Fachbereich C, Mathematik und Informatik

Prof. Dr. Jens Hornbostel

Falk Beckert

15.6.2015

Probeklausur Lineare Algebra II

Aufgabe 1 Es sei K ein Körper und $F: \mathrm{Mat}_K(n \times n) \to K$ eine Abbildung. Geben Sie Bedingungen an F an, so dass

$$F(A) = \det(A)$$

für alle $A \in \operatorname{Mat}_K(n \times n)$ gilt.

Aufgabe 2 Geben Sie ein Beispiel für eine Matrix $A \in \operatorname{Mat}_{\mathbb{R}}(2 \times 2)$ an,

- (i) die trigonalisierbar ist, aber nicht diagonalisierbar.
- (ii) die $\chi_A \neq p_A$ erfüllt.
- (iii) die $\chi_A = p_A$ erfüllt.

Aufgabe 3 Bestimmen Sie das Minimalpolynom zu folgender reellen Matrix:

$$A = \begin{pmatrix} -2 & 0 & 1 \\ -1 & -1 & 1 \\ -3 & 0 & 2 \end{pmatrix}.$$

Aufgabe 4 Bestimmen Sie das charakteristische Polynom und Minimalpolynom, die Eigenräume und die Haupträume von

$$A = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}.$$

Bestimmen Sie eine Matrix T, so dass $T^{-1}AT = D + N$, mit D diagonal, N nilpotent und DN = ND gilt.

Aufgabe 5 Welche der folgenden Aussagen für $n \times n$ -Matrizen sind richtig, welche sind falsch? Begründen Sie kurz Ihre Antwort.

- 1. Ist det(A) = 0, dann ist A nilpotent.
- 2. Zerfällt χ_A in Linearenfaktoren und alle Eigenwerte sind 0, dann ist A nilpotent.
- 3. Sind A, B invertierbar, dann ist auch $\alpha A + \beta B$ invertierbar für alle $\alpha, \beta \in K \{0\}$.
- 4. Ist $A \cdot B$ invertierbar, dann sind auch A und B invertierbar.

Aufgabe 6 Sei $A \in Mat_K(n \times n)$ nilpotent. Zeigen Sie, dass dann $E_n - A$ invertierbar ist. (Hinweis: geometrische Reihe).