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Abstract

We analyse the structure of the 2-category of derivators and their
pointed and stable variants. As a first main result, we prove that cofree
derivators are dualizable. Moreover, we show that the stability of a deriva-
tor can be characterized by the existence of certain functors, which are
adjoint to the homotopy Kan extensions. Furthermore, we prove that in
the stable situation, a well-behaved Spanier-Whitehead-Duality exists, if
we assume additionally some finiteness conditions. This will enable us to
prove that certain duality functors describe the passage to adjoints in a
particular sub-2-category of stable derivators.
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0 Einleitung

Ein wesentlicher Aspekt der algebraischen Topologie ist es topologische Räume
bis auf Homotopieäquivalenz zu klassifizieren. Dabei erhält man die Homo-
topiekategorie der topologischen Räume als Lokalisierung an der Klasse der
schwachen Äquivalenzen (d.h. derjenigen stetigen Abbildungen, welche Isomor-
phismen auf allen Homotopiegruppen induzieren). Zwei bekannte Möglichkeiten
diesen Übergang zur Homotopiekategorie zu verallgemeinern sind gegeben durch
Quillens Theorie der Modellkategorien [Qui67], sowie durch die Theorie der
(∞,1)-Kategorien [Lur09], [Lur11].
Jedoch gehen beim Übergang von einer Kategorie C zur Homotopiekategorie
zahlreiche Informationen verloren, insbesondere existieren im Allgemeinen nur
noch sehr wenige kategorielle Limiten und Kolimiten. Um dieses Problem zu
beheben betrachtet zusätzlich die Homotopiekategorien von X-Diagrammen in
C für kleine Kategorien X, sowie die von den Kan Erweiterungen induzierten
Funktoren. Die Axiomatisierung dieser Struktur führt zum Begriff des Deriva-
tors, welcher von Jens Franke [Fra96], Alexander Grothendieck [Gro] und Alex
Heller [Hel88], [Hel97] unabhängig voneinander eingeführt wurde.
Im ersten Abschnitt dieser Arbeit werden wir uns die Definition des Deriva-
torbegriffs, sowie der punktierten und stabilen Varianten, in Erinnerung rufen.
Anschließend werden wir an Hand einiger Beispiele zeigen, dass unendlich lange
Ketten adjungierter Funktor regelmäßig in der Struktur eines stabilen Deriva-
tors auftreten.
In [Gro11a] hat Groth gezeigt, dass sich punktierte Derivateure durch die Ex-
istenz gewisser zu den Homotopie Kan Erweiterungen adjungierter Funktoren
charakterisieren lassen. Wir werden zeigen, dass sich die Stabilität eines Deriva-
tors auf ähnliche Weise charakterisieren lässt: Ein punktierter Derivator ist
genau dann stabil, wenn Homotopie Push-outs einen rechtsadjungierten und
Homotopie Pull-backs einen linksadjungierten Funktor haben (Theorem 1.33).
Das Hauptproblem ist dabei die Rückrichtung, welche aus expliziten Berechnun-
gen und der Tatsache, dass in diesem Fall Homotopie Push-outs und Pull-backs
miteinander kommutieren, folgt.
Im zweiten Abschnitt werden wir die 2-Kategorien der Derivateure untersuchen.
Dabei werden wir ausnutzen, dass die Evaluation an einer kleinen KategorieX in
der 2-Kategorie der Derivateure korepräsentiert durch einen Derivator HuXop ist
(Theorem 2.16). Dabei ist Hu = Hu∗ der Derivator assoziiert zur Homotopietheo-
rie der topologischen Räume. Dieses Resultat wurde bereits von Franke [Fra96]
in einigen Spezialfällen und von Cisinski [Cis08] im Allgemeinen bewiesen. Aus
Theorem 2.16 folgt, dass ein Homotopie-Kolimes erhaltender Morphismus von
Derivateuren HuXop −→ D bereits durch den Wert eines bestimmten Elements in
HuXop(X) bis auf Isomorphismus bestimmt ist. Dies werden wir nutzen, um zu
zeigen, dass der interne Hom−Funktor J−,HuK eine Äquivalenz auf der Unter-
2-Kategorie der kofreien Derivateure (d.h. diejenigen, die zu HuX für eine kleine
Kategorie X äquivalent sind) definiert (Theorem 2.21). Dazu werden wir The-
orem 2.16 benutzen um die kanonischen Evaluationsmorphismen mit den von
Korollar 2.18 induzierten Äquivalenzen zu identifizieren.
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Anschließend werden wir eine neue geschlossen symmetrisch monoidale Struk-
tur auf der 2-Kategorie der kofreien Derivateure konstruieren (Proposition 2.27).
Dazu werden wir Theorem 2.21 als Dualitätsaussage auffassen. Die Definition
der monoidalen Struktur ist dadurch motiviert, dass es in einer geschlossen
symmetrisch monoidalen Kategorie mit monoidaler Paarung − ⊗ −, Einheit
S und Abschluss Hom(−,−), in welcher alle Objekte dualisierbar sind, einen
natürlichen Isomorphismus − ⊗ − ∼= Hom(Hom(−,S),−) gibt. Der Beweis
basiert ähnlich wie bei Theorem 2.21 wieder auf Theorem 2.16.
Alle Aussagen in Abschnitt 2 gelten aufgrund von Theorem 2.11 analog im
punktierten und stabielen Fall
Im letzten Abschnitt werden wir uns auf stabile Derivateure, welche auf Dia-
gramme parametrisiert durch endliche, endlich dimensionale Kategorien einge-
schränkt sind, konzentrieren. In diesem Fall folgt aus Threom 2.16 direkt die
Existenz einer Äquivalenz H −→ Hop, welche die Spanier-Whitehead-Dualität
für Spektren verallgemeinert. Als Konsequenz erhalten wir, dass die 2-Kategorie
der kofreien Derivateure abgeschlossen unter abstrakter Dualität (d.h. dem
Funktor D 7→ Dop) ist. Damit können wir zeigen, dass in einem stabilen Deriva-
tor jedes inverse Bild eines Funktors zwischen endlichen, endlich dimensionalen
Kategorien eine unendliche Kette zueinander adjungierter Funktoren induziert
(Theorem 3.10). Dabei benutzen wir, dass jedes inverse Bild DY −→ DX im Bild
des 2-Funktors J−,DKL ist und dass 2-Funktoren unendliche Ketten zueinander
adjungierter Funktoren erhalten.
Anschließend untersuchen wir das Verhalten zweier Dualitätsfunktoren auf der
2-Kategorie der stabilen kofreien Derivateure; erstens, die horizontale Dualität
Dh, welche durch die monoidale Dualität (Theorem 2.21) induziert ist und die
Richtung von 1-Morphismen umkehrt und zweitens der vertikalen Dualität Dv

welche durch die abstrakte Dualität (Proposition 2.9) und Spanier-Whitehead-
Dualität (Proposition 3.7) induziert ist und die Richtung von 2-Morphismen
umkehrt. Wir werden zeigen, dass für einen Morphisms F : HX −→ HY gilt:

DhDv(F ) a F a DvDh(F ).

Dies wird bewiesen, indem wir mit Theorem 2.16 explizit einen Rechtsadjungierten
von F konstruieren, und diesen unter Nutzung der monoidalen Eigenschaften
der Spanier-Whitehead-Dualität mit DvDh(F ) identifizieren.
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project, for his encouragement and guidance throughout my work.
Moreover it is a pleasure to thank my fellow diploma students for a lot of fruitful
discussions and a great time during my studies.
Finally I am very grateful to my family for their great non-mathematical sup-
port.
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Basic Notation and Conventions:

The following notation will be used frequently:

- Let X be a category, then Ob(X) denotes the class of objects of X. And
for x, x′ ∈ Ob(X) the set X(x, x′) = HomX(x, x′) is the set of morphisms from
x to x′.
- By abuse of notation we will often write x ∈ X instead of x ∈ Ob(X), when-
ever there is no risk of confusion.
- The initial category ∅ is the category with no objects. It is the initial object
in the category of small categories.
- For a category X the unique functor ∅ −→ X will be called ιX .
- The terminal category ∗ is the category with one object (this is also denoted
by ∗). And Hom∗(∗, ∗) = {id∗}. It is the terminal object in the category of
small categories.
- For a category X and x ∈ X, the unique functor ∗ −→ X with image {x} will
also be called x.
- The n-dimensional simplex category n for n ∈ N is the poset {0 < 1 < ... < n}
regarded as a category. Note that 0 = ∗.
- The functor di : n− 1 −→ n for i ∈ {0, 1, ..., n} is induced by the unique
injective monotonic map of underlying posets with i not in the image.
- The functor si : n −→ n− 1 for i ∈ {0, 1, ..., n − 1} is induced by the unique
surjective monotonic map of underlying posets with si(i) = si(i+ i).
- Whenever we draw a diagram shaped by a subcategory of n ×m, the first
variable will be drawn in the horizontal direction and the second variable will
be drawn in the vertical direction.

Throughout this thesis we will use the language of 2-categories and bicategories.
We refer to [Ehr63], [KS05], [Lei98] for the definitions.

Note that a 2-category is a category enriched over the category of (locally)
small categories. Therefore we refer to [Kel05] for the concept of enriched cate-
gories, in particular the definition and properties of tensor and cotensor functors.
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1 Prerequisites and first results

In Subsection 1.1. we recall the definition of a derivator, their pointed and sta-
ble variants and some well-known results, including the triangulation theorem
for stable derivators (Theorem 1.25)
In Subsection 1.2. we introduce infinite chains of adjunctions and prove a few
basic properties. We discuss some examples to see that infinite chains of ad-
junction appear frequently in the context of stable derivators. Afterwards we
can state one of our main results, Theorem 1.33 , and prove large parts of it.
We close this sections with a couple of remarks.

1.1 Derivators

Definition 1.1. a) Let CAT be the 2-category of locally small categories and
Cat the full sub-2-category of small categories.
b) Let X,Y ∈ Cat, f : X −→ Y a functor and y ∈ Ob(Y ). The category of
f -objects under y: Xy/ is defined as follows:
Ob(Xy/) = {(x, α)|x ∈ Ob(X), α ∈ Y (y, f(x))}
Xy/((x, α), (x′, α′)) = {β ∈ X(x, x′)|α′ = f(β) ◦ α}
c) Dually one defines the category of f -objects over y: X/y = (Xop

y/)op

d) A full sub-2-category Dia of Cat is a category of diagrams, if the following
conditions are satisfied:
-Any finite poset (considered as a small category) is an object of Dia.
-Dia is closed under finite products and coproducts.
-If X ∈ Dia, x ∈ Ob(X) then also Xx/ and X/x are objects of Dia.
-If X ∈ Dia, then so is Xop.
-If p : X −→ Y is a Grothendieck fibration with Y and all the fibres in Dia
then also Y ∈ Dia.

Important examples of categories of diagrams are Cat itself and the 2-category
Fin of finite, finite dimensional (i.e. with finite dimensional nerve) categories.

Definition 1.2. Let Dia be a category of diagrams.
a) A Dia-prederivator is a 2-functor D : Diaop −→ CAT .
b) Let D be prederivator X,Y ∈ Dia and f : X −→ Y a functor. Then
f∗ := D(f) : D(Y ) −→ D(X) is called the inverse image of f .
c) The 2-category ofDia-prederivators PDerDia is the functor 2-category CATDia

op

.

Example 1.3. a) Let C be a locally small category and S a class of morphisms
in C such that the localization C[S−1] is locally small. Let X be a small cate-
gory, and SX the class of morphisms in CX that are objectwise in S. Then the
assignment X 7→ CX [S−1

X ] defines a Cat-prederivator.
b) Let X be a small category. The 2-functor X := Cat(−, X) is a prederivator.
Then X is called the prederivator represented by X. A prederivator, which is
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equivalent to X for some X ∈ Cat is called a representable prederivator.

An important class of prederivators is given by the special case of Example 1.3
where C is a model category and S is the class of weak equivalences. The well
known behavior of the homotopy Kan extension functors in this case motivates
the following definitions:

Definition 1.4. Let D be a prederivator, X,Y ∈ Dia and f : X −→ Y a
functor.
a) A left adjoint f! : D(X) −→ D(Y ) of the inverse image f∗ is called the homo-
topy left Kan extension functor along f . The prederivator D admits homotopy
left Kan extensions if f! exists for every morphism f in Dia.
b) A right adjoint f∗ : D(X) −→ D(Y ) of the inverse image f∗ is called the
homotopy right Kan extension functor along f . The prederivator D admits ho-
motopy right Kan extensions if f∗ exists for every morphism f in Dia.

Consider a 2-cell α in Dia:

W X

Y Z

⇒α
f

g

f ′

h

Suppose furthermore that f and f ′ are part of adjunctions {fL, f, η, ε} and
{f ′L, f ′, η′, ε′}. Then one can construct a new 2-cell αL, the left Beck-Chevalley-
transform of α as follows:
αL = ε ◦ α ◦ η′ : fL ◦ g −→ fL ◦ g ◦ f ′ ◦ f ′L −→ fL ◦ f ◦ h ◦ f ′L −→ h ◦ f ′L
Or visualized as a diagram:

W X

Y Z

Y

X

⇒α
⇒ε

⇒η′f

g

f ′

h

fL

f ′L

id

id

Dually for a 2-cell β:

W X

Y Z

⇒
β

f

g

f ′

h
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such that f and f ′ are part of adjunctions {f, fR, η, ε} and {f ′, f ′R, η′, ε′}. Then
one can construct a new 2-cell βR, the right Beck-Chevalley-transform of β as
follows:
βR = ε′ ◦ β ◦ η : h ◦ f ′R −→ ◦fR ◦ f ◦ h ◦ f ′R −→ ◦fR ◦ g ◦ f ′ ◦ f ′R −→ fR ◦ g
Again visualized as a diagram:

W X

Y Z

Y

X

⇒
β⇒η

⇒ε
′f

g

f ′

h

fR

f ′R

id

id

In the following, we will consider two examples of 2-cells, which will be im-
portant for the definition of a derivator:

Let f : X −→ Y be a functor in Dia, y ∈ Ob(Y ), py/ : Xy/ −→ X the
natural projection, qy/ : Xy/ −→ ∗ the projection to the terminal category and
y : ∗ −→ Y the unique functor with image y ∈ Y .
Then the 2-cell αy : y ◦ qy/ −→ f ◦ py/ is defined by: αy,(x,φ) = (φ : y −→ f(x))

Dually, let additionally p/y : X/y −→ X the natural projection and q/y :
X/y −→ ∗ the projection to the terminal category.
Then the 2-cell βy : f ◦ p/y −→ y ◦ q/y is defined by: βy,(x,φ) = (φ : f(x) −→ y)

In diagrams:

Xy/ X

∗ Y

⇒
αy

X/y X

∗ Y

⇒βy
qy/

py/

f

y

q/y

p/y

f

y

Definition 1.5. a) Let D be a Dia-prederivator admitting homotopy left Kan
extensions.
Then D satisfies base change for homotopy left Kan extensions, if for all f :
X −→ Y in Dia and y ∈ Ob(Y ) the Beck-Chevalley-transform (α∗y)L is a natu-
ral isomorphism.
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D(Xy/) D(X)

D(∗) D(Y )

⇒(α
∗
y)Lqy/!

p∗y/

f!

y∗

b) Let D be a Dia-prederivator admitting homotopy right Kan extensions.
Then D satisfies base change for homotopy right Kan extensions, if for all
f : X −→ Y in Dia and y ∈ Ob(Y ) the Beck-Chevalley-transform (β∗y)R is
a natural isomorphism.

D(X/y) D(X)

D(∗) D(Y )

⇒
(β∗y)Rq/y∗

p∗/y

f∗

y∗

Given a Dia-prederivator D, one can assign to each object of D(X × Y ) a
X-shaped diagram in D(Y ) as follows:
Let X,Y ∈ Dia and k : X −→ Cat(Y,X × Y ) the functor that corresponds to
the identity on X × Y under the exponential adjunction in Cat. Since D is a
2-functor, one gets a functor Cat(Y,X × Y ) −→ CAT (D(X × Y ),D(Y )). The
composition
X −→ CAT (D(X × Y ),D(Y )) ∈ CAT (X,CAT (D(X × Y ),D(Y )))
∼= CAT (X × D(X × Y ),D(Y )) ∼= CAT (D(X × Y ), CAT (X,D(Y )))
corresponds to a functor diaX,Y : D(X × Y ) −→ CAT (X,D(Y )) using the ex-
ponential adjunction in CAT twice.
Let A ∈ D(X × Y ), x ∈ Ob(X) and xY : Y −→ X × Y, y 7→ (x, y), then diaX,Y
satisfies diaX,Y (A)(x) = x∗Y (A).

Now we are ready to give the definition of a derivator:

Definition 1.6. A Dia-derivator D is a Dia-prederivator, satisfying the fol-
lowing conditions:
(Der1) Let X1, X2 ∈ Dia, ik : Xk −→ X1

∐
X2 the natural inclusions, then

i∗1 × i∗2 : D(X1

∐
X2) −→ D(X1)×D(X2) is an equivalence of categories. More-

over D(∅) ∼= ∗.
(Der2) Let A,B ∈ D(X). A morphism T : A −→ B is an isomorphism if and
only if diaX,∗(T ) is an isomorphism.
(Der3) D admits homotopy left Kan extensions and homotopy right Kan exten-
sions.
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(Der4) D satisfies base change for homotopy left Kan extensions and homotopy
right Kan extensions.
(Der5) The functor dia1,X : D(1×X) −→ CAT (1,D(X)) is an epivalence (full
and essentially surjective) for all x ∈ Dia.

Remark 1.7. a) (Der1) implies that for X ∈ Dia discrete diaX,∗ is an equiv-
alence, and that for the projection X −→ ∗ the associated homotopy Kan
extension functors are given by the usual (co)products in D, in particular they
exist. Moreover D(Y ) has initial and final objects for any Y ∈ Dia and they
are given by ιX,!(∗) resp.ιX,∗(∗) (where ιX : ∅ −→ X).
b) (Der3) and (Der4) axiomize the existence of homotopy Kan extensions and
their computability in terms of homotopy (co)limits by Kan’s well known for-
mulas ( [Kan58]).
c) (Der5) will be used in the proof of the triangulation Theorem 1.25. Note that
some authors omit (Der5) from the definition of a derivator and call a deriva-
tor satisfying it a strong derivator. However, since all interesting examples of
derivators satisfy (Der5) ( [Tab] 3.11), we will keep it in the definition.

The following Proposition is immediate by applying the 2-functoriality of deriva-
tors to (co)units of adjunctions.

Proposition 1.8. Let D be a derivator and f a g an adjunction in Dia. Then
the inverse images also form an adjoint pair: g∗ a f∗

Proof. [CN08] Lemma 6.1.

Proposition 1.9. Let D be a derivator and f a fully faithful functor in Dia.
Then f! and f∗ are fully faithful.

Proof. [CN08] Proposition 7.1.

Definition 1.10. A pointed Dia-derivator D is a Dia-derivator satisfying the
following condition:
(Der6) The category D(X) is pointed (initial and final object are isomorphic)
for all X ∈ Dia.

In [Gro11a] Groth gives an equivalent characterization of pointed derivators.
To describe it, we need some more notation.

Definition 1.11. Let D be a derivator, X,Y ∈ Dia and f : X −→ Y a functor.
a) D has an coexceptional inverse image f? along f , if there is an adjunction
f? a f!.
b) D has an exceptional inverse image f ! along f , if there is an adjunction
f∗ a f !.
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Definition 1.12. Let f : X −→ Y be a fully faithful functor, that is injective
on objects.
a)f is called a cosieve if for all morphisms y −→ y′ with y in the image of f ,
also y′ is in the image of f .
b)f is called a sieve if for all morphisms y −→ y′ with y′ in the image of f , also
y is in the image of f .

Proposition 1.13. Let D be a derivator. then the following condition are equiv-
alent:
a) D is pointed.
b) D has (co)exceptional inverse images along inclusions of the empty category.
c) D has coexceptional inverse images along cosieves and exceptional inverse
images along sieves.

Proof. c) ⇒ b) Inclusions of the empty category are always sieves and cosieves.
b)⇒ a) The functors ι?X and ι∗X are both the projection to the terminal category.
Hence ιX,! is both, left and right adjoint to the projection to the terminal
category, thus its image is a zero object.
a) ⇒ c) [Gro11a] Corollary 3.8.

Moreover (co)exceptional inverse image functors can be described in terms of
homotopy Kan extensions and (usual) inverse image functors:

Definition 1.14. Let f : X −→ Y be a sieve in Dia. The mapping cylinder
category Cyl(f) is defined by the pushout:

X Y

X × 1 Cyl(f)

i0

f

More explicitely, one can describe Cyl(f) as the full subcategory of Y × 1 on
the objects of the form (y, 0) and (f(x), 1).
We have functors i : X −→ Cyl(f), x 7→ (f(x), 1), j : Y −→ Cyl(f), y 7→ (y, 0)
and q : Cyl(f) −→ Y defined by qi = f and qj = idY .

Dually for a cosieve f ′ : X −→ Y , the category Cyl′(f ′) is defined by the
pushout:
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X Y

X × 1 Cyl′(f ′)

i1

f ′

and the maps i′, j′ and q′ are defined in the analogous way.

Definition 1.15. Let D be a pointed derivator, and f : X −→ Y be the
inclusion of a full subcategory.
The category D(Y,X) is the full subcategory of D(Y ) on those objects A ∈ D(Y )
with x∗(A) ∼= 0 for all x ∈ X.

Proposition 1.16. Let D be a pointed derivator.
a) Let f : X −→ Y be a cosieve and g : X ′ = Y − f(X) −→ Y the associated
sieve. Then the coexceptional inverse image f? is given by the composition:

D(Y )
j∗−→ D(Cyl(g), i(X ′))

q!−→ D(Y, g(X ′))
f∗−→ D(X)

b) Let f ′ : X −→ Y be a sieve and g′ : X ′ = Y − f(X) −→ Y the associated
cosieve. Then the exceptional inverse image f ′! is given by the composition:

D(Y )
j′!−→ D(Cyl′(g′), i′(X ′))

q′∗−→ D(Y, g′(X ′))
f ′∗−−→ D(X)

Proof. [Gro11a] Corollary 3.8.

Now we can head towards stable derivators:
Notation: Let � := 1× 1, p:= �− (1, 1), y := �− (0, 0)
and ip : p−→ �, iy :y −→ � the inclusions.

Definition 1.17. Let D be a pointed Dia-derivator.
a) A square in D is an object of D(�).
b) A square in D is called cocartesian, if it is in the essential image of ip!.
c) A square in D is called cartesian, if it is in the essential image of iy∗.
d) A square in D is called bicartesian, if it is cartesian and cocartesian.

Definition 1.18. A stable Dia-derivator D is a pointed Dia-derivator satisfy-
ing the following condition:
(Der7) A square in D is cartesian if and only if it is cocartesian.

Proposition 1.19. Let D be a stable Dia-derivator and A ∈ D(2× 1).
If two of the squares d∗k(A), 0 5 k 5 2 are bicartesian, then also the third is
bicartesian.
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Proof. [Fra96] Proposition 6b.

Proposition 1.20. Let D be a stable Dia-derivator, f : X −→ Y, i : � −→ Y
be functors, i injective on objects.

a) If the composition p
i|p−−→ Y − i(1, 1) −→ Y − i(1, 1)/i(1,1) has an left adjoint

and i(1, 1) is not in the image of f . Then for all A ∈ D(X) the square i∗f!(X)
is bicartesian.

b) If the composition y
i|y−−→ Y − i(0, 0) −→ Y − i(0, 0)i(0,0)/ has an right adjoint

and i(0, 0) is not in the image of f . Then for all A ∈ D(X) the square i∗f∗(X)
is bicartesian.

Proof. [Fra96] Proposition 5.

Proposition 1.21. Let D be a stable derivator and A ∈ D a bicartesian square.
The following properties are equivalent:
a) The underlying morphism of (0× 1)∗(A) is an isomorphism.
b) The underlying morphism of (1× 1)∗(A) is an isomorphism.

Proof. [Gro11a] Proposition 3.13.ii.

In the following we will prepare to state the triangulation theorem for stable
derivators. Therefore we have to specify the shift functor and the class of dis-
tinguished triangles.

Definition 1.22. Let D be a stable derivator.
a) The suspension functor Σ : D(∗) −→ D(∗) is the composition:

D(∗) (0,0)∗−−−−→ D(p)
ip!−→ D(�)

(1,1)∗−−−−→ D(∗)
b) The loop functor Ω : D(∗) −→ D(∗) is the composition:

D(∗) (1,1)!−−−→ D(y)
iy∗−−→ D(�)

(0,0)∗−−−−→ D(∗)
c) The cone functor C : D(1) −→ D(∗) is the composition:

D(1)
(ip◦(1×0))∗−−−−−−−−→ D(p)

ip!−→ D(�)
(1,1)∗−−−−→ D(∗)

d) The fiber functor F : D(1) −→ D(∗) is the composition:

D(1)
(iy◦(1×1))!−−−−−−−→ D(y)

iy∗−−→ D(�)
(0,0)∗−−−−→ D(∗)

e) The full cone functor Cone : D(1) −→ D(1) is the composition:

D(1)
(ip◦(1×0))∗−−−−−−−−→ D(p)

ip!−→ D(�)
(1×1)∗−−−−→ D(1)

f) The full fiber functor Fiber : D(1) −→ D(1) is the composition:

D(1)
(iy◦(1×1))!−−−−−−−→ D(y)

iy∗−−→ D(�)
(1×0)∗−−−−→ D(1)

Remark 1.23. a) It is clear by the construction of the above functors, that there
are adjunctions: Σ a Ω and Cone a Fiber. Moreover, the stability condition
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(Der7) ensures that both adjunctions are adjoint equivalences of categories.
b) Using the explicit description of the (co)exceptional inverse images of the
cosieve 1 : ∗ −→ 1 and the sieve 0 : ∗ −→ 1 one obtains natural isomorphisms:
C ∼= 1? and F ∼= 0!, and thus: Σ ∼= 1?0∗ and Ω ∼= 0!1! ( [Gro11a] Proposition
3.24.)

Let S be the category (2 × 1) − {(1, 1), (2, 1)}, i2 : S −→ 2 × 1 the inclusion,
i1 : 1 −→ S the functor defined by i1(x) = (x, 0), i := i2 ◦ i1 and j : 3 −→ 2×1
the functor defined by j(0) = (0, 0), j(1) = (1, 0), j(2) = (1, 1), j(3) = (2, 1).
Consider the functor F := i2!i1∗ and let A be in the essential image. By Propo-
sition 1.19 and 1.20 the three squares d∗k(A), 0 5 k 5 2 are bicartesian and by
(Der4): (2, 0)∗(A) ∼= 0 ∼= (0, 1)∗(A).
Thus we can conclude: (2, 1)∗(A) ∼= Σ((0, 0)∗(A)) and (1, 1)∗(A) ∼= C(i∗(A))

Definition 1.24. Let D be a stable Dia-derivator. An object T ∈ D(∗)3
is called a distinguished triangle if it is in the essential image of the functor
dia3,∗ ◦ j∗ ◦ F : D(1) −→ D(∗)3

Theorem 1.25. Let D be a stable Dia-derivator. Then D(∗) is a triangulated
category with the suspension Σ as shift functor and the class of distinguished
triangles as defined in 1.24.

Proof. [Fra96] Theorem 1.

Definition 1.26. Let D be a Dia-prederivator and X ∈ Dia
The Dia-prederivator DX is defined by the composition

Diaop
X×−−−−→ Diaop

D−→ CAT

In particular: DX(Y ) = D(X × Y )

Proposition 1.27. Let D be a (pointed, resp. stable) Dia-derivator and X ∈
Dia. Then also DX is a (pointed, resp. stable) Dia-derivator.

Proof. [Gro11a] Theorem 1.31 and Proposition 4.3.

Corollary 1.28. Let D be a stable Dia-derivator and X ∈ Dia. Then D(X) is
canonically endowed with a triangulated structure. Moreover all inverse image
and homotopy Kan extension functors are exact functors of triangulated cate-
gories.

Proof. Theorem 1.25 applied to the stable derivator DX implies that D(X) =
DX(∗) is triangulated.

13



Inverse images are exact, because they commute with other inverse images and
homotopy Kan extensions, thus they commute also with suspensions and cones.
Homotopy Kan extensions are exact, because they are adjoint to inverse images,
which are exact.

Example 1.29. a) LetM be a Quillen model category. Then the prederivator
DM defined by DM(X) = Ho(MX) is a derivator. Moreover, if M is pointed
resp. stable, then so is DM [Cis03].
b) Let C be an ∞-category. Then DC defined by DC(X) = Ho(CN (X)) is a
prederivator ( [Joy08]). We can expect that DC is a derivator if C is presentable
(see also Remark 1.34.a)), although there seems to be no proof available in
literature.

1.2 Infinite chains of adjunctions

Definition 1.30. Let C be a 2-category, x, y objects in C and f : x −→ y a
1-morphism.
a) We say f has an n-th right adjoint f [n], if there are adjunctions:
f =: f [0] a f [1] a f [2] a .... a f [n−1] a f [n]

b) We say f has an n-th left adjoint f [−n], if there are adjunctions:
f [−n] a f [−(n−1)] a ..... a f [−2] a f [−1] a f [0]

c) We say f generates an infinite chain of adjunctions, if it has an n-th right
adjoint and an n-th left adjoint for every n ∈ N
d) Let f generate an infinite chain of adjunctions and e : x −→ x be an equiv-
alence. Then the infinite chain of adjunctions generated by f is said to be
periodic of order n ∈ 2Z with respect to e, if there is an invertible 2-morphism

f ◦ e
∼=−→ f [n].

Proposition 1.31. a) Let f : x −→ y be an equivalence. Then f generates an
infinite chain of adjunctions, which is periodic of order 2 with respect to idx.
b) Let f : x −→ y and g : y −→ z generate infinite chains of adjunctions. Then
also g ◦ f : x −→ y generates an infinite chain of adjunctions.
c) Let f : x −→ y be a 1-morphism, such that f [k] exists for 0 5 k 5 n and n
even. Let h, h′ : x −→ x generate an infinite chain of adjunctions. If there are

an invertible 2-morphisms f ◦ h
∼=−→ f [n] and f [n] ◦ h′

∼=−→ f , then f generates an
infinite chain of adjunctions.
d) Let f generate an infinite chain of adjunctions and F : C −→ D a pseudo-
functor. The also F (f) generates an infinite chain of adjunctions.

Proof. a) Let f−1 be an inverse of f . Then we can choose: f [n] = f if n is even
and f [n] = f−1 if n is odd.
b) We can choose (g ◦f)[n] = g[n] ◦f [n] if n is even and (g ◦f)[n] = f [n] ◦g[n] if n
is odd, since the composition of two left (resp. right) adjoints is the left (resp.
right) adjoint of the composition.
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c) Again one can describe f [l] explicitly:
The case l > n:
In this case one can write l = mn+k in a unique way with m = 1, 0 5 k 5 n−1.
The following formulas give us an l-th right adjoint of f :
f [l] = f [k] ◦ h[k] ◦ h[n+k] ◦ h[2n+k] ◦ ... ◦ h[(m−1)n+k] if l is even and
f [l] = h[(m−1)n+k] ◦ ... ◦ h[2n+k] ◦ h[n+k] ◦ h[k] ◦ f [k] if l is odd
The case l < 0:
Here we write l = −mn + k with m < 0, 0 5 k 5 n − 1. There are similar
formulas to describe the l-th left adjoint of f :
f [l] = f [k] ◦ h′[−n+k] ◦ h′[−2n+k] ◦ ... ◦ h′[−mn+k] if l is even and
f [l] = h′[−mn+k] ◦ ... ◦ h′[−2n+k] ◦ h′[−n+k] ◦ f [k] if l is odd
d) Since pseudofunctors preserve adjunctions, we have F (f [n]) a F (f [n+1]) for
all n ∈ Z.Thus we can choose (F (f))[n] = F (f [n]).

Example 1.32. a) Let D be a pointed derivator, X ∈ Cat and ιX : ∅ −→ X the
inclusion of the empty category. By (Der1) and (Der6) ιX! and ιX∗ : D(∅) −→
D(X) are both the inclusion of the zero object. Thus ιX! generates an infinite
chain of adjunctions which is periodic of order 2 with respect to idD(∅).

b) Let D be a stable derivator, X a finite discrete category and ρX : X −→ ∗
the projection to the terminal category. By (Der2) ρX! is the coproduct and
ρX∗ is the product indexed over the objects of X in the category D(∗).
But by Theorem 1.25 D is additive, thus coproducts and products coincide.
Hence ρX! generates an infinite chain of adjunction, periodic of order 2 with
respect to idD(∗).

c) Let p : 1 −→ ∗ be the unique functor and x : ∗ −→ 1 the functor with
image x ∈ Ob(1).
Since 1 is a cosieve, 0 is a sieve and there are adjunctions 0 a p a 1, Proposition
1.8 and 1.13 yield a chain of adjunctions:
1? a 1! a 1∗ a p∗ a 0∗ a 0∗ a 0!

By Remark 1.23.b) we can identify 1? with the cone functor C and 0! with the
fiber functor F .
Let S := (1× 2)−{(1, 1), (1, 2)}, s : 1 −→ S, x 7→ (0, x) and t : S −→ 1× 2 the
inclusion.
Let A ∈ D(1) with underlying diagram A0

a−→ A1. Then the diagram underlying
t! ◦ s∗ ◦ Fiber(A) looks like:
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FA 0

A0 A1

0 CA

a

By Proposition 1.19 and 1.20 the outer square is bicartesian, hence CA = ΣFA.
But since D(∗) is triangulated, Σ is an equivalence, thus p∗ : D(∗) −→ D(1)
generates an infinite chain of adjuntions, periodic of order 6 with respect to Σ.
Moreover, the explicit formulas in the proof of Proposition 1.31.c) give us new
characterizations of iterated suspension and loop functors:

From Remark 1.23.b) we know that Σ ∼= p[−3] ◦ p[2] and Ω ∼= p[3] ◦ p[−2].
But Σ and Ω are equivalences, hence by Proposition 1.31.a) :
Σ ∼= p[2n−5] ◦ p[2n] and Ω ∼= p[2n+5] ◦ p[2n] for all n ∈ Z.

More generally, by Proposition 1.31.c) :
p[6k+l] = Σ−k ◦ p[l] for k ∈ Z, l ∈ {−1, 1, 3}.
But p[−1] ◦ p[0] ∼= idD(∗) ∼= p[1] ◦ p[0] and p[3] ◦ p[0] ∼= 0. Hence:

p[6k+l] ◦ p[0] ∼=
{

Σ−k if l = -1 or 1
0 if l = 3

d) Let n+ be the full subcategory of n×1 with Ob(n+) = {(x, y)|y = 0 or x = 0}
and n+ the full subcategory of n × 1 with Ob(n+) = {(x, y)|y = 1 or x = n}.
Let k+ : n+ −→ n× 1 and k+ : n+ −→ n× 1 the inclusions. Consider functors
i+ : n− 1 −→ n+, x 7→ (x, 0), ĩ+ : n −→ n+, x 7→ (x, 0) and i+ : n− 1 −→
n+, x 7→ (x+1, 1), ĩ+ : n −→ n+, x 7→ (x, 1) and the compositions j+ := k+◦i+,
j̃+ := k+ ◦ ĩ+ and j+ := k+ ◦ i+, j̃+ := k+ ◦ ĩ+. Moreover let R be the full
sub-category of (2n− 1)× (n + 1) with Ob(R) = {(x, y)| − 1 5 x− y 5 n} and
P the full subcategory of R with Ob(P ) = {y = 0 or x− y = −1 or x− y = n}.
Consider iP : n− 1 −→ P, x 7→ (x, 0), the inclusion jR : P −→ R and
iR,k : n− 1 −→ R, x 7→ (x+ k, k)

There is a chain of adjoint functors between n− 1 and n:
dn a sn−1 a dn−1 a .... a d1 a s0 a d0

Moreover d0 is a cosieve and dn is a sieve. So by Proposition 1.8 there is a chain
of adjoint functors between D(n− 1) and D(n):
d?

0 a d0! a d∗0 a s∗0 a d∗1 a .... a s∗n−1 a d∗n a dn∗ a d!
n

With Proposition 1.16 we can describe d?
0 and d!

n explicitly:
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d?
0 = j+∗ ◦ k+! ◦ ĩ+∗ =: Cn and d!

n = j∗+ ◦ k+
∗ ◦ ĩ+! =: Fn

Analogously to Example c) there is an isomorphism Cn ∼= Σn ◦ Fn, where
Σn = j+∗ ◦ k+! ◦ i+∗.

But there is an isomorphism: (Σn)n+1 ∼= (Σ)2. To see this, consider an ele-

ment A ∈ D(n− 1) with underlying diagram: A0
a1−→ A1

a2−→ ...
an−1−−−→ An−1

We will analyse jR! ◦ iP∗(A). By Proposition 1.19 and Proposition 1.20 all
squares with vertices {(x, y), (x+x′, y), (x, y+y′), (x+x′, y+y′)} (with x, y, x′, y′

natural numbers such that the corresponding functor � −→ R exist) are bicarte-
sian. Therefore the underlying diagram of B := jR! ◦ iP∗(A) looks as follows
(with the notation Cαβ = Cone of the composition aα ◦ aβ)

A0

0

A1

C1

0

A2

C21

C2

0

0

ΣA0

ΣA1

ΣA2

ΣAn−1

0

An−1

0

0

ΣC1

Σ2A0 Σ2An−2

0

Σ2An−1

0

· · ·

· · ·

· · ·

· · ·

. . .

. . .
...

· · ·

· · ·

. . .

. . .

. . .

We use that the squares {(k, 0), (n, 0), (k, k + 1), (n, k + 1)} are bicartesian
to conclude that (n, k + 1)∗(B) ∼= ΣAk, the squares {(n, k + 1), (n+ k + 1, k +
1), (n, n), (n + k + 1, n)} to conclude further that (n + k + 1, n)∗(B) ∼= Σ2Ak.
Thus (also use the obvious natural transformations between the above squares
and (Der2)) i∗R,n(B) ∼= Σ2A.
On the other hand we use bicartesianess of the squares {(k, l), (k′, l), (k, l +
1), (k′, l + 1)} to show that i∗R,l+1(B) ∼= Σn(i∗R,l(B)).

Hence Σ2A ∼= i∗R,n(B) ∼= (Σn)n+1A

In particular Σn is an equivalence and thus d∗0 generates an infinite chain of
adjunctions, which is periodic of order 4n+ 2.

Moreover, this shows that all inverse images of functors between simplex cate-
gories generate infinite chains of adjunctions.
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However, the minimal periodicity numbers for the inverse images of composi-
tions behave nontrivially:
Consider the functors between 0 and 2.
There are four functors:
The projection p : 2 −→ 0 and the inclusions x : 0 −→ 2, 0 5 x 5 2.
With the explicit description of the infinite chains of adjunctions above, we can
calculate all the adjoints of p∗ and x∗. It turns out that:
- p∗, 0∗ and 2∗ are part of the same infinite chain of adjuntions, which is periodic
of order 8 with respect to Σ2.
-1∗ generates an infinite chain of adjunction, which is periodic of order 4 with
respect to Σ.

e) Let C be a symmetric monoidal category with monoidal pairing − ⊗ −,
and c ∈ C a dualizable object. Then the functor c⊗− : C −→ C generates an
infinite chain of adjunctions, which is periodic of order 2 with respect to idC .
A well known example is the homotopy category of finite spectra together with
the smash product. In this case every object is dualizable and the dual is given
by the Spanier-Whitehead dual ( [Ada74] III.5).
We will use a generalized version of Spanier-Whitehead-duality to prove Theo-
rem 3.12.

Theorem 1.33. Let D be a pointed derivator. Then the following conditions
are equivalent:
a) D is stable.
b) D has coexceptional inverse images along (ip × X) and exceptional inverse
images along (iy ×X) for all X ∈ Fin.
c) For all functors f : X −→ Y , with X and Y finite, finite dimensional cate-
gories, f∗ generates an infinite chain of adjunctions.

Proof. a)⇒b) The functors ip and iy are fully faithful, hence so are ip! and
iy∗ by Proposition 1.9. Since D is stable, their essential images are equal.
Moreover we have natural isomorphisms i∗pip!

∼= idD(p) and i∗yiy∗
∼= idD(y).

Hence i∗yip! and i∗piy∗ are mutually inverse equivalences. In particular we have
ip!
∼= (iy∗ ◦ i∗y) ◦ ip!

∼= iy∗ ◦ (i∗y ◦ ip!). Thus ip! is a right adjoint, because iy∗ and
i∗y ◦ ip! are.
Dually iy∗ is a left adjoint since iy∗ ∼= (ip! ◦ i∗p) ◦ iy∗ ∼= ip! ◦ (i∗p ◦ iy∗).
This proves b) for X = ∗.
For general X one applies the proved case to the stable derivator DX .

b)⇒a) Since iy∗ is a left adjoint, it commutes with arbitrary homotopy left
Kan extensions ( [Gro11a] Corollary 2.12). In particular we have:
iy∗ ◦ ip!

∼= ip! ◦ iy∗ : D(p×y) −→ D(�×�)
To simplify the notation, we rename the objects of � and its subcategories:
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1 2

2′ 3

Consider the functor p : p×y −→ p with p(x, 3) = x, p(2, 2) = 2, p(2′, 2′) =
2′, p(1, 2) = p(2′, 2) = p(1, 2′) = p(2, 2′) = 1
Now let A ∈ D(�) be a cocartesian square with underlying diagram:

a b

c d

Then the underlying diagram of B := p∗(i∗p(A)) looks as follows:

a b

a

a b

c

a a

c

In the next step we analyse C := ip!(B).
Since homotopy Kan extensions commute with inverse images ( [Gro11a] Propo-
sition 2.6), in particular the inclusions x : ∗ −→ �, and using [Gro11a] Propo-
sition 3.13.ii), we see that (3, 2)∗(C) ∼= b, (3, 2′)∗(C) ∼= c and (3, 3)∗(C) ∼= d.
Using the same arguments for D := iy∗(C) we can conclude that (1, 1)∗(D) ∼= a,
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(2, 1)∗(D) ∼= a and (2′, 1)∗(D) ∼= a. Because iy∗ and ip! commute (and using
again, that both of them commute with inverse images) every square (x×�)∗(D)
is cartesian and every square (�× x)∗ is cocartesian for x ∈ �.
Consider the diagonal δ : � −→ � × �, x 7→ (x, x) and the unique natural
transformations α : δ ⇒ (3×�) and β : δ ⇒ (�× 3). The induced morphisms
α∗ : δ∗(D) −→ (3×�)∗(D) and β∗ : δ∗(D) −→ (�× 3)∗(D) are isomorphisms
because of (Der2) and the calculations above.
Therefore A ∼= (�× 3)∗(D) ∼= δ∗(D) ∼= (3×�)∗(D). Thus A is cartesian.

The implication ”cartesian” ⇒ ”cocartesian” is proved dually.

a a

a a

a b

a b

a b

c d

a a

c c

The underlying diagram of D:
-The ”big circles” are cartesian
-The ”small squares” are cocartesian
-δ is defined by the most outer 4 objects

c)⇒b) is obvious.
a)⇒c) is the content of Theorem 3.10
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1.3 Some Remarks and Interpretation, Part 1

Remark 1.34. a) We have seen that many interesting examples of derivators
are associated to Quillen model categories or∞-categories. In fact one can show
that these three concepts are (in some sence) equivalent:
Renaudin has proven in [Ren09] that the pseudolocalization of the 2-category
of combinatorial model categories at the class of Quillen equivalences maps fully
faithfully into the 2-category of derivators. More precisely, the natural pseud-
ofunctor which is defined by the construction described in Example 1.29.a) on
objects induces a local equivalence on the pseudolocalization.
On the other hand, one can assign to each combinatorial model category ( [Dug01])
a presentable ∞-category via the homotopy coherent nerve construction on the
full subcategory of bifibrant objects. Moreover, every presentable ∞-category
is equivalent to the homotopy coherent nerve of some combinatorial model cat-
egory( [Lur09] Proposition A.3.7.6).
Now, a method linking presentable ∞-categories and derivators directly, in the
best case proving that the homotopy bicategory of the (∞, 2)-category of pre-
sentable ∞-categories maps fully faithfully into the 2-category of derivators,
would be a great advantage for the theory of derivators: Since the (∞, 2)-
category of presentable ∞-categories is highly structured (bicomplete [Lur09]
5.5.3, symmetric monoidal [Lur11] 6.3) one would immediately get similar struc-
tures on the full sub-2-category of the 2-category of derivators, consisting of
those derivators which (up to equivalence) come from ∞-categories, by passing
to derived pseudofunctors.
b) Since there are two well-developed alternatives, one could of course ask, why
one should consider derivators at all. All three concepts have some advantages
and disadvantages depending on the purpose.
Model categories build the most fundamental concept. Both the theory of ∞-
categories ( [Lur09] A.2) and of derivators ( [Cis08]) depend on it. Unfortu-
nately many interesting properties of and structures on model categories are
not invariant under Quillen equivalences (e.g. symmetric monoidal structures),
so one often has to consider many different models for the same homotopy the-
ory. On the other hand in many applications there seems to be no way to avoid
good point-set level models (e.g. in global stable homotopy theory [Sch13]).
Presentable ∞-categories are perhaps the most natural model for the ”homo-
topy theory of homotopy theories”, since the homotopy theories of spaces resp.
spectra are characterised by universal properties, and much more structures
(monoidal structures, enrichments, Kan extensions) can be described very nat-
urally.
Derivators share many advantages with ∞-categories, but with part a) of this
remark in mind, one should consider derivators still as a derived theory, i.e. one
should expect that many informations, that are important for the global un-
derstanding of the 2-category of derivators, won’t be available, if one considers
derivators without any higher models. On the other hand derivators are much
closer to the actual homotopy categories, so they may provide us with a lot of
techniques of analysing homotopy categories in a very structured way.
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2 The structure of the 2-categories of Derivators

In this section we specialize to Dia = Cat.
In Subsection 2.1 we define morphisms of derivators and discuss in details the
abstract duality. In Subsection 2.2 we explain how we can pass from derivators
to pointed and stable ones. In Subsection 2.3 we use that the evaluation at
X ∈ Cat is corepresentable (Theorem 2.16), to prove the dualizability theorem
for cofree derivators.
In Subsection 2.4 we use that in a closed symmetric monoidal category with
full duality the duality relates the monoidal pairing with the closure, to de-
fine a completely new symmetric monoidal structure on the 2-category of cofree
derivators.
Again we close the section with some remarks and ideas for possible future re-
search.

2.1 Morphisms of Derivators and abstract Duality

Definition 2.1. Let D,D′ be derivators and F : D −→ D′ a morphism of pred-
erivators.
a) F commutes with homotopy left Kan extensions, if for all functors f : X −→ Y
the composition of 2-cells:

D(Y ) D′(Y )

D(X) D′(X)

D(X)

D′(Y )

⇒
⇒η

⇒ε
′f∗D

FY

f∗D′

FX

fD!

fD′!

id

id

is invertible.
Dually, F commutes with homotopy right Kan extensions, if for all functors
f : X −→ Y the composition of 2-cells:

D(Y ) D′(Y )

D(X) D′(X)

D(X)

D′(Y )

⇒
⇒ε

⇒η′f∗D

FY

f∗D′

FX

fD∗

fD′∗

id

id
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is invertible.
b) Let D, D’ be derivators. Then the category [D,D′]L (resp. [D,D′]R) of colimit
preserving (resp.limit preserving) morphisms from D to D′ is defined to be the
full subcategory of PDer(D,D′) on those morphisms which commute with the
homotopy left Kan extensions (resp. homotopy right Kan extensions).
c) The prederivator of colimit preserving (resp. limit preserving) morphisms
JD,D′KL (resp. JD,D′KR) is defined by

JD,D′KL(X) := [D,D′X ]L (resp. JD,D′KL(X) := [D,D′X ]R)

for X ∈ Cat.
d) The 2-category of derivators DeruL (resp. DeruR) is defined by:
Ob(DeruL) = Ob(DeruR) = {Derivators}
DeruL(D,D′) = [D,D′]L (resp. DeruR(D,D′) = [D,D′]R )

Example 2.2. Let D be a derivator and f : X −→ Y a functor with X,Y ∈ Cat
a) The functors (f × Z)∗ : D(Y × Z) −→ D(X × Z) assemble into a morphism
of prederivators f∗ : DY −→ DX .
Moreover f∗ ∈ [DY ,DX ]L ∩ [DY ,DX ]R ( [Gro11a] Proposition 2.6)
b) The functors (f × Z)! : D(X × Z) −→ D(Y × Z) assemble into a morphism
of prederivators f! : DX −→ DY .
Moreover f! ∈ [DX ,DY ]L ( [Gro11b] Lemma 2.6)
c) The functors (f × Z)∗ : D(X × Z) −→ D(Y × Z) assemble into a morphism
of prederivators f∗ : DX −→ DY .
Moreover f∗ ∈ [DX ,DY ]R

Remark 2.3. By [CT12] Theorem A.3 JD,D′KL and JD,D′KR are in fact deriva-
tors. We will show this in some special cases, i.e. when D is cofree derivator in
the case of JD,D′KL or a free derivator in the case of JD,D′KR.

Proposition 2.4. a) Let D and D′ be derivators. Then F ∈ PDer(D,D′) is a
left adjoint if and only if there is G ∈ PDer(D′,D) such that for all X ∈ Cat
there are adjunctions of functors: FX a GX .
b) If F ∈ PDer(D,D′) is a left adjoint, then F ∈ [D,D′]L.

Proof. a) [Gro11a] Proposition 2.11
b) [Gro11a] Corollary 2.12

Definition 2.5. Let D and D′ be derivators.
a) Then their cartesian product D× D′ is the composition:

Catop
diagonal−−−−−→ Catop × Catop D×D′−−−→ CAT × CAT −×−−−−→ CAT

b) And their exterior product D� D′ is the composition:

Catop × Catop D×D′−−−→ CAT × CAT −×−−−−→ CAT
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Proposition 2.6. Let D,D′ and D′′ be derivators. Then are natural equiva-
lences of catergories:

PsNat(D� D′,D′′ ◦ (−×−)) ∼= PDer(D× D′,D′′)

where PsNat denotes the category of pseudonatural transformations.

Proof. [Gro12] Proposition 1.4.

Example 2.7. Let D,D′ and D′′ be derivators. The composition of morphisms
of derivators defines a pseudonatural transformation:
JD,D′KL � JD′,D′′KL −→ JD,D′′KL ◦ (−×−)
which is defined by:
(F ∈ [D,D′X ]L, G ∈ [D′,D′′Y ]L) 7→ GX ◦ F ∈ [D,D′′X×Y ]L
for (X,Y ) ∈ Cat× Cat.
Thus by Proposition 2.6 there is a well defined composition morphism:
JD,D′KL × JD′,D′′KL −→ JD,D′′KL

The 2-categories DeruL and DeruR are related to each other by the abstract
duality in the 2-category PDer:

Definition 2.8. Let D be a prederivator. Then the opposite prederivator Dop
is defined by:

Dop(X) = D(Xop)op

In other words Dop is given by the following composition:

Catop
(−)op−−−→ Catcoop

Dco

−−→ CAT co
(−)op−−−→ CAT

The following result is well-known. Nevertheless we will give the details as it is
one of the main ingredients for Theorem 3.10.

Proposition 2.9. a) (−)op defines an self-inverse equivalence PDerco −→
PDer.
b) (−)op restricts to an equivalence Deru,coL −→ DeruR.
In particular we have equivalences of categories [D,D′]opL ∼= [Dop,D′op]R
c) The equivalences described in part b) assemble to equivalences of derivators:

JD,D′KopL ∼= JDop,D′opKR

Proof. Part a) is obvious.
b) First note that the opposite of a derivator is again a derivator.
Now let f : X −→ Y be a functor in Cat. Then by definition f∗Dop = (fop)

∗
D
op

.
Since (−)op is a 2-functor, it maps adjunctions to adjunctions but it interchanges
the role of left and right adjoint, because the directions of unit and counit get
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reversed. Therefore we have: f∗Dop = (fop)!D
op

. Let F ∈ [D,D′]L, then for any
functor fop ∈ Cat(Xop, Y op) we have:
(fop)!D′ ◦ FXop ∼= FY op ◦ (fop)!D
After applying (−)op to this equivalence, this turns into:
f∗D′op ◦ F

op
X
∼= (fop)!D′

op ◦ F opX ∼= F opY ◦ (fop)!D
op ∼= F opY ◦ f∗Dop

Hence F op ∈ [Dop,D′op]R. Moreover (F op)op = F , so (−)op defines equivalences
on morphism categories.
This proves b).
c)Let X ∈ Cat. Then for all Y ∈ Cat we have natural equivalences:
(DX)op(Y ) = D(X×Y op)op ∼= Dop((Xop×Y )op)op ∼= Dop(Xop×Y ) ∼= (Dop)Xop(Y )
Clearly these assemble into an equivalence (DX)op ∼= (Dop)Xop .

Applying this to D′op in JDop,D′opKR yields:
JDop,D′opKR(X) = [Dop, (D′op)X ]R ∼= [Dop, (D′Xop)op]R
Since we also have:
JD,D′KopL (X) = JD,D′KL(Xop)op = [D,D′Xop ]opL
we can now apply b) to get equivalences JDop,D′opKR(X) ∼= JD,D′KopL (X). These
equivalences assemble into the desired equivalence of (pre)derivators.

2.2 The 2-categories of pointed and stable derivators

Definition 2.10. a) The 2-categories DerpL resp. DerpR of pointed derivators,
are defined to be the full sub-2-categories of DeruL resp. DeruR with pointed
derivators as objects.
b) The 2-categories DersL resp. DersR of stable derivators, are defined to be the
full sub-2-categories of DeruL resp. DeruR with stable derivators as objects.

The following theorem describes how we can pass from derivators to pointed
and stable derivators in a functorial way.

Theorem 2.11. a)Let D ∈ DeruL. Then there exists a pointed derivator Dp

together with a colimit preserving morphism D PD−−→ Dp, such that PD induces for

every D′ ∈ DerpL an equivalence of categories [Dp,D′]L
∼=−→ [D,D′]L.

b)Let D ∈ DerpL be regular (i.e. sequential homotopy colimits commute with
products and homotopy pull-backs). Then there exists a stable derivator Ds to-

gether with a colimit preserving morphism D SD−→ Ds, such that SD induces for

every D′ ∈ DersL an equivalence of categories [Ds,D′]L
∼=−→ [D,D′]L.

Proof. a) [Cis08] Proposition 4.17
b) [Hel97]
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2.3 Universal derivators

The following is an immediate consequence of the biYoneda Lemma [Bak]:

Proposition 2.12. Let X ∈ Cat and X the associated representable prederiva-
tor, i.e. X(Y ) = Cat(Y,X). Then for every prederivator D we have a natural
equivalence of categories:

PDer(X,D) ∼= D(X)

Now the derivator associated to the homotopy theory of simplicial sets plays a
crucial role in DeruL. It can be regarded as a cofree object on one generator.

Definition 2.13. a) Hu is defined to be the derivator associated to the Quillen
model category of simplicial sets (i.e. the weak equivalences are those maps
which become weak equivalences of topological spaces after applying geometric
realization) [Qui67].
b) The stabilisation of the pointed derivator Hp := (Hu)p exists and will be
denoted by Hs.

Remark 2.14. Hs is equivalent to any derivator associated to any combinato-
rial model category of spectra [CT11] Theorem A.14.
In particular Hs(∗) is equivalent to the stable homotopy category.

Notation: In the following, let ? ∈ {u, p, s}
A ?-derivator is a derivator if ? = u, a pointed derivator if ? = p and a stable
derivator if ? = s.

Definition 2.15. a) A ?-derivator is cofree in Der?L, if it is equivalent to H?X
for some X ∈ Cat. And FDer?L is the full sub-2-category of Der?L on the cofree
?-derivators.
b) A ?-derivator is free in Der?R, if it is equivalent to H?opX for some X ∈ Cat.
And FDer?R is the full sub-2-category of Der?R on the free ?-derivators.

Let X ∈ Cat, then by applying CAT (Y,−) to the Yoneda embedding X −→
CAT (Xop, sSet), where we regard Hom-sets as constant simplicial sets, before
passing to homotopy categories, we get functors

X(Y ) = Cat(Y,X) −→ CAT (Y,CAT (Xop, sSet)) ∼= CAT (Xop×Y, sSet) −→ HuXop(Y )

and hence a morphism X
hX−−→ HXop .

Theorem 2.16. Let X ∈ Cat,D ∈ DeruL, then hX induces an equivalence of
categories

[HuXop ,D]L −→ PDer(X,D).
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Proof. [Cis08] Corollary 3.28, see also [Fra96] Theorem 4.

Corollary 2.17. a) Let X ∈ Cat,D ∈ DerpL. Then composition with PHu
Xop

induces an equivalence

[HpXop ,D]L −→ PDer(X,D).

b) Let X ∈ Cat,D ∈ DersL. Then composition with SHp
Xop

induces an equiva-
lence

[HsXop ,D]L −→ PDer(X,D).

Proof. Just apply Theorem 2.11.

Corollary 2.18. Let X,Y ∈ Cat,D ∈ Der?L. Composing the equivalences of
Proposition 2.12, Theorem 2.16 and Corollary 2.17 yields equivalences

[H?Xop ,DY ]L −→ DX(Y ).

These assemble into an equivalence of prederivators:

dhD,X : JH?Xop ,DKL −→ DX .

Corollary 2.19. Let X ∈ Cat,D ∈ Der?R. Then there are natural equivalences
of prederivators

J(H?op)Xop ,DKR −→ DX .

Proof. By Proposition 2.9 and Corollary 2.18 there are equivalences:
J(H?op)Xop ,DKR
∼= J((H?op)Xop)op,DopKopL
= J((H?op)op)X ,DopKopL
= JH?X ,DopK

op
L∼= ((Dop)Xop)op = (DX)opop = DX

Note that, since DX is a ?-derivator, the same is true for JH?Xop ,DKL and
J(H?op)Xop ,DKR. This proves the statement of Remark 2.3 in the cofree (resp.
free) case and gives us well-behaving internal Hom-functors on FDer?L and
FDer?R.

Remark 2.20. a)Let YX ∈ H?Xop(X) be the image of idX ∈ X(X) under the
morphism hX , then the equivalence dhD,Xop maps a morphism F : H?X −→ D to
FXop(YX ) ∈ DX(∗), in particular YX corresponds to the identity on H?X .
By abstract duality, we can describe the equivalence of Corollary 2.19 by (F :
(H?op)X −→ D) 7→ FXop(YXop) with YXop ∈ H?X(Xop)op = (H?op)Xop(X)

Moreover, by definition of the morphism hX , we see that YX is given by the
homotopy class of the element HomX(−,−) ∈ sSetXop×X . The twist functor
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tX : Xop×X
∼=−→ X×Xop identifies HomX(−,−) with HomXop(−,−), thus we

get an isomorphism YX
∼= t∗XYXop .

YX will be called the Yoneda element in the following.

b) Let W,X, Y, Z ∈ Cat.
We can use the equivalences of Corollaries 2.18 and 2.19 to define relative tensor
and cotensor functors in H?:

The composition map: JH?X ,H?Y KL × JH?Y ,H?ZKL −→ JH?X ,H?ZKL
gives rise to: −⊗[X,Y,Z] − : H?Xop×Y ×H?Y op×Z −→ H?Xop×Z

The composition map: J(H?X)op, (H?Y )opKR× J(H?Y )op,H?ZKR −→ J(H?X)op,H?ZKR
gives rise to: Hom[X,Y,Z](−,−) : (H?op)X×Y op ×H?Y×Z −→ H?X×Z

And dually:

The composition map: J(H?X)op, (H?Y )opKR×J(H?Y )op, (H?Z)opKR −→ J(H?X)op, (H?Z)opKR
gives rise to: −⊗̌[X,Y,Z]− : (H?op)X×Y op × (H?op)Y×Zop −→ (H?op)X×Zop

The composition map: JH?X ,H?Y KL × JH?Y , (H?Z)opKL −→ JH?X , (H?Z)opKL
gives rise to: Ȟom[X,Y,Z](−,−) : H?Xop×Y × (H?op)Y op×Zop −→ (H?op)Xop×Zop

Up to the equivalences of Proposition 2.9 ⊗̌ is the opposite of ⊗ and Ȟom
is the opposite of Hom.

One can use the well known properties of the composition to deduce some prop-
erties of the tensor and cotensor functors:

(unitality) Since the Yoneda-element YX corresponds to the identity on H?X
we have:
YY ⊗[Y,Y,Z] − ∼= idH?

Y×Zop
and −⊗[X,Y,Y ] YY

∼= idH?
X×Y op

Hom[Y,Y,Z](YY ,−) ∼= idH?
Y×Z

And dually:
YY ⊗̌[Y,Y,Z]− ∼= id(H?op)Y×Zop and −⊗̌[X,Y,Y ]YY

∼= id(H?op)X×Y op

Ȟom[Y,Y,Z](YY ,−) ∼= id(H?op)Y op×Zop

(associativity) The associativity of the composition:
JH?W ,H?XKL × JH?X ,H?Y KL × JH?Y ,H?ZKL −→ JH?W ,H?ZKL
and its abstract dual yield associtivity for ⊗ and ⊗̌:
(A⊗[W,X,Y ] B)⊗[W,Y,Z] C ∼= A⊗[W,X,Z] (B ⊗[X,Y,Z] C) and
(A⊗̌[W,X,Y ]B)⊗̌[W,Y,Z]C ∼= A⊗̌[W,X,Z](B⊗̌[X,Y,Z]C)

(exponential law) The associativity of the composition:
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J(H?W )op, (H?X)opKR × J(H?X)op, (H?Y )opKR × J(H?Y )op,H?ZKR −→ J(H?W )op,H?ZKR
and its abstract dual yield the following variants of the exponential law:
Hom[W,Y,Z](A⊗̌[W,X,Y ]B,C) ∼= Hom[W,X,Z](A,Hom[X,Y,Z](B,C)) and

Ȟom[W,Y,Z](A⊗[W,X,Y ] B,C) ∼= Ȟom[W,X,Z](A, Ȟom[X,Y,Z](B,C))

c) Furthermore, one can identify a few special cases of those relative tensor
and cotensor functors with some well-known derived functors. To simplify the
notation we’ll only discuss the stable case, but there are obvious analogs in the
unpointed and pointed case.
Hs is equivalent to the derivator associated to the model category of simplicial
symmetric spectra SpΣ and HsX to the derivator associated to the model cat-
egory of X-diagrams in symmetric spectra SpXΣ . It is well known that SpΣ is
symmetric monoidal and SpXΣ is enriched, tensored and cotensored over SpΣ.
The tensored structure is a left Quillen functor in two variables and its derived
functor has the following property:
For A ∈ SpXΣ , A its class in the homotopy category and S the class of the sphere
spectrum we have:
A⊗ S ∼= A
But this is the property which characterises the functors A ⊗[X,∗,∗] − and
−⊗[∗,∗,X]A up to unique isomorphism. Hence we can identify both, −⊗[X,∗,∗]−
and −⊗[∗,∗,X] −, with the tensored structure of SpXΣ .
The partial right Quillen adjoints of the tensored structure are given by the
enrichment and by the cotensored structure. Thus, using the uniqueness of
right adjoints and the exponential law in part b) of this remark, we can iden-
tify Hom[∗,X,∗](−,−) with the derived of the enriched structure on SpXΣ , and
Hom[∗,∗,X](−,−) with the derived of the cotensored structure on SpXΣ .

d) One should note, that in [Gro12] Section 2.3 Groth defines the analogs
of the relative tensor functors for arbitrary monoidal derivators with an com-
pletely independent method. One can construct a bicategory associated to a
monoidal derivator, the bicategory of distributors, and define the analog of the
composition pairing by homotopy coend functors. In particular, the relative
tensor and cotensor functors capture a large part of the closed monoidal struc-
ture of H?.

Theorem 2.21. The 2-functor J−,H?KL : FDer?opL −→ FDer?L is an self-
inverse equivalence of 2-categories.

Proof. To prove the theorem one has to construct a pseudonatural equivalence
id⇒ JJ−,H?KL,H?KL

There is a pseudonatural transformation ev : id ⇒ JJ−,H?KL,H?KL defined
on D(X) by: evD(A) = [F 7→ FX(A)] for D ∈ FDer?opL , A ∈ D(X) and
F ∈ [D,H?]L.
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evD is colimit preserving, because for every f : X −→ Y there is a commu-
tative diagram:

A [F 7→ FX(A)]

∈ ∈

D(X) JJD,H?KL,H?XKL

D(Y ) JJD,H?KL,H?Y KL

∈

∈

[F 7→ f! ◦ FX(A)]

f!(A) [F 7→ FY (f!(A))]
∈

To show that ev is a pseudonatural equivalence, it suffices to show that evD is
an equivalence of derivators for every D ∈ FDer?opL .

For D cofree, there exist X ∈ Cat and an equivalence G : D −→ H?X
By the pseudonaturality of ev we get an natural isomorphism evD ∼= JJG−1,H?KL,H?KL◦
evH?

X
◦G

Hence evD is an equivalence if and only if evH?
X

is. Therefore it suffices to show
that evH?

X
is an equivalence of derivators for every X ∈ Cat.

So evH?
X

is a morphism H?X −→ JJH?X ,H?KL,H?KL
But also ẽvH?

X
:= JdhH?,Xop ,H?KL◦dhH?,X

−1
defines an morphism H?X −→ JJH?X ,H?KL,H?KL

which is an equivalence by Corollary 2.18

We will show that evH?
X

and ẽvH?
X

are naturally isomorphic. This will finish
the proof of the theorem, since the latter one is an equivalence. By Corollary
2.18 we only have to check that ẽvH?

X
(YXop) ∼= evH?

X
(YXop)

ẽv is the composition: H?X
dhH?,X

−1

−−−−−→ JH?Xop ,H?KL
JdhH?,Xop ,H?KL
−−−−−−−−−→ JJH?X ,H?KL,H?KL

By definition of YXop : dhH?,X

−1
(YXop) = idH?

Xop
∈ JH?Xop ,H?KL(Xop)

Thus ẽvH?
X

(YXop) = JdhH?,Xop ,H?KL(idH?
Xop

) but the latter one is the composi-
tion:

JH?X ,H?KL
dhH?,Xop

−−−−−→ H?Xop

id−→ H?Xop

But this is the evaluation at YXop by remark 2.20
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The following Proposition will be one of the main ingredients for the proof of
Theorem 3.10:

Proposition 2.22. Let f : X −→ Y be a functor in Cat and D ∈ Der?L.
a) The composition dhD,X ◦ JfopH?!,DKL ◦ (dhD,Y )−1 and f∗D are equivalent as mor-
phisms DY −→ DX .
b) The composition dhD,Y ◦ Jfop∗H? ,DKL ◦ (dhD,X)−1 and fD! are equivalent as mor-
phisms DX −→ DY .

Proof. Since J−,DKL is a contravariant 2-functor, the statements a) and b) are
equivalent, hence it suffices to prove b).
Consider the diagram:

F FX(YX)

∈ ∈

[H?Xop ,D]L D(X)

[H?Y op ,D]L D(Y )

∈

∈f! ◦ FX(YX)

= FY (f!(YX))

F ◦ fop∗ (F ◦ fop∗)Y (YY ) = FY (fop∗(YY ))

∈

Hence it suffices to show that f!(YX) ∼= fop∗(YY ) to conclude its commutativ-
ity.
Then one can apply this to D′ = DZ for Z ∈ Cat. By 2-functoriality in Z, this
will prove the proposition.

Let Y onZ : Z −→ SetZ
op

be the Yoneda embedding.
Since SetY

op

is cocomplete, the composition Y onY ◦ f : X −→ SetY
op

has
an Yoneda extension, i.e. there is a unique colimit preserving functor f̃ :
SetX

op −→ SetY
op

making the following diagram commutative:
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X Y

SetX
op

SetY
op

f̃

f̃ is by definition the left Kan extension of fop, so f̃ = fop! .
By applying (−)∆op

to fop! , and using the exponential adjunction in CAT twice,
we get the left Kan extension of fop in simplicial sets:
fop! : sSetX

op −→ sSetY
op

Therefore applying (−)Z and using the exponential adjunction again, yields
commutative diagrams, which are 2-functorial in Z ∈ Cat:

XZ Y Z

sSetX
op×Z sSetY

op×Z
fop
!Z

Since fop!Z is a left Quillen functor with respect to the projective model structure
[Lur09] Proposition A.2.8.2, it gives rise to an derived functor, which is by
Definition 2.13

fop!Z : HuXop(Z) −→ HuY op(Z).

Hence we have a commutative diagram of prederivators:

X Y

HuXop HuY op

hX

f

hY

fop
!

Note that by Theorem 2.16 fop! is up to isomorphism the only colimit preserving
morphism which makes this diagram commutative.
Moreover Theorem 2.16 implies that both compositions define isomorphic ele-
ments in HuY op(X), but the upper one gives rise to f∗(YY ) and the lower one
to fop! (YX).
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This completes the proof in the unpointed case. For the pointed (resp. sta-
ble) case one has to add base points (resp. pass to suspension spectra) before
localising at weak equivalences.

2.4 Monoidal Structures

In the last subsection we have seen that there is a nice internal Hom-functor
J−,−KL and proved a duality result (Theorem 2.21) for cofree derivators. Now
we’ll use this to define a symmetric monoidal structure on FDer?L such that the
duality of Theorem 2.21 is the monoidal duality and J−,−KL is the closure of
this monoidal structure.
Assume, such a symmetric monoidal structure exists, then one could express
products via the duality in terms of internal Homs. This we’ll use as a defini-
tion:

Definition 2.23. Let D, D’ be cofree ?-derivators.
The pairing −[⊗]L− : FDer?L × FDer?L −→ FDer?L is defined by

D[⊗]LD′ := JJD,H?KL,D′KL.

For the proof of the desired properties of −[⊗]L− we have to work with ”multi-
linear” morphisms of derivators. Moreover we’ll need another result of Cisinski
[Cis08]:

Definition 2.24. a) Let Dk, D′ be cofree ?-derivators, 1 5 k 5 n. The cate-
gory of multi-cocontinuous morphism [{D1, ...,Dn},D′]L is the full subcategory
of PDer(D1×...×Dn,D′) spanned by those morphism which preserve homotopy
colimits in each variable seperately.
b) The prederivator J{D1, ...,Dn},D′KL is defined by:

J{D1, ...,Dn},D′KL(X) = [{D1, ...,Dn},D′X ]L.

Example 2.25. Let Dk, D′ be cofree ?-derivators. The morphism TD,D′

D× D′
evD×dhD′−−−−−→ JJD,H?KL,H?KL × JH?,D′KL −→ JJD,H?KL,D′KL = D[⊗]LD′

where the second map is the composition, is bi-cocontinuous.

Proposition 2.26. Let Dk, D′ be cofree ?-derivators, 1 5 k 5 n. There are
pseudonatural equivalences of categories:

[{D1, ...,Dn},D′]L ∼= [{D1, ..., D̂i, ...,Dn}, JDi,D′KL]L

Proof. [Cis08] Lemma 5.18

33



Proposition 2.27. a) There are pseudonatural isomorphisms:
H?[⊗]LD ∼= D and D[⊗]LH? ∼= D
b) There is a pseudonatural isomorphism:
D[⊗]LD′ ∼= D′[⊗]LD
c) There is a pseudonatural isomorphism:
(D[⊗]LD′)[⊗]LD′′ ∼= D[⊗]L(D′[⊗]LD′′)
d) The morphism TD,D′ induces a pseudonatural isomorphism:

[D[⊗]LD′,D′′]L
∼=−→ [{D,D′},D′′]L

e) −[⊗]LD is left biadjoint to JD,−KL
f) FDer?L admits a closed symmetric monoidal structure with
−[⊗]L− as monoidal pairing.
g) D[⊗]L− is left and right biadjoint to JD,H?KL[⊗]L−
h) There is a pseudonatural isomorphism:
JD[⊗]LD′,H?KL ∼= JD′,H?KL[⊗]LJD,H?KL

Proof. a) H?[⊗]LD = JJH?,H?KL,DKL ∼= JH?,DKL ∼= D
Both equivalences are induced by Corollary 2.18.

D[⊗]LH? = JJD,H?KL,H?KL ∼= D
Here the equivalence is the inverse of the evaluation.

b)D[⊗]LD′ = JJD,H?KL,D′KL ∼= JJD′,H?KL, JJD,H?KL,H?KLKL ∼= JJD′,H?KL,DKL =
D′[⊗]LD
The first equivalence is induced by applying the contravariant equivalence J−,H?KL,
and the second one by the inverse of the evaluation.

c)(D[⊗]LD′)[⊗]LD′′
∼= D′′[⊗]L(D[⊗]LD′)
= JJD′′,H?KL, JJD,H?KL,D′KLKL
∼= J{JD′′,H?KL, JD,H?KL},D′KL
∼= JJD,H?KL, JJD′′,H?KL,D′KLKL
= D[⊗]L(D′′[⊗]LD′)
∼= D[⊗]L(D′[⊗]LD′′)
The first and fourth equivalence are induced by b) and the second and third
equivalence are induced by Proposition 2.26.

d) We will use a similar strategy as in the proof of theorem 2.21. TD,D′ is
clearly pseudonatural. Thus w.l.o.g. we can assume D = H?X ,D′ = H?Y and
D′′ = H?Z .
We’ll show that the composition (1) to (9) below is isomorphic to the identity.
It is clear that all morphisms, with exception of (4) to (5), are equivalences.
Thus also (4) to (5) will be an equivalence. This will complete the proof of d),
since the morphism induced by THX ,HY

is the composition (4) to (6).

In the diagram below, we use a shortened notation. Therefore we discuss the
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morphism (1) to (2) in detail:

The Yoneda-element YX×Y ×Zop ∈ H?Xop×Y op×Z(X×Y ×Zop) corresponds to a
morphism in JH?X×Y ,H?ZKL(X×Y ×Zop) = [H?X×Y ,H?Z×X×Y×Zop ]L. By Corol-
lary 2.18 this morphism is defined by mapping YXop×Y op ∈ H?X×Y (Xop × Y op)
to YX×Y ×Zop ∈ H?Z×X×Y×Zop(Xop × Y op) = H?Xop×Y op×Z(X × Y × Zop).
In the diagram we suppress the notation of the components of derivators and
we indicate morphisms only by their action on Yoneda-elements.

J{JJH?X ,H?KL,H?KL, JH?,H?Y KL},H?ZKL

J{H?X ,H?Y },H?ZKLJJJH?X ,H?KL,H?Y KL,H?ZKL

JH?X , JH?Y ,H?ZKLKLJJH?Xop ,H?Y KL,H?ZKL

JH?X ,H?Y op×ZKLJH?X×Y ,H?ZKL

H?Xop×Y op×Z H?Xop×Y op×Z

(YXop ,YY op) 7→ YX×Y ×Zop

YXop , 7→ (YY op 7→ YX×Y ×Zop)

YXop 7→ YX×Y ×Zop

YX×Y ×Zop

(idH?
X
7→ YXop×Y op) 7→ YX×Y ×Zop

(YX 7→ YXop×Y op) 7→ YX×Y ×Zop

YXop×Y op 7→ YX×Y ×Zop

YX×Y ×Zop

(eval. at YXop ,Y∗ 7→ YY op) 7→ YX×Y ×Zop

∈

∈

∈

∈

∈

∈

∈

∈

∈

(6)

(7)

(8)

(9)

(4)

(3)

(2)

(1)

(5)
∼=

∼=

∼=

∼=

∼=

∼=

∼=

The equivalences (1) to (4) and(7) to (9) are induced by Corollary 2.18, the
equivalence (6) to (7) by Proposition 2.26 and the equivalence (5) to (6) by
Corollary 2.18 and Theorem 2.21
By checking at idH?

X
we see, that (idH?

X
7→ YXop ⊗[X×Xop,∗,Y×Y op] YY op) 7→

YX×Y ×Zop ∈(4) maps to the right element in (5).
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Finally the canonical equivalence of categories:
(X ×Xop)× (Y × Y op) ∼= (X × Y ) × (X × Y )op

identifies HomXop(−,−) × HomY op(−,−) with Hom(X×Y )op((−,−), (−,−)),
thus giving the desired isomorphism:
YXop ⊗[X×Xop,∗,Y×Y op] YY op ∼= YXop×Y op

e) By d) and Proposition 2.26 there are equivalences, which are pseudonatu-
ral in D,D′ and D′′:
[D[⊗]LD′,D′′]L

∼=−→ [{D,D′},D′′]L
∼=−→ [D, JD′,D′′KL]L

f) The full definition of a symmetric monoidal 2-category is spread over [Gur07],
[MC00] and [SchP03]. Fortunately we don’t have to check all the coherence
diagrams one by one.

By [Gro12] Lemma 1.2 the category PDer is a cartesian closed symmetric
monoidal 2-category.
In particular there are biadjunctions−×D a HomPDer(D,−), which are pseudo-
natural in D ∈ PDer.
This symmetric monoidal structure restricts to a closed symmetric monoidal
structure on Der?L by [Gro11b] Proposition 2.8 , and furthermore to a symmet-
ric monoidal structure on FDer?L by (Der1).
All the coherence diagrams for − × − correspond via the above biadjunctions
to adjoint coherence diagrams for HomPDer(−,−). Since the internal Hom-
objects in FDer?L are strict subobjects of the internal Hom-objects in PDer,
all the adjoint coherence diagrams for HomPDer(−,−) restrict to coherence di-
agrams for J−,−KL.
Now the biadjunctions of part e) yield the coherence diagrams for −[⊗]L−.

Note that we get those structure morphisms, which we have not defined ex-
plicitly (e.g. the syllapsy, the associativity and unitality morphisms α, λ, ρ ...)
also via the above biadjunctions.

Although − × − defines a symmetric monoidal structure in a very strict sense
(i.e. some of the structure morphisms are in fact equalities), the above argu-
ment only shows that −[⊗]L− defines a symmetric monoidal structure in the
weaker sense of [Gur07], [MC00] and [SchP03], since the passage to the ad-
joint, as described above, preserves only equalities of 2-morphisms, and not of
1-morphisms or objects.

g) For the ”left biadjoint” statement, we apply b), e) and Theorem 2.21:
D[⊗]L− ∼= −[⊗]LD a JD,−KL ∼= JJJD,H?KL,H?KL,−KL = JD,H?KL[⊗]L−

For the ”right biadjoint” statement, we apply the ”left biadjoint” statement
to JD,H?KL and use Theorem 2.21:
JD,H?KL[⊗]L− a JJD,H?KL,H?KL[⊗]L− ∼= D[⊗]L−
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h) We use (D[⊗]LD′)[⊗]L− ∼= (D[⊗]L−) ◦ (D′[⊗]L−), g) and that biadjunc-
tions behave well with compositions:

a

a

(D[⊗]LD′)[⊗]L− JD[⊗]LD′,H?KL[⊗]L−

(D[⊗]L−) ◦ (D′[⊗]L−) (JD′,H?KL[⊗]L−) ◦ (JD,H?KL[⊗]L−)

∼=

To finish the proof, we apply the right biadjoints to H? and use a).

Definition 2.28. A (symmetric) monoidal cofree ?-derivator is a (symmetric)
monoid object in FDer?L with respect to the [⊗]L-monoidal structure.

Remark 2.29. a) Proposition 2.27.d) implies that giving a (symmetric) monoidal
structure on a cofree ?-derivator D in the sense of definition 2.28, is equivalent
to give a (symmetric) monoidal structure on D in the sense of Groth [Gro12]
Definition 2.4 or a left exact (symmetric) monoidal structure on D in the sense
of Cisinski [Cis08] 5.4.
b) Thus for a (symmetric) monoidal cofree ?-derivator D and X ∈ Cat, the
category D(X) has a canonical (symmetric) monoidal structure [Gro12] Exam-
ple 2.5. And moreover, if D is stable, the (symmetric) monoidal structure is
compatible with the triangulation (Theorem 1.25) in the sense of [HPS97] and
[May01] (see [GPS12] ).

Example 2.30. a) H? has a unique structure as a symmetric monoidal ?-
derivator ( [Cis08] Theorem 5.22) via:
- idH? as unit.
- The multiplication H?[⊗]LH? = JJH?,H?KL,H?KL −→ H? is defined by the
evaluation.
b) Let D be a cofree ?-derivator. Then End(D) := JD,DKL = JD,H?KL[⊗]LD is
a monoidal cofree ?-derivator ( [Cis08] Corollary 5.10) via:
- The unit is the unique homotopy colimit preserving map H? −→ End(D),
defined by idD.
- The multiplicative structure is induced by the composition of endomophisms
and Proposition 2.27.d)

Definition 2.31. a) Let A,A′ be monoidal prederivators with respect to the
cartesian monoidal structure, then PDerm(A,A′) is the category of monoidal
morphisms from A to A′.
b) Let A,A′ be monoidal ?-derivators, then [A,A′]mL is the category of homotopy
colimit preserving monoidal morphism from A to A′.
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The following is a monoidal variant of Theorem 2.16.

Theorem 2.32. a) Let X be a monoidal category, then X is a monoidal pred-
erivator and there is a unique monoidal structure on H?Xop such that hX is
monoidal.
b) Let A be a monoidal ?-derivator. The monoidal morphism hX induces an
equivalence of categories:

[H?Xop ,A]mL
∼= PDerm(X,A)

Proof. [CT12] Theorem A.3

2.5 Some Remarks and Interpretation, Part 2

Remark 2.33. a) Note that there are no finiteness conditions for the duality
theorem 2.21. This shows that the role of finite sets in the uncategorified theory
is replaced by small categories in this case.
b) Since the proof of Theorem 2.21 is formal, it will generalize to other situa-
tions:
Let us discuss informally the following example:
Let A be a symmetric monoidal derivator in the sense of [Gro12] Definition 2.4
which also a ?-derivator.
Now an A-module is a ?- derivator D together with a morphism A × D −→ D
such that the usual diagrams commute up to some appropriate coherence.
For two A-modules D,D′, let [D,D′]AL be the full subcategory of [D,D′]L on those
morphisms which preserve the module structures.
The unit morphism ∗ −→ A corresponds by Theorem 2.16/Corollary 2.17 to a
homotopy colimit preserving morphism E : H? −→ A. It should not be hard
to show that composition with E induces equivalences [AXop ,D]AL −→ D(X) for
X ∈ Cat,D an A-module.
In this situation the proof of Theorem 2.21 will go through to show that J−,AKAL
is an equivalence on cofree A-modules.
c) There is a far reaching analogy to elementary linear algebra:
-H?X is the analog of the abelian group Zn
-Corollary 2.18 is the analog of HomZ(Zn, A) ∼= An for A ∈ Z−Mod.
-Theorem 2.21 is the analog of the fact, that every free abelian group of finite
rank is dualizable.
-Let D be cofree, then an element of D(X) which induces an equivalence HXop −→
D is the analog of the choice of a basis of a free abelian group of finite rank.
-The Yoneda-element YX ∈ H?Xop(X) is the analog of the canonical basis of Zn
-The cartesian monoidal structure on Der?L described in [Gro12] is the analog
of the cartesian monoidal structure −⊕− on Z-mod.
Its unit is H?∅ ∼= ∗ and there are natural equivalences: H?X ×H?Y ∼= H?X∐

Y .

The latter equivalence is a direct consequence of (Der1).
-The monoidal pairing −[⊗]L− on FDer?L is the analog of the tensor product
of abelian groups, because it has J−,−KL as its closure, H? as its unit, and it
satisfies H?X [⊗]LH?Y ∼= H?X×Y
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-We can even enlarge this analogy by defining Gl(X,H?) to be the full subcat-
egory of H?X(Xop) on those objects corresponding to autoequivalences of H?X .
The category Gl(X,H?) comes with a natural pairing:
−⊗− : Gl(X,H?)×Gl(X,H?) −→ Gl(X,H?)
which corresponds to the composition of autoequivalences and has the property
that F ⊗− and −⊗ F are equivalences for every F ∈ Gl(X,H?)
Hence it induces a group structure on the set of equivalence classes of objects
denoted by gl(X,H?).
-One can describe Gl(∗,Hs) as follows:
Ob(Gl(∗,Hs)) = {Σn|n ∈ Z},
Gl(∗,Hs)(Σn,Σm) = πn−m(S) because suspensions of the sphere spectrum are
known to be the only spectra, which are smash invertible. Composition is given
by the multiplication in π∗(S).
-Note that for every X ∈ Cat the suspension functor defines an group homo-
morphism Z −→ gl(X,Hs), 1 7→ [Σ].
The calculations of Example 1.32.d) show that there is ξn+2 ∈ gl([n],Hs) with
ξn+2
n+2 = [Σ]2

-With part b) of this remark in mind, one can also define Gl(X,A), by replacing
H? by A everywhere in the definition.
d) The extension of the monoidal structure 2.23 to the entire 2-category of
derivators is still a mayor problem in the theory, since the definition we gave
won’t generalize well, because we cannot expect arbitrary derivators to be du-
alizable. Even a good candidate for a more general definition is not in sight.
One way of attacking this problem would be to mimic the construction of the
usual tensor product in linear algebra step by step, to define D[⊗]LD′ as a cer-
tain quotient (coequalizer) of the free derivator associated to the prederivator
D× D′.
But as explained in Remark 1.34.a), the 2-category of derivators is still a derived
category. Therefore one should use a homotopical version of the coequalizer
above.
With this in mind, a better way for constructing the general monoidal structure
would be to develop the theory outlined in Remark 1.34.a) first, to obtain the
desired monoidal structure by deriving the one on presentable (∞, 1)-categories.
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3 Spanier-Whitehead-Duality for stable Deriva-
tors

In subsection 3.1 we introduce the Spanier-Whitehead-Duality for the stable
derivator H and in subsection 3.2 we prove our main results Theorem 3.10 and
3.12.

3.1 Spanier-Whitehead-Duality

We can define Spanier-Whitehead-Duality functors in very general situation,
but they will often be far away from being equivalences:

Definition 3.1. The Spainier-Whitehead-Duality D : H? −→ H?op is the
unique colimit preserving morphism with D(S) = S.

Remark 3.2. a) Note the by Proposition 2.9 ,Corollary 2.18 Dop : H?op −→ H?
is the unique limit preserving morphism with Dop(S) = S.
b) Note that the Spanier-Whitehead-Duality functor for the stable (∞,1)-category
of spectra, can be constructed in a similar way, as described in [Lur11] 7.3.3.2

D will be an equivalence in situations, where ”homotopy colimit preserving” and
”homotopy limit preserving” are equivalent. To ensure this we have to impose
stability and finiteness conditions:

Definition 3.3. Fin is the diagram category of finite, finite dimensional cate-
gories

Proposition 3.4. Let D,D′ be stable Fin-derivators and F : D −→ D′ be a
morphism of prederivators. Then the following conditions are equivalent:
a) F preserves homotopy colimits.
b) F preserves homotopy limits.
Whenever one of the conditions is satisfied F will be called an exact morphism.

Proof. [Fra96] Theorem 2.

Definition 3.5. a) Let Der be the 2-category of stable Fin-derivators and ex-
act morphisms.
b) H is the stable Fin-derivator associated to the homotopy theory of finite
spectra, i.e. H(X) is the homotopy category of X-diagrams in finite spectra.
c) FDer is the full sub-2-category on the cofree stable Fin-derivators, i.e. those
who are equivalent to HX for some X ∈ Fin.
d) SFDer is the full sub-2-category on the HX for X ∈ Fin.
e) For D,D′ ∈ Der let [D,D′] := Der(D,D′) and JD,D′K be the prederivator
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given by JD,D′K(X) = [D,D′X ].

Theorem 3.6. Let X ∈ Fin,D ∈ Der, then are equivalences of categories
[HXop ,D] −→ D(X).

Proof. In [Fra96] Theorem 4, Franke proves the theorem in the case X = ∗.
One can deduce the general case by modifying Cisinski’s proof [Cis08] with
finiteness conditions

Proposition 3.7. D : H −→ Hop is an self-inverse equivalence of derivators.

Proof. Dop ◦D is by Proposition 3.4 an exact endomorphism of H which maps
S to itself.
Hence it is isomorphic to the identity by Theorem 2.16.

Remark 3.8. a) D induces equivalences HX(Y ) = H(X×Y ) ∼= Hop(X×Y ) =

(H?Xop)op(Y ) for X,Y ∈ Cat and hence dvX := DX : HX
∼=−→ (HXop)op

b) D is clearly a symmetric monoidal morphism, since by Example 2.30.a) the
units of H and Hop the identity morphisms and the diagram:

JJH,HKL,HKL = H[⊗]LH H

JJHop,HopKR,HopKR = H[⊗]LH H

JJD,DK, DK D

commutes since D is self-inverse.
Alternatively, one could also use Theorem 2.32.b) to see the D corresponds to
the morphism of prederivators ∗ −→ Hop, which is clearly monoidal. This also
shows that D is up to isomorphism the unique monoidal morphism H −→ Hop.
In particular D preserves the relative tensor and cotensor structures. In the
notation of Remark 2.20 this precisely means:

D(−⊗[X,Y,Z] −) ∼= D(−)⊗̌[Xop,Y op,Zop]D(−),

DHom[X,Y,Z](−,−) ∼= Ȟom[Xop,Y op,Zop](D(−), D(−))

and DYX
∼= YXop .

3.2 The relation between dualities and adjunctions

Another advantage of the Spanier-Whitehead-Duality is, that (−)op restricts to
an equivalence on FDer. Furthermore, since the inclusion of SFDer into FDer
is an equivalence, we can define two duality functors on the 2-category SFDer:
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Definition 3.9. a) We define the vertical duality Dv : SFDerco −→ SFDer
on objects: HX 7→ HXop

on morphisms: (F : HX −→ HY ) 7→ (dvY op)−1 ◦ F op ◦ dvXop

b) We define the horizontal duality Dh : SFDerop −→ SFDer
on objects: HX 7→ HXop

on morphisms: (F : HX −→ HY ) 7→ (dhY op)−1 ◦ JF,HK ◦ dhXop

Note that Dv and Dh are only pseudofunctors, since they preserve composition
and identities only up to coherent isomorphisms. But this is the price we have
to pay, because since we want to construct adjoints, and adjoints have by def-
inition the same domain and codomain (only reversed), we are forced to use
SFDer and functors which are strictly the identity on objects. Fortunately
pseudofunctors still preserve adjunctions.

Finally we have everything we need to finish the proof of Theorem 1.33:

Theorem 3.10. Let D be a stable Cat-derivator and f : X −→ Y a functor in
Fin. Then f∗ : DY −→ DX induces in infinite chain of adjunctions.

Proof. Step 1: We prove the theorem for the Fin-derivator H
Consider f∗ : HY −→ HX
By 2.2 and Proposition 3.4 we have adjunctions f! a f∗ a f∗ in Der, so f∗[m]

exists for |m| 5 1.
Assume by induction that f∗[m] exists for |m| 5 n.
By Proposition 2.22 Dh(f∗) ∼= fop! .
By the Proof of Proposition 2.9 and because D is a morphism of prederivators
we have: Dv(f∗) ∼= fop∗.
Therefore DhDv(f∗) ∼= f! and DvDh(f!) ∼= f∗.
Since DhDv and DvDh preserve adjunctions, we have:
DhDv(f∗[−n]) a f∗[−n] and f∗[n] a DvDh(f∗[n]).
Hence f∗[m] exists for |m| 5 n+ 1 which shows the inductive step.

Step 2: We prove the theorem for the Cat-derivator Hs
Let Hs|Fin be the restriction to the diagram category Fin.
For any Z ∈ Cat the 2-functor J−, (Hs|Fin)ZK preserves infinite chains of adjunc-
tions and by Proposition 2.22 the image of fop! : HXop −→ HY op (which induces
an infinite chain of adjunctions by Step 1) can be identified (to be more precise:
is up to composition with equivalences equal to) with f∗ : (Hs|Fin)Z×Y −→
(Hs|Fin)Z×X .
So in particular its value on the terminal category ∗:
f∗ : HsZ(Y ) −→ HsZ(X)
induces in infinite chain of adjunctions by Proposition 1.31.a) and b). Since
J−, (Hs|Fin)ZK is 2-functorial in Z ∈ Cat, all the adjoints assemble into mor-
phisms of prederivators, which is by Proposition 2.4 a morphism of derivators.

42



Step 3: The general case:
Let D be a stable Cat-derivator.
We apply J−,DK to fop! : HsXop −→ HsY op (which induces an infinite chain of
adjunctions by Step 2), hence its image will also induce an infinite chain of
adjunctions. But again by Proposition 2.22 the image can be identified with
f∗ : DY −→ DX .

The behavior of the functors Dh and Dv in Step one of the proof motivates the
following definition:

Definition 3.11. a) The left translation functor L : SFDercoop −→ SFDer is
the composition Dh ◦Dv.
b) The right translation functor R : SFDercoop −→ SFDer is the composition
Dv ◦Dh.

Theorem 3.12. Let F : HX −→ HY be a morphism in SFDer. Then there
are adjunctions:
L(F ) a F a R(F )

Proof. Since L and R are mutually inverse, it suffices to proof: F a R(F )

Step 1: The identification of Dh(F ):

Dh(F ) is an exact morphism HY op −→ HXop , hence by Remark 2.20.a) it is
determined by its value on YY :

HY op(Y ) JHY ,HK(Y ) JHX ,HK(Y ) HXop(Y )

YY idHY F FXop(YX)

∈ ∈ ∈ ∈

Dh(F )Y

By Proposition 3.4 the morphism Hom[Xop,Y op,∗](−,−) is exact in both vari-
ables. By the unitality of Hom (Remark 2.20.b)): Hom[Y op,Y op,Y ](YY op ,YY ) ∼=
YY

In particular the morphism Hom[∗,Y op,Y ](−,YY ) : (Hop)Y −→ HY maps YY op

to YY . But since D is monoidal (Remark 3.8) this is the characterising property
of Dop

Y op .
Moreover, since the Z-component of Hom[∗,Y op,Y ](−,YY ) is the ∗-component
of Hom[Z,Y op,Y ](−,YY ), there are equivalences:
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Hom[Z,Y op,Y ](−,YY ) ∼= Dop
Z×Y for all Z ∈ Fin.

Thus:
Hom[Xop,Y op,Y ](DXop×Y (FXop(YX)),YY )
∼= Dop

X×Y op ◦DXop×Y (FXop(YX))
∼= FXop(YX)

Therefore the morphism Hom[Xop,Y op,∗](DXop×Y (FXop(YX)),−) maps YY to
FX (YX). But as we have seen above, this is the characterising property of
Dh(F ).

Hence there is a natural isomorphism:
Dh(F ) ∼= Hom[Xop,Y op,∗](DXop×Y (FXop(YX)),−).

Step 2: The identification of R(F ):

Since D is monoidal it behaves well with respect to Hom (Remark 3.8). Hence:
Dh(F )
∼= Hom[Xop,Y op,∗](DXop×Y (FXop(YX)),−)
∼= Dop

X Ȟom[X,Y,∗](D
op
X×Y op ◦DXop×Y (FXop(YX)), DY op(−))

∼= Dop
X Ȟom[X,Y,∗](FXop(YX), DY op(−))

But as we have seen in 2.20 Ȟom[X,Y,∗] is just the opposite of Hom[X,Y,∗].
Hence:
R(F )
∼= Dop

X ◦ (Dh(F ))op ◦DY
∼= Dop

XDXopHom[X,Y,∗](FXop(YX), Dop
Y opDY (−))

∼= Hom[X,Y,∗](FXop(YX),−)

Step 3: Final Step

By Corollary 2.18 there is an natural isomorphism F ∼= − ⊗[∗,X,Y ] FXop(YX).
And by the exponential law described in 2.20 there is an natural isomorphism:
Hom[∗,Y,∗](−⊗̌[∗,X,Y ]FXop(YX),−) ∼= Hom[∗,X,∗](−, Hom[X,Y,∗](FXop(YX),−))

But ⊗̌[∗,X,Y ] is simply the opposite of ⊗[∗,X,Y ], and, as we have seen, Hom[∗,Z,∗]
describes the canonical enrichment of HZ over H. Therefore the above expo-
nential formula yields:
−⊗[∗,X,Y ] FXop(YX) a Hom[X,Y,∗](FXop(YX),−)

Combining with Step 2, we have shown:
F ∼= −⊗[∗,X,Y ] FXop(YX) a Hom[X,Y,∗](FXop(YX),−) ∼= R(F )

Remark 3.13. Note that for proving only the existence of adjoints (without
identification), we used only 2.20 and 3.4.
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3.3 Some Remarks and Interpretation, Part 3

Remark 3.14. a) Again one should expect that an analog of Theorem 3.12.
holds true for the 2-category of cofree modules over an arbitrary stable sym-
metric monoidal Fin-derivator.
b) The following remark is of highly conjectural nature, and shouldn’t be re-
garded as more than a first idea for hopefully interesting future research.
One could of course ask whether the monoidal duality (Theorem 2.21) extends
to a larger subcategory of Der?, or how we have to modify the theory the obtain
a full duality.
As we have seen in section 3.1 it was sufficient to make the conditions ”ho-
motopy colimit preserving” and ”homotopy limit preserving” equivalent, to
obtain a good Spanier-Whitehead-Duality. Therefore we can expect that an
analog of the monoidal duality functor above is an equivalence whenever the
properties ”homotopy bicolimit preserving” and ”homotopy bilimit preserv-
ing” are equivalent. To make those properties more precise, we remember
that by Renaudin’s Theorem a full sub-2-catetegory of Der?L, let’s call it H ,
describes the homotopy theory of homotopy theories. Assume further that

an equivalence Ho(PrL)
∼=−→ H , where PrL denotes the (∞, 2)-catgeory of

presentable (∞, 1)-categories [Lur09] 5.5.3.1, holds, as described in Remark
1.34.a). Let X be a bicategory, then we define H (X) to be the homotopy
bicategory Ho((PrL)X). Note that H (∗) ∼= H . Now a pseudofunctor be-
tween bicategories f : X −→ Y induces a functor (PrL)Y −→ (PrL)X and
thus a derived pseudofunctor f∗ : H (Y ) −→H (X). Hence we get a trifunctor
H : Bicatop −→ BICAT ( [Gur07]). Since PrL is bicomplete, all the pseudo-
functors f∗ will have left and right biadjoints, the homotopy Kan biextensions
f! and f∗.
The aim is now to approximate H by a similar trifunctor H s, which is in the
largest full subtricategory of those trifunctors Bicatop −→ BICAT , that has
the property, that a 1-morphism commutes with the f! if and only if it commutes
with the f∗, in a similar way as we approximated Hu by Hs.
A possible strategy for the construction of H s, would be to impose the mini-
mal relations on homotopy Kan biextensions (i.e. higher analogs of (Der6) and
(Der7)), which ensure that homotopy left Kan biextensions can be expressed in
terms of homotopy right Kan biextensions and vice versa. Thus we can regard
this approximation procedure as a higher stabilization.
Note that the 2-categories Der?L already satisfy some of these relations:
-The ?-derivator H?∅ is a zero-object in Der?L.
-Let D,D′ ∈ Der?L and X ∈ Cat. We apply Proposition 2.12 to the ?-derivator
JD,D′KL to obtain an equivalence:

PDer(X, JD,D′KL) ∼= JD,D′KL(X) ∼= JD,D′XKL

Thus the cotensor functor associated to the prederivator X exists and is given
by (−)X . But by Theorem 2.16 there are natural equivalence:

H?X [⊗]L− = JJH?X ,H?KL,−KL ∼= JH?Xop ,−KL ∼= (−)X
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and by Proposition 2.27.g) :

(−)Xop ∼= H?Xop [⊗]L− ∼= JH?X ,H?KL[⊗]L− a H?X [⊗]L−

Thus there are natural equivalences:

JDXop ,D′KL ∼= PDer(X, JD,D′KL) ∼= JD,D′XKL

Hence there are non-trivial relations between the tensor and cotensor functors
associated to representable prederivators. This is a higher analog of the natural
isomorphism between coproducts and products in additive categories.

Thus we can expect that H s on the one hand will still capture a lot of in-
formation of H and on the other hand will have more structure (i.e. monoidal
duality and a higher analog of a triangulated structure) and therefore better
computability properties.
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theory via universal invariants. Compositio Mathematica 147 (2011),
1281–1320.

[CT12] Denis-Charles Cisinski and Gonçalo Tabuada, Symmetric monoidal
structure on non-commutative motives. Journal of K-Theory, 9
(2012), no. 2, 201–268.

[Dug01] Daniel Dugger. Combinatorial model categories have presentations.
Adv. Math., 164(1):177–201, 2001.

[Ehr63] Charles Ehresmann. Catégories structurées. Ann. Sci. École Norm.
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