Corollary 8.11, Example 11.3 and Example 11.4 we can identify

(S
(2)
0,2)3 = Σ2 and (S

(2)
0,1)4 = Σ2.

Hence, we can compute

ι
(2)
1≤2[24] = (S

(2)
0,2)12ι

(2)
1≤2(S

(2)
0,1)−12 = Σ8ι

(2)
1≤2Σ−6 = Σ2ι

(2)
1≤2

where the first equality is Corollary 12.10.
(ii) Similarly, invoking additionally Example 11.6, we have the identifications

(S
(3)
0,3)3 = Σ3 and (S

(3)
0,1)3 = Σ2

leading to the computation

ι
(3)
1≤3[6] = (S

(3)
0,3)3ι

(3)
1≤3(S

(3)
0,1)−3 = Σ3ι

(3)
1≤3Σ−2 = Σι

(3)
1≤3.

13. Universal formulas

In this concluding section we show that the above calculus of n-cubes is com-
patible with morphisms of derivators. More generally, we show that morphisms of
derivators enjoy a “lax-oplax” compatibility with canonical mates. Essentially by
forming compositions of invertible such mates and their inverses, we define formu-
las relative to a chosen 2-category K of derivators, thereby axiomatizing certain
natural isomorphisms which exist in all derivators D ∈ K and which are preserved
by all morphisms in K . As an important special case we obtain the class of exact
formulas in stable derivators, and the cubical calculus provides examples of such
formulas. As a related result we show that suitable formulas propagate from a
monoidal derivator V to all V -modules, thereby making precise a universality of
formulas in monoidal derivators.

The key to the results in this section is the following, fairly elementary result on
the compatibility of the calculus of mates. Given a natural transformation α living
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Fv!p
∗ η

//

=

Fv!p
∗u∗u!

α∗ //

=

Fv!v
∗q∗u!

ε

��

v!Fp
∗

OO

η
//

=

v!Fp
∗u∗u!

OO

α∗ // v!Fv
∗q∗u!

OO

v!p
∗F

γ ∼=

OO

η
//

η

��

v!p
∗Fu∗u!

γ ∼=

OO

v!v
∗Fq∗u!

γ∼=

OO

ε
//

=

Fq∗u!

v!p
∗u∗Fu!

γ ∼=

OO

α∗
//

=

v!v
∗q∗Fu!

γ∼=

OO

ε
//

=

q∗Fu!

γ∼=

OO

v!p
∗u∗u!F

OO

α∗
// v!v
∗q∗u!F

OO

ε
// q∗u!F

OO

Figure 9. Morphisms and canonical mates

in a square of small categories,

(13.1)

C
p
//

v

��
|� α

A

u

��

D
q
// B,

in every derivator D there is the canonical mate

α! : v!p
∗ → q∗u!.

Moreover, associated to every morphism F : D → E of derivators with pseudo-
naturality constraints γ there are the canonical mates

v!F → Fv! and u!F → Fu!.

These various canonical mates are compatible in the following precise sense.

Proposition 13.2. For every morphism of derivators F : D → E and every natural
transformation (13.1) in Cat the following diagram commutes,

(13.3)

Fv!p
∗ α! // Fq∗u!

v!Fp
∗

OO

q∗Fu!

γ∼=

OO

v!p
∗F

γ ∼=

OO

α!

// q∗u!F.

OO

Proof. Unraveling definitions we have to show that the clockwise and the counter-
clockwise boundary paths from v!p

∗F to Fq∗u! in Figure 9 coincide. To this end
it suffices to show that this diagram commutes. In this diagram, the six rectan-
gles decorated by an equality sign commute since they are naturality squares. The
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larger rectangle in the middle is commutative by one of the coherence properties
of pseudo-natural transformations. Finally, the remaining two quadrilaterals also
commute by [Gro18, Lem. 3.10]. �

The remainder of this section is essentially an exploration of immediate implica-
tions of this proposition. It is possible to formalize the results more systematically,
but we prefer to present them in a way that allows us to focus more easily on the
simple underlying ideas.

Remark 13.4. Let F : D → E be a morphism of derivators and let (13.1) be a
natural transformation in Cat .

(i) The duality principle for derivators yields a variant of the proposition for
right Kan extensions.

(ii) The commutative diagram (13.3) makes precise a compatibility statement for
certain canonical mates. In the special case that F is cocontinuous and that
the square (13.1) is homotopy exact the above diagram consists of natural
isomorphisms only.

The formalism of homotopy exact squares is the technical key tool in the theory
of derivators. In fact, in many cases developing the calculus of (co)limits and Kan
extensions in derivators essentially amounts to establishing additional classes of
homotopy exact squares.

Remark 13.5. There are interesting relative versions of the second point of the
previous remark, and in the background of these variants there are the following
two Galois connections.

(i) Let D be a derivator and let (13.1) be a natural transformation in Cat .
Following Maltsiniotis [Mal12], we say that (13.1) is D-exact if the canonical
mates

(13.6) α! : v!p
∗ → q∗u! and α∗ : u∗q∗ → p∗v

∗

are invertible in D . We recall that these mates are conjugate to each other
so that one of them is an isomorphism if and only if the other is. This notion
extends to a Galois connection between classes of derivators and classes of
squares in Cat populated by (possibly non-invertible) natural transformations
as follows.
(a) Given a class C of derivators, we say that the square (13.1) is C-exact

if it is D-exact for all D ∈ C.
(b) Conversely, given a class S of squares (13.1) in Cat , we associate to it

the class of all derivators D in which the canonical mates (13.6) are
invertible.

(ii) The second Galois connection is closely related to the discussion of saturation
or closure of classes of colimits [AK88, KP88].
(a) Given a classM of morphisms of derivators, we associate to it the class

u : A → B of functors between small categories such that every mor-
phism F ∈ M preserves left Kan extensions along u (or, equivalently,
such that every F preserves colimits of shape (u/b) for all b ∈ B).

(b) Conversely, given a class F of functors in Cat , we associate to it the class
of F-cocontinuous morphisms of derivators, i.e., of those morphisms
which preserve left Kan extensions along all u ∈ F .
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There is an obvious dual version of this Galois connection using right Kan
extensions instead.

Construction 13.7. Let K ⊆ DER be a sub-2-category of the 2-category of deriva-
tors. The following basic building blocks will be used to define formulas in K .

(i) Let (13.1) be K -exact (D-exact for all D ∈ K ) and such that all morphisms
in K preserve left Kan extensions along the vertical functors u, v in (13.1).
In every derivator D ∈ K the canonical mate

(13.8) α! : v!p
∗ ∼−→ q∗u!

is invertible and these isomorphisms are compatible with morphisms in K
in the sense of (13.3).

(ii) Let (13.1) be K -exact and such that all morphisms in K preserve right Kan
extensions along the horizontal functors p, q in (13.1). In every derivator
D ∈ K the canonical mate

(13.9) α∗ : u∗q∗
∼−→ p∗v

∗

is invertible and compatible with morphisms in K .

Definition 13.10. Let K ⊆ DER be a sub-2-category of the 2-category of deriva-
tors. A formula in K is a natural isomorphism which can be written as a finite
composition of whiskerings along restriction morphisms of natural isomorphisms of
the form (13.8), (13.9) or their respective inverses.

Example 13.11. A cocontinuous formula is a formula in the 2-category DERcc

of derivators, cocontinuous morphisms, and all natural transformations. For in-
stance the isomorphisms colim∆op sX ∼−→ colimAX provided by the Bousfield–Kan
formulas (Theorem 5.19) are cocontinuous formulas as are the decomposition iso-
morphisms from Theorem 5.8. More specific examples are the inductive formulas
for colimits of punctured n-cubes (Corollary 6.5) and the various isomorphisms in
Example 6.9 to calculate colimits of sources of valence n (these latter two are right
exact formulas for derivators in the obvious sense).

The formalism of formulas gets richer when we mix left and right Kan extensions
more seriously. This is illustrated by the following two examples, and it might be
worth to study variants of these as well. We recall that right exact morphisms
of pointed derivators preserve right extensions by zero [Gro18, Cor. 8.2]), and we
hence obtain Example 13.12.

Example 13.12. Formulas in the 2-category DERPt,rex of pointed derivators, right
exact morphisms, and all natural transformations are right exact formula for
pointed derivators. For every pointed derivator D and n ≥ 0,

(i) the isomorphisms cof3 ∼= Σ: D [1] → D [1] ([GPS14b, Lem. 5.13]),
(ii) the isomorphisms Σn−1 ∼= colim�n

≤n−1
◦∅∗ : D → D (Example 6.7),

(iii) the coherence isomorphisms of the pseudo-actions cof• (Proposition 8.9) and
their variants in Corollary 8.15, and

(iv) the isomorphisms tcof ∼= Cn : D�
n → D (Theorem 8.25 and Proposition 8.32)

are instances of such formulas, and all morphisms inDERPt,rex are hence compatible
with these isomorphisms.
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Remark 13.13. The observation that cof3 ∼= Σ is a right exact formula for pointed
derivators is the essential ingredient in the proof that exact morphisms of strong,
stable derivators induce exact functors between canonical triangulations (see the
proof of [Gro18, Theorem 10.6]). A direct verification of this is already a bit
cumbersome as witnessed by the proof in loc. cit., and the formalization of formulas
makes such verifications obsolete (see also [Gro18, Rmk. 10.8]).

We now turn to a particularly rich class of formulas.

Examples 13.14. An exact formula for stable derivators is a formula in the
2-category DERSt,ex of stable derivators, exact morphisms, and natural transfor-
mations. Of course, right exact and left exact formulas for derivators or pointed
derivators (as in Example 13.12) restrict to exact formulas for stable derivators.
For every stable derivator D and n ≥ 0,

(i) the isomorphism Σ ◦ F ∼−→ C : D [1] → D (8.28),
(ii) the isomorphisms Σn ◦ tfib ∼−→ tcof : D�

n → D (Remark 8.27),
(iii) the pseudo-naturality constraints Sk,l ◦ i! ∼= i∗ ◦ Sk′,l′ of the global Serre

equivalence (Theorem 12.6), and,

(iv) as a special case, the isomorphisms colim�n
k≤l

∼−→ lim�n
k≤l
◦S(n)

k,l : D�
n
k≤l → D

from Corollary 12.12

are exact formulas for stable derivators.

There is an additional perspective on Proposition 13.2. Let D be a derivator
and let the square (13.1) be D-exact. Given a sufficiently cocontinuous morphism
F : D → E we know that the canonical mate of (13.1) is invertible on all objects
in the essential image of F . As an application of this, we can extend formulas
from a monoidal derivator V to V -enriched derivator. This works more generally
for cocontinuous V -modules, i.e., for derivators D which are endowed with an
associative and unital action ⊗ : V × D → D which preserves colimits in both
variables independently.

Proposition 13.15. Let V be a monoidal derivator. If the square (13.1) is V -
exact, then it is D-exact for all cocontinuous V -modules D (in particular, for all
V -enriched derivators D).

Proof. For every A ∈ Cat the action ⊗ : V × D → D gives rise to the canceling
tensor product

⊗[A] : V A×Aop

×DA → DA,

which is obtained from the pointwise product by means of a coend ([GPS14a, §8]).
Moreover, denoting by IA ∈ V (A × Aop) the identity profunctor, for X ∈ D(A)
there is by [GPS14a, Thm. 5.9] an isomorphism

IA ⊗[A] X ∼= X.

Put differently, X ∈ D(A) lies in the essential image of the canceling tensor product
morphism

−⊗[A] X : V A×Aop

→ DA.

Moreover, since ⊗ preserves colimits in both variables separately, the partial mor-
phism −⊗[A] X is cocontinuous. Since the square (13.1) is V -exact, we can apply
Proposition 13.2 to the morphisms − ⊗[A] X to conclude that the square is also
D-exact. �
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Remark 13.16. This result is closely related to the construction of universal tilting
modules in abstract representation theory [GŠ16, §10].

Example 13.17. Every derivator is a cocontinuous module over the derivator S of
spaces [Cis08]. As a consequence, Proposition 13.15 implies that S-exact squares
are homotopy exact and that cocontinuous formulas extend from the derivator of
spaces to arbitrary derivators.

The fact that S-exact squares are homotopy exact is not new (see [GPS14b, §9]
which relies heavily on [Hel88, Cis06]).

Example 13.18. Every pointed derivator is a cocontinuous module over the derivator
S∗ of pointed spaces [Cis08], and we conclude that cocontinuous, pointed formulas
or right exact, pointed formulas propagate from the derivator of pointed spaces to
arbitrary pointed derivators.

Example 13.19. Every stable derivator is enriched over the derivator Sp of spectra
[Hel88, Hel97, Fra96, Cis08, Tab08, CT11, CT12]. In particular, an exact formula
holds in all stable derivators as soon it is true in spectra.

Remark 13.20. There are interesting additional variants to be studied further, such
as stable derivators that admit an action of the derivator DZ of the integers or of
the derivator Dk of a field k. These are analogues in derivator land of algebraic
or k-linear algebraic triangulated categories [Kel06, Sch10b], and in those cases
formulas can be propagated from DZ or Dk to the corresponding classes of stable
derivators. Of course, by Proposition 13.15 for every square (13.1) there are the
implications

(13.1) is Sp-exact

⇒ (13.1) is DZ-exact

⇒ (13.1) is Dk-exact,

and it would be interesting to study to which extent the converse implications fail.

We conclude this paper by the following closely related remark.

Remark 13.21. By [Mal12, Cor. 4.34] a square (13.1) is ySet-exact if and only if it
is yC-exact for all bicomplete categories C. However, clearly, not every ySet-exact
square is homotopy exact. For instance, the decomposition theorem (Theorem 5.8)
admits a variant for represented derivators. In that case, one can consider more
general left decompositions of categories which are defined by means of ySet-exact
squares, which is to say by final functors instead of homotopy final functors. As a
specific case, in represented derivators the Bousfield–Kan formulas (Theorem 5.19)
can be simplified further to the well-known coequalizers∐

a0→a1

Xa0
//
//

∐
a

Xa

calculating colimits of diagrams of shape A, while this does not work in arbitrary
derivators. The reason for this is that while the inclusion ∆op

inj → ∆op of the wide

subcategory of monomorphisms is homotopy final, the inclusion ∆op
inj,≤1 → ∆op

inj of

the full subcategory spanned by [0], [1] (hence the Kronecker quiver) is final but
not homotopy final.
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Similarly, coends in derivators are defined by means of twisted morphism cate-
gories [GPS14a, §5]. The two-sided bar construction yields a cocontinuous formula
to calculate coends by simplicial resolutions [GPS14a, Appendix A]. For repre-
sented derivators these formulas can be simplified further by means of subdivision
categories [ML98, § IX.5], but this does not extend to arbitrary derivators.
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[BBD82] Alexander Bĕılinson, Joseph Bernstein, and Pierre Deligne. Faisceaux pervers. In Anal-

ysis and topology on singular spaces, I (Luminy, 1981), volume 100 of Astérisque,
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[GŠ14] Moritz Groth and Jan Šťov́ıček. Tilting theory via stable homotopy theory. To appear

in Crelle’s Journal. Available at arXiv:1401.6451, 2014. 3, 5, 13, 29, 42, 51
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itors, Advances in Representation Theory of Algebras (Conf. ICRA Bielefeld, Ger-

many, 8-17 August, 2012), EMS Series of Congress Reports, pages 297–367. EMS

Publishing House, Zürich, 2014. 3
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