
Fast (Parallel) Dense Linear System Solvers in
C-XSC Using Error Free Transformations and

BLAS

Walter Krämer, Michael Zimmer

Wissenschaftliches Rechnen/Softwaretechnologie,
Bergische Universität Wuppertal

Gaussstr. 20, 42097 Wuppertal, Germany
kraemer@math.uni-wuppertal.de, zimmer@math.uni-wuppertal.de

Abstract. Existing selfverifying solvers for dense linear (interval-)systems
in C-XSC provide high accuracy, but are rather slow. A new set of solvers
is presented, which are a lot faster than the existing solvers, without
losing too much accuracy. This is achieved through two main changes.
First, an alternative method for the computation of exact dot products
based on the DotK-Algorithm is implemented. Then, optimized BLAS
and LAPACK routines are used for the most costly parts, in terms of
runtime, of the algorithm. Verified results are achieved by manipulating
the rounding mode of the processor. Finally, an efficient parallel version
of these solvers for distributed memory systems, based on ScaLAPACK,
is presented, which allows to solve very large dense systems.
The new solver is compared to other solvers with respect to runtime and
to numerical quality of the final result.

Keywords: Selfverifying methods, large linear interval systems, DotK methods,
parallelization, block cyclic distribution, C-XSC, interval computations

AMS subject classification: 65H10, 15-04, 65G99, 65G10, 65-04, 68W15

0 Some Notation

The set of floating point numbers with t mantissa digits, base b and exponents
between emin and emax is denoted by IF = IF(b, t, emin, emax); operations in this
set are denoted by a box around the corresponding operator (e. g. �, �, �).
Sometimes floating point operations are alternatively denoted by fl(·), for ex-
ample, fl(

∑n
i=1 xi) means x1 � x2 . . . � xn. All floating point operations in this

paper adhere to the IEEE 754 standard. We assume that no overflow occurs but
allow underflow. All other mathematical operations are meant to be exact. eps is
the machine epsilon (2−53 for double precision). If we want to emphasize that a
quantity is a (machine) interval quantity, we surround it by brackets, for example
[C]. Computing interval enclosures of expressions is sometimes indicated in the

form �(. . .), e. g. [C] = �(I−RA). The function mid computes an approximation
to the midpoint of an interval (componentwise for interval matrices and interval
vectors). It is guaranteed that mid([x]) ∈ [x]. As condition number of a matrix
A we use the definition cond(A) = ||A||∞||A−1||∞.

1 Introduction

In this paper we discuss solvers that compute a verified solution x of the problem

Ax = b, (or [A]x = [b])

where A is a dense square matrix, while the right hand side b and the solution x
are vectors of corresponding size. The elements of A and b can be real, complex,
intervals or complex intervals. The solution x is an interval vector or a complex
interval vector whose diameter should be as small as possible.

There are already a number of selfverifying solvers available in C-XSC to
attack this problem (see Section 1.1), however, time measurements show that
these solvers are quite slow. For example, solving a system with a random floating
point matrix A ∈ IRn×n with Matlab’s floating point solver, the selfverifying
solver from Intlab [25], and the selfverifying solver from the C-XSC toolbox [8]
on a Pentium 4, 2.8 GHz with 1 GB RAM, one gets the timings shown in Table
1.

Table 1. Time in s for solving a real n× n system

n C-XSC toolbox Intlab Matlab

100 0.952 0.028 0.002
500 112.72 0.57 0.07
1000 797.15 3.72 0.48

The non-verifying Matlab solver of course is the fastest, but the difference
between Intlab and C-XSC is huge, especially when considering that both solvers
use basically the same algorithm [26]. The main reason is that the C-XSC solver
uses the long accumulator [4] (see Section 2.1) throughout the algorithm to com-
pute every dot product exactly, which of course has, if done without hardware
support, a huge impact on the performance.

On the other hand, using exact dot products (the long accumulator) enables
the C-XSC solver to compute results of very high accuracy. For example, solving
a system with the ill-conditioned Hilbert-Matrix of dimension n = 10 and the
first unity vector as right hand side yields the results shown in Figure 1 (here,
the Hilbert-Matrix and the right hand side are scaled by the lowest common
demoninator 232792560).

C-XSC toolbox Intlab Matlab

+ 1.000000000000000 E+2 + 1.000000000 E+2 + 9.999989996685883 E+1

- 4.950000000000000 E+3 - 4.95000000 E+3 - 4.949990494288593 E+3

+ 7.920000000000000 E+4 + 7.92000000 E+4 + 7.919978253948466 E+4

- 6.006000000000000 E+5 - 6.00600000 E+5 - 6.005979106504940 E+5

+ 2.522520000000000 E+6 + 2.52252000 E+6 + 2.522509586181721 E+6

- 6.306300000000000 E+6 - 6.30630000 E+6 - 6.306270330270943 E+6

+ 9.609600000000000 E+6 + 9.60960000 E+6 + 9.609549857202141 E+6

- 8.751600000000000 E+6 - 8.75160000 E+6 - 8.751550319100756 E+6

+ 4.375800000000000 E+6 + 4.37580000 E+6 + 4.375773357049561 E+6

- 9.237800000000000 E+5 - 9.23780000 E+5 - 9.237740322228931 E+5

Fig. 1. Results of the different solvers for a real system with the Hilbert-Matrix, n = 10

In this case, the C-XSC solver is able to compute the exact result 1. Intlab
computes an enclosure of the result, but loses about 7 digits, while the pure
floating point Matlab solver loses about 12 digits (and of course doesn’t compute
a verified enclosure).

Therefore, the goal was to develop new solvers in C-XSC that are considerably
faster while maintaining a high accuracy in the numerical results. This has been
achieved through the use of an alternative algorithm for (approximating) dot
products (Section 2) and the use of BLAS and LAPACK libraries (Section 3).

Furthermore, to also allow large system matrices, an efficient parallelization
of these new solvers is necessary. Such a parallelized solver for dense matrices is
presented in Section 4.

1.1 Previous Work

There are a number of previous solvers with different purposes and features in
C-XSC, some of which this work is based on:

– LSS [8]: A verified solver for real linear systems, which is part of the C-XSC
Toolbox. This solver does not support over- or underdetermined systems,
and does not use the second stage of the algorithm (see Section 3).

– ILSS [18, 10]: A verified solver for real interval linear systems, which is avail-
able as additional software for C-XSC. It supports over- and underdeter-
mined systems and also supports the second stage of the algorithm.

– PILSS [7]: A parallel version of the solver ILSS for distributed memory
systems using MPI.

– BLSS [11]: A solver, specifically designed for system matrices with banded
structure.

1 It holds (Ax − b) = 0 which can be checked in C-XSC using exact dot products
componentwise.

1.2 Some Remarks on the C-XSC Library

C-XSC is a C++ class library for verified scientific computing, developed mainly
at the University of Karlsruhe and the University of Wuppertal. It provides
many data types, especially interval data types, with corresponding operators.
The basic data types are real, interval, complex and cinterval. For each
of these datatypes, corresponding vector and matrix types are available as well.
The result of every single operation in C-XSC, using the corresponding C-XSC
operator, is computed with maximum precision , i. e. with only one final round-
ing (using the long accumulator, if necessary), see Section 2.1. To allow the
exact result of more complex dot product expressions, this long accumulator is
also available as an own datatype, dotprecision. C-XSC also contains an ex-
tensive toolbox with useful software routines for many mathematical problems.
For further information, please see [13, 9], or visit the XSC-languages website at
http://www.math.uni-wuppertal.de/wrswt/xsc-sprachen.html.

2 Exact/Accurate Dot Products

The ability to compute (enclosures of) dot products x · y =
n∑

i=1

xi · yi in high(er)

precision is very important, especially in verification numerics. C-XSC relies on
a powerful algorithm for this task, the long accumulator [20, 4], which is briefly
explained in the next section. In Section 2.2 we present the implementation of
an alternative algorithm in C-XSC, which allows to compute dot products in
K-fold working precision, and which is (at least for small K) faster than the
algorithm based on exact dot product computations (long accumulator).

2.1 Exact Dot Product Computations Using the Long Accumulator

The basic idea of this algorithm is to use a fixed-point accumulator (long accu-
mulator) of sufficient length, in which all the computations of the dot product
are performed. This fixed-point accumulator is shown in Figure 2.

g 2emax t t 2|emin|

Fig. 2. Long accumulator

In this figure, t is the length of the mantissa, emin and emax are the smallest
and largest exponent, respectively and g is a certain number of guard digits
to prevent overflow. Inside the long accumulator, the value of a dot product of
two floating point vectors can be computed and represented exactly. Only when
converting the final result back to working precision, one final rounding has to
be done.

It is important to note that, if realised in hardware, this method is even
faster than ordinary floating point computation of the dot product by a loop
[21]. However, this feature is not supported in current processors, and thus the
long accumulator used in C-XSC has to be implemented in software leading to
significant execution time penalties.

In C-XSC, the long accumulator is realised in four different classes. These are
dotprecision for real results, idotprecision for interval results, cdotprecision
for complex results and finally cidotprecision for complex interval results. It
can be used in a relatively simple and self-explanatory way, as shown in the
small example in Listing 1.1.

Listing 1.1. Example for the usage of the long accumulator in C-XSC

r v e c t o r x , y ; // f l o a t i n g po int v e c t o r s
/ / . . .
d o t p r e c i s i o n accu (0 . 0) ; // long accumulator
accumulate (accu , x , y) ; //compute exact r e s u l t o f x∗y
r e a l r e s u l t = rnd (accu) ; // f i n a l rounding to nea r e s t

The accumulate function computes the exact dot product inside the accu-
mulator variable accu, while the function rnd rounds the current result stored
inside the accumulator to the nearest floating point number.

2.2 The DotK Algorithm for Computing Dot Products in K-fold
Working Precision

The DotK algorithm [23] is an alternative algorithm for dot product computa-
tions. Based on error-free transformations it computes dot products in a simu-
lated K-fold working precision.

Let us first discuss the basic error-free transformations [15, 6, 5]:

Theorem 1. For all a, b ∈ IF and ◦ ∈ {+,−, ·} there exists a y ∈ IF with

a ◦ b = x + y,

where x = a � b.

This means that every single operation of the dot product can be transformed
into a sum x + y of floating point numbers, where x is the floating point result
of the operation under consideration and y is the corresponding error. Thus, all
information of the correct result is known.

These error-free transformations can be computed in pure floating point. For
the transformation of a sum of two floating point numbers, the algorithm TwoSum
[15, 23] is used.

For the error-free transformation of a product of two floating point num-
bers, first the algorithm Split [6, 23] is needed. Here, factor is a constant with
factor := 2s + 1 and s := dt/2e, where t is defined by eps = 2−t. So for double
precision we get t = 53 and s = 27. This algorithm computes for a given floating

Data: Two floating point numbers a, b ∈ IF
Result: Two floating point numbers x, y ∈ IF such that x = a� b and

a+ b = x+ y hold
x = a� b
z = x� a
y = (a� (x� z)) � (b� z)

Algorithm 1: TwoSum

Data: One floating point number a ∈ IF
Result: Two floating point numbers x, y ∈ IF with a = x+ y
c = factor � a
x = c� (c� a)
y = a� x

Algorithm 2: Split

point number a two floating point numbers x and y with a = x + y, |y| ≤ |x|
and non overlapping mantissas of x and y.

With this an algorithm TwoProduct [6, 23] for the error-free transformation
of a product can be formulated (Algorithm 3).

Data: Two floating point numbers a, b ∈ IF
Result: Two floating point numbers x, y ∈ IF with a · b = x+ y
x = a� b
[a1, a2] =Split(a)
[b1, b2] =Split(b)
y = a2 � b2 � (((x� a1 � b1) � a2 � b1) � a1 � b2)

Algorithm 3: TwoProduct

With help of these algorithms it is possible to compute the dot product of two
floating point vectors in two-fold working precision using the following Algorithm
4.

Data: Two floating point vectors x, y ∈ IFn

Result: The result res of the dot poduct x · y as if computed in two-fold
working precision

[p, s] =TwoProduct(x1, y1)
for i=2:n do

[h, r] =TwoProduct(xi, yi)
[p, q] =TwoSum(p, h)
s = s � (q � r)

res = p � s

Algorithm 4: Dot2

This algorithm transforms a dot product of two floating point vectors of
length n into a sum of floating point values of length 2n. Computing this sum in
pure floating point leads to an approximation of the dot product as if computed
in two-fold working precision. The proof of this statement can be found in [23].
Now, to achieve a result in K-fold working precision, the sum of length 2n, into
which the dot product is transformed in Algorithm 4, must be computed in a
simulated higher precision. This finally leads to the desired algorithm for dot
product computations in K−fold precision (Algorithm 5).

Data: Two vectors x, y ∈ IFn, desired precision K
Result: The result res of the dot poduct x · y, as if computed in K-fold

working precision
[p, r1] =TwoProduct(x1, y1)
for i=2:n do

[h, ri] =TwoProduct(xi, yi)
[p, rn+i−1] =TwoSum(p, h)

r2n = p
for k=1:K-2 do

for i=2:2n do
[ri, ri−1] =TwoSum(ri, ri−1)

res =fl(
n−1P
i=1

ri + rn)

Algorithm 5: DotK

It can be shown (see [23]) that this algorithm computes the result of a dot
product of two given floating point vectors, as if computed in K-fold working
precision. As proven in [23], it is also possible to compute a reliable error bound
for the achieved result, again only using pure floating point operations, resulting
in the following algorithm Dot2err:

Thus, the only additional information needed to compute a valid error bound
is the length n of the dot product as well as the floating point sum of the absolute
values of the computed error terms in the final summation.

There also exists a parallel version of this algorithm for shared memory ar-
chitectures [24].

Remarks on the Implementation. The main goal of the implementation
of the DotK algorithm in C-XSC was to provide a handling similar to the
dotprecision-classes. Thus, four different DotK-classes have been implemented
corresponding to the different four basic C-XSC datatypes:

– Class RDotK for dot products with real results
– Class IDotK for dot products with interval results
– Class CDotK for dot products with complex results
– Class CIDotK for dot products with complex interval results

Data: Two vectors x, y ∈ IFn

Result: The dot product x · y, as if computed in two-fold working precision, as
well as a strict error bound err for the result

[p, s] =TwoProduct(x1, y1)
e = abs(s)
for i=2:n do

[h, r] =TwoProduct(xi, yi)
[p, q] =TwoSum(p, h)
t = q � r
s = s� t
e = e� abs(t)

res = p� s
δ = (n� eps) � (1 � 2n� eps)
α = eps� abs(res) � (δ � e� 3eta� eps)
err = α� (1 � 2eps)

Algorithm 6: Dot2err

Each of these new classes provides a set of useful constructors, operators
and some basic set and get methods. More importantly, each class offers three
essential methods: First a method addDot, with two floating point vectors as
parameters, which computes the dot product of these vectors in the desired
precision (denoted by a data member K of the class, which is changeable at
runtime). Second, the two methods res and res enclosure, which return either
a result ignoring the error bounds or a reliable enclosure of the correct result
using the error bounds.

To store the current intermediate result in this implementation of the DotK-
algorithm a dotprecision variable of corresponding type is used. This has sev-
eral advantages: It is possible to compute dot products seamlessly with the long
accumulator using the DotK classes without having to change the source code.
In the current implementation simply selecting precision K = 0 will let the
DotK class compute dot products inside the addDot method using the long ac-
cumulator. Furthermore, this allows to add and substract single values from the
intermediate result without introducing additional numerical errors. This special
feature increases the accuracy of the new solvers presented below significantly.

For the interval, complex, and complex interval cases, the DotK algorithm
has to be adapted appropriately. These changes are fairly easy, since these dot
products can be reduced to (several) real dot products:

– A complex dot product of length n can be computed as two real dot products
of length 2n

– An interval dot product of length n can be computed as two real dot products
of length n

– A complex interval dot product of length n can be computed as four real
dot products of length 2n

Table 2 presents time measurements for our implementation2. These tests
have been performed on a Pentium 4 with 3.2GHz and 2GB RAM. The speed
difference between the long accumulator and the DotK classes can vary depend-
ing on the used processor, since the speed of the accumulator largely depends on
the integer unit of the CPU, while the speed of the DotK algorithm depends on
the floating point performance of the processor. However, the DotK-algorithm
has been faster for precision K = 2 on all tested machines (Pentium 4 2.8GHz,
Pentium 4 3.2GHz, Core 2 Duo 2.4GHz, Itanium 2 1.6GHz). The performance
of the C-XSC implementation of the DotK algorithm is highly dependend on the
inlining capabilities of the compiler. With most compilers, corresponding opti-
mization options must be set to activate inlining. On some systems, the compiler
limits for inlining have to be tweaked to achieve satisfying results. The numerical
results are not presented here but have been checked successfully to be of the
expected K-fold precision.

n Computed with... real interval complex cinterval

1000

C-XSC operators 0.01 0.58 1.20 3.84

Accumulator 0.19 0.40 0.72 1.64

DotK, K=2 0.03 0.12 0.20 0.47

DotK, K=3 0.09 0.21 0.37 0.87

DotK, K=4 0.12 0.27 0.47 1.07

DotK, K=5 0.14 0.32 0.57 1.28

10000

C-XSC operators 0.06 5.83 12.07 40.01

Accumulator 1.85 4.02 7.05 16.22

DotK, K=2 0.35 1.16 2.03 4.64

DotK, K=3 0.98 2.27 4.02 9.56

DotK, K=4 1.24 2.79 5.04 11.62

DotK, K=5 1.49 3.30 6.07 13.70

100000

C-XSC operators 0.64 58.37 120.16 373.2

Accumulator 18.65 40.32 70.73 161.82

DotK, K=2 3.53 11.66 20.41 46.46

DotK, K=3 9.86 24.57 41.48 97.83

DotK, K=4 12.44 29.76 51.91 118.75

DotK, K=5 15.02 34.95 62.34 139.64

Table 2. Timings for dot products, cond = 1030, repeated 1000 times

2 When using the C-XSC interval operators for interval-types, the rounding mode
is switched very often, which is very time-consuming. For complex types, the long
accumulator is used internally for multiplication.

3 The New Serial Solvers

With the help of the DotK classes a set of new solvers for linear (interval) systems
has been implemented. These new solvers as well as existing solvers in C-XSC
are based on the same well known algorithm described by Rump [26], which
itself is based on the Krawczyk-Operator [22]. Algorithm 7 works (in slightly
modified forms) for real point and interval systems, as well as for complex point
and complex interval systems. The last part of the algorithm, which uses an

Data: A square matrix A und a right hand side b
Result: An interval enclosure of the solution of Ax = b
Compute approximate inverse R of A
Compute approximate solution ex := Rb
// Defect iteration

repeatex := ex+R(b−Aex)
until ex accurate enough or max iterations reached
// Compute enclosures of the residuum and the iteration matrix

Z := R � (b−Aex)
C := �(I −RA)
// Verification

Y := Z
repeat

YA := blow(Y, ε) //ε-inflation
Y := Z + C · YA

until Y ⊂ interior(YA) or max iterations reached
// Check results

if Y ⊂ interior(YA) then
Unique solution in x ∈ ex+ Y

else
if Approximate inverse of double length not yet used then

//Second stage
R1 := R
S := R1 ·A
Compute approximate inverse S1 of S
S := S1 ·R1

R2 := S1 ·R1 − S
R1 := S
Restart algorithm with new approximate inverse R = R1 +R2 (sum
must not be computed!)

else
Algorithm failed, A is singular or very ill-conditioned

Algorithm 7: Basic algorithm for selfverifying linear system solver (all
operations in this algorithm are floating point operations)

approximate inverse of double length (R1 +R2), is also known as Rump’s device
and will be called part two or second stage of the algorithm in this paper.

The new solvers were designed to have the following basic features:

– Support for all basic C-XSC datatypes (real, interval, complex, cinterval)
– Support for over- and underdetermined systems
– Part two of the algorithm, using the inverse of double length, is available

Furthermore, in a first basic step, the required approximate inverse is com-
puted using the well known Gauss-Jordan algorithm [27]. In the following, we
compute the solution of systems with a random square system matrix of dimen-
sion n = 1000 and condition 1010 (see [28] for further details). With the basic
solvers described above one gets the results shown in Table 3. Here, exact digits
means an approximation of the average number of digits that are equal in the
infimum and the supremum of the components of the solution vector. Intlab will
be used as a reference point in the following measurements. The timings for Int-
lab contain some overhead due to interpretation and Matlab itself. However, this
is not a serious drawback, because Matlab and thus Intlab use BLAS-routines
for most computations, which are realized by native code.

What? Solver real interval complex cinterval

Time
Intlab 3.86 5.16 16.00 17.14

C-XSC 435.15 901.84 5971.27 6335.61

Exact Digits
Intlab 6.09 0.93 (6.67, 5.90) (0.81, 0.05)

C-XSC 15.79 1.93 (15.82, 15.78) (1.71, 1.56)

Table 3. Timings for basic solvers

As a first step to improve the performance of these basic solvers, the DotK
algorithm can be used for all dot products. This is a quite simple modification,
as can be seen in the example in Listing 1.2 and Listing 1.3.

Listing 1.2. Computation of [C] = � (I-R*A) using the long accumulator

d o t p r e c i s i o n Accu ;

f o r (i = 1 ; i <= n ; i++) {
f o r (j = 1 ; j <= n ; j++) {

Accu = (i == j) ? (r e a l) 1 . 0 : (r e a l) 0 . 0 ;
accumulate (Accu,−R[i] ,A[Col (j)]) ;
rnd (Accu ,C[i] [j]) ;

}
}

Listing 1.3. Computation of [C] = (I-R*A) using the new DotK classes
RDotK dot (K) ;

f o r (i = 1 ; i <= n ; i++) {
f o r (j = 1 ; j <= n ; j++) {

dot = (i == j) ? (r e a l) 1 . 0 : (r e a l) 0 . 0 ;
dot . addDot(−R[i] ,A[Col (j)]) ;
C[i] [j] = dot . r e s e n c l o s u r e () ;

}
}

Evidently, the required modifications are straight forward and rather small. Since
the DotK-classes incorporate the accumulator, the programm can be ”switched
back” to ordinary C-XSC computations using the long accumulator without
going back to the original source code, simply by setting the precision K equal
to 0. Then, the DotK classes will simply use the accumulate function of the
long accumulator to compute the dot product exactly, thus leading to the same
results as in the original C-XSC version.

The modifications described above result in a significant performance en-
hancement as shown in Table 4.

What? Solver real interval complex cinterval

Time

Intlab 3.86 5.16 16.00 17.14

C-XSC, K=2 80.82 255.02 2914.91 3538.78

C-XSC, K=3 91.09 324.55 2996.16 3923.15

Exact digits

Intlab 6.09 0.93 (6.67, 5.90) (0.81, 0.05)

C-XSC, K=2 13.99 1.93 (7.93, 7.93) (1.70, 1.55)

C-XSC, K=3 15.79 1.93 (15.82, 15.78) (1.71, 1.56)

Table 4. Results after introducing DotK classes

As can be seen, the precision of the results is only slightly worse than before.
The solvers are now between three and four times faster using the DotK classes
with K = 2 than with the long accumulator.

However, a lot of additional potential for optimization still lies in the matrix-
matrix product when computing the interval matrix [C] and in the computation
of the approximate inverse R. To speed up these parts of the algorithm, optimized
routines from the BLAS and LAPACK [2] are used. For the computation of the
approximate inverse the corresponding LAPACK-routines xgetrf and xgetri
can be used in a straightforward way. For the computation of [C] however, an
enclosure of the product RA or R[A], respectively, is needed. To achieve this
with the ordinary BLAS-routine dgemm, manipulation of the rounding mode is
used, in a similar way as in Intlab [25].

For this, a function setround is introduced, which sets the rounding mode
of the processor to down (setround(-1)), up (setround(1)) or to nearest
(setround(0)). With the help of this function, the enclosure of a real matrix-
matrix product can be computed using Algorithm 8 (C-XSC like pseudocode).

Data: Two real matrices A and B
Result: An interval enclosure of the matrix C = AB
setround(-1);
SetInf(C, A*B);
setround(1);
SetSup(C, A*B);
setround(0);

Algorithm 8: Computation of real matrix product using BLAS

The two matrix-matrix-products in this algorithm are computed using the
corresponding BLAS routine dgemm. The algorithms for the interval and complex
case follow the same basic idea and are not shown here. These are basically the
algorithms presented in [25] with some minor adaptations.

Using the BLAS routines in this way, as well as the LAPACK routine for the
computation of the approximate inverse and the DotK-algorithm and utilizing
some other minor optimizations (see [28]) that are not detailed here, one finally
gets the results shown in Table 5.

What? Solver real interval complex cinterval

Time

Intlab 3.86 5.16 16.00 17.14

C-XSC, K=2 3.96 5.34 15.82 18.88

C-XSC, K=3 4.38 5.65 16.80 19.02

Exact digits

Intlab 6.09 0.93 (6.67, 5.90) (0.81, 0.05)

C-XSC, K=2 14.22 1.93 (13.63, 12.87) (1.86, 1.11)

C-XSC, K=3 15.79 1.93 (15.82, 15.78) (1.86, 1.11)

Table 5. Final results of the new solvers

The new serial solvers are now a lot faster than the original C-XSC toolbox
solver. For precision K = 2 they work roughly on the same speed as the Intlab
solver verifylss, but they still maintain high accuracy, which in many practical
cases are even the same as for the original C-XSC solvers. Furthermore, by
increasing the precision of the DotK classes (increasing the value of K), the
results shown in Table 5 often can be improved even more.

3.1 Some Numerical Results Concerning Ill-conditioned Matrices

In this paragraph we use the so called Boothroyd/Decker matrices An of dimen-
sion n to compare the numerical quality of our new solver with the numerical
quality of the Intlab solver verifylss. The ill-conditioned matrices An are de-
fined as follows

An = (aij) with aij :=
(

n + i− 1
i− 1

)(
n− 1
n− j

)
n

i + j + 1
, i, j = 1, . . . , n

For n ≤ 20 all matrix elements are exactly representable as IEEE double num-
bers. As right hand side we use b = (1, 1, . . . , 1)T . Then, the exact solution vector
is x = (1,−1, 1,−1, . . .)T .

Our new solver (using K = 3 for the DotK objects) returns for matrices up
to order n = 20 either the exact solution vector or a tight enclosure of it whereas
the solver verifylss breaks down for n = 13. The computed enclosure of the
result vector in case of matrix order n = 12 is:

[0 .99999999982079 , 1 .00000000016779]
[−1.00000000149304 , −0.99999999836399]
[0 .99999998842304 , 1 .00000001074763]
[−1.00000004335473 , −0.99999995272265]
[0 .99999981774945 , 1 .00000016863901]
[−1.00000048155897 , −0.99999947345126]
[0 .99999843469062 , 1 .00000144278687]
[−1.00000335758376 , −0.99999630705000]
[0 .99999107401347 , 1 .00000823290467]
[−1.00001753552019 , −0.99998078814825]
[0 .99994100039713 , 1 .00005551901631]
[−1.00008847223671 , −0.99990482653736]

This Intlab result is only accurate to about 4 decimals. Our new solvers com-
pute the exact result in this case. If n > 12, Intlab produces NaNs for all the
components of the solution vector.

The comparison shows clearly that the new C-XSC solver outperforms the
solver coming with Intlab. We should mention that the original C-XSC toolbox
solver produces the same numerical results as our new solver.

4 Parallelization

In the following we explain an efficient parallelization of these new solvers. The
basic ideas of the serial solver, the usage of the DotK classes and of BLAS/LA-
PACK routines, are carried over to this new parallel solver. Instead of LAPACK,
the parallel version ScaLAPACK [3] is used.

For a more efficient approach than in the exisiting parallel solver PLSS, es-
pecially concerning memory, the matrices used in the algorithm are distributed

equally among all processes. Every process saves certain parts of the matrices A,
R and [C], which it stores throughout the algorithm, while the occurring vectors
are stored completely in every process. All processes are involved in every step
of the algorithm, so there is no root node (no master/slave or worker/manager
approach) or a similar approach.

The matrices are distributed using a two dimensional block cyclic distribution
scheme, the same distribution model used by ScaLAPACK. For this distribution
model, the available processes are arranged in a two dimensional grid. The matrix
is then distributed according to this grid and a predefined block size (see Figures
3 and 4). The optimal values for the number of rows and columns in the process
grid, as well as the block size used, are hardware dependent and are not trivial
to compute, because a balance between the costly communications and an equal
work load has to be found. In our solvers, the number of rows and columns of the
process grid is chosen to be equal or almost equal if possible (idealy, the number
of processes should be P = p2, p ∈ IN), while the block size can be set by the
user when starting the solver (a value of about 256 delivered the best results in
our tests).

P0 P1 P2

P3 P4 P5

P6 P7 P8

P9 P10 P11

Fig. 3. Process grid for the two dimensional block cyclic distribution, 12 processes

P0 P1 P0 P1

P2 P3 P2 P3

P0 P1 P0 P1

P2 P3 P2 P3

Fig. 4. Distribution of a matrix in two dimensional block cyclic distribution using a
2× 2 process grid based on 4 processes Pi

The inversion and the computation of the matrix-matrix product can now
easily by computed using the corresponding ScaLAPACK routines in a similar
way as in the serial case. However, the matrix vector products occurring in the
algorithm also have to be parallelized. For this, so called MPI communicators

are introduced for every row and every column in the process grid. With these
communicators it is possible to perform a broadcast which is restricted to a
specified row or column in the grid.

Every process then computes the parts of the occurring dot products for
which it stores the needed matrix entries. All processes in one row in the process
grid then have computed different parts of the same dot product. Thus, to com-
pute a final result of this dot product, the data has to be broadcast inside their
row in the process grid (using the MPI communicators). With the help of the
long accumulator, the final result can then be computed in every single process.

Now, all processes in one row know the parts of the final result corresponding
to their matrix rows. Since every process needs to know the complete result
vector, these parts have to be exchanged with the processes corresponding to
the other rows of the result. Thus, another broadcast, this time in the columns
of the process grid, has to be performed to exchange these parts. After this step,
all processes know the complete final result vector.

Thus, the parallelization of these matrix-vector products is quite complicate
and communication intensive. But since it is only used in the O(n2) parts of the
algorithm and the used data distribution reduces the memory needed in each
process significantly, it is well worth the effort, as may be seen in the final results
(Tables 6 and 7).

Computed with... P real interval complex cinterval

DotK, K=2

1 265.30 363.88 1357.63 1723.44

2 159.77 206.41 625.37 737.33

4 99.98 128.77 365.58 411.14

8 61.62 78.18 211.46 239.83

DotK, K=3

1 279.64 383.29 1387.32 1801.44

2 172.94 217.06 665.44 771.45

4 104.13 134.21 379.01 427.99

8 63.92 81.02 218.35 246.95

Table 6. Time measurements parallel solvers, cond = 1010, n = 5000

Stage two of the Alogrithm (approximate inverse of double length), if used for
very ill-conditioned systems (which is indeed its main purpose), will in general
not compute a verified solution when BLAS routines are used, since the results of
the matrix-matrix-products will then have too wide diameters. Therefore, these
products have to be computed using a higher precision dot product (using the
DotK classes). This means that these products have to be manually parallelized,
while maintaining the distribution of the matrix entries as described above.
To achieve this, a special case of the two dimensional block cyclic distribution
scheme is used, where the process grid has P rows and one column, and the

Computed with... P real interval complex cinterval

DotK, K=2

1 1.0 1.0 1.0 1.0

2 1.66 1.76 2.17 2.34

4 2.65 2.83 3.71 4.19

8 4.31 4.65 6.42 7.18

DotK, K=3

1 1.0 1.0 1.0 1.0

2 1.62 1.77 2.08 2.34

4 2.69 2.86 3.66 4.21

8 4.37 4.73 6.35 7.29

Table 7. Speedup parallel solvers, cond = 1010, n = 5000

block size is nb =
⌈

n
P

⌉
. The matrix A is then distributed as shown in Figure 5. If

part one of the algorithm was executed first, the data now must be redistributed
to fit this scheme (the cost of this redistribution is neglectable).

P0

P1

P2

P3

Fig. 5. Distribution of matrix entries for part two (nb rows and n columns per block)

The matrix-matrix-product is now computed as follows: Every process stores
a horizontal block of matrix entries, both for the first and the second matrix. Now
the dot products of the rows of the first matrix with the columns of second matrix
have to be computed. Since every process already stores complete rows of both
matrices, it only needs the missing data for the columns of the second matrix. To
keep memory demands low, the computation is divided into several steps, where
in each step the data for a n × nb block of the second matrix is broadcasted
between the processes. Once this data has been sent, every process can compute
a part of the result matrix for itself (the part of the result matrix computed is
a part of the processes horizontal block of the result matrix and thus has not to
be communicated in any way). As our timings show, this parallelization is quite
efficient (Tables 8 and 9).

Computed with... P real interval complex cinterval

DotK, K=3

1 432.53 706.16 1598.94 2699.34

2 213.63 351.24 811.59 1335.43

4 109.95 178.41 410.44 679.90

8 61.36 100.33 214.68 349.62

Table 8. Time measurements parallel solvers, cond = 1017, n = 1000

Computed with... P real interval complex cinterval

DotK, K=3

1 1.0 1.0 1.0 1.0

2 2.02 2.01 1.97 2.02

4 3.93 3.96 3.90 3.97

8 7.02 7.04 7.45 7.72

Table 9. Speedup parallel solvers, cond = 1017, n = 1000

5 Conclusion and Future Work

With the new solvers described in this paper it is possible to compute a verified
solution of a dense linear (interval-)system in C-XSC a lot faster than before
without losing too much accuracy in the result (and in many practical cases
without losing any accuracy at all compared to the original toolbox solvers).
The speed of the new serial solver now compares very well to the speed of the
corresponding Inlab solver but gives much better numerical results. In some cases
it was not possible to compute a verified result using Intlab, whereas our new
solver worked very satisfactory.

To attack very large linear systems some parallelization has to be done. To
the authors knowledge there are no parallel selfverifying solvers available as open
source software world wide. Intlab also does not support such an approach. The
parallel version of our new solvers allows to compute the solution of very large
dense systems (see also [17]) and it has been shown that it is very efficient. All
software described in this paper will be made available as open source.

Additionally, our DotK classes are designed and integrated in C-XSC such
that they and our matrix-matrix-product routines using BLAS can also be used
in other C-XSC programs. The long accumulator (dotprecision variable) of C-
XSC may be replaced by a DotK object to gain speed in dot product com-
putations. But please keep in mind that the best way still would be to have
hardware support for exact dot products [14]. This would give highest accuracy
and optimal speed simultaneously!

The solvers presented in this paper are intended to solve dense systems and
do not make use of any special structure of the matrix A (banded, sparse, sym-
metric, positive definite, Toeplitz, Hankel, circulant, . . .). While such systems

of course can also be solved using our solvers, this approach would be quite
inefficient and memory consuming. Thus, as further work, special solvers for
these cases and especially for sparse systems will be investigated in general and
implemented in C-XSC.

Acknowledgement: We would like to thank Gerd Bohlender, Werner Hof-
schuster, Rudi Klatte, and Mariana Kolberg for many fruitful discussions on the
topic of this paper.

References

1. Downloads: C-XSC library: http://www.math.uni-wuppertal.de/ xsc/xsc/cxsc.html
Solvers: http://www.math.uni-wuppertal.de/ xsc/xsc/cxsc software.html

2. L.S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Her-
oux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, R. C. Whaley:
An Updated Set of Basic Linear Algebra Subprograms (BLAS). ACM Trans. Math.
Soft., 28-2 (2002), pp. 135–151.

3. Blackford, L. S. and Choi, J. and Cleary, A. and D’Azevedo, E. and Demmel, J.
and Dhillon, I. and Dongarra, J. and Hammarling, S. and Henry, G. and Petitet,
A. and Stanley, K. and Walker, D. and Whaley, R. C.: ScaLAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, 1997, Philadelphia, PA, ISBN =
0-89871-397-8 (paperback)

4. Bohlender, G.: What do we need beyond IEEE Arithmetic? In Computer Arithmetic
and Self-validating Numerical Methods, pp 1-32, Academic Press, San Diego, 1990.

5. Bohlender, G.; Walter, W.; Kornerup, P.; Matula, D.W.; Kornerup, P.; Matula,
D.W.: Semantics for Exact Floating Point Operations. Proceedings, 10th IEEE Sym-
posium on Computer Arithmetic, 26-28 June 1991, IEEE, 1991.

6. Dekker, T.J.: A floating-point technique for extending the available precision. Nu-
mer. Math., 18:224, 1971.

7. Grimmer, M.: Selbstverifizierende Mathematische Softwarewerkzeuge im High-
Performance Computing. Konzeption, Entwicklung und Analyse am Beispiel der par-
allelen verifizierten Lösung linearer Fredholmscher Integralgleichungen zweiter Art.
Logos Verlag, 2007.

8. Hammer, R.; Hochks, M.; Kulisch, U.; Ratz, D.: Numerical Toolbox for Verified
Computing I: Basic Numerical Problems. Springer Verlag, 1993.

9. Hofschuster, W.; Krämer, W.: C-XSC 2.0: A C++ Library for Extended Scientific
Computing. Numerical Software with Result Verification, Lecture Notes in Computer
Science, Volume 2991/2004, Springer-Verlag, Heidelberg, pp. 15 - 35, 2004.

10. Hölbig, C.; Krämer, W.: Selfverifying solvers for dense systems of linear equations
realized in C-XSC. Technical Report BUW-WRSWT 2003/1, 2003.

11. Hölbig, C.; Krämer, W., Diverio, T.A.: An Accurate and Efficient Selfverifying
Solver for Systems with Banded Coefficient Matrix In: Parallel Computing: Soft-
ware Technology, Algorithms, Architectures and Applications. Elsevier Science B.V.,
Amsterdam, v.13, pp. 283-290, 2004.

12. Kersten, Tim: Verifizierende rechnerinvariante Numerikmodule. Dissertation, Uni-
versity of Karlsruhe, 1998

13. Klatte, Kulisch, Wiethoff, Lawo, Rauch: C-XSC - A C++ Class Library for Ex-
tended Scientific Computing. Springer-Verlag, Heidelberg, 1993. Due to the C++

standardization (1998) and dramatic changes in C++ compilers over the last years
this documentation describes no longer the actual C-XSC environment. Please refer
to more accurate documentation available from the web site of our research group.

14. Kirchner, R., Kulisch, U.: Hardware Support for Interval Arithmetic. Reliable Com-
puting, Volume 12, Number 3, June 2006 , pp. 225-237(13).

15. Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms. Ad-
dison Wesley, 1969, vol. 2.

16. Kolberg, M., Fernandes, L. F., Claudio, D.: Dense Linear System: A Parallel Self-
verified Solver. International Journal of Parallel Programming, 0885-7458 (Print)
1573-7640 (Online), Springer Netherlands, 2007.

17. Kolberg, M., Krämer, W., Zimmer, M. A Noten on Solving Problem 7 of the SIAM
100-Digit Challenge Using C-XSC BUW-WRSWT 2008/2, 2008.

18. Krämer, W., Kulisch, U., Lohner, R.: Numerical Toolbox for Verified Computing
II, Advanced Numerical Problems. Draft, about 400 pages. Available on the web:
http://www.uni-karlsruhe.de/ Rudolf.Lohner/papers/tb2.ps.gz

19. Kulisch, U.: Computer Arithmetic and Validity - Theory, Implementation. De
Gruyter, to appear 2008.

20. Kulisch, U.; Miranker, W.: The arithmetic of the digital computer: A new approach.
SIAM Rev., 28(1):1-40, 1986.

21. Kulisch, U.: Die fünfte Gleitkommaoperation für Top-Performance Computer.
Berichte aus dem Forschungsschwerpunkt Computerarithmetik, Intervallrechnung
und numerische Algorithmen mit Ergebnisverifikation, 1997.

22. Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehler-
schranken. Computing, 4:187-201, 1969.

23. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM Journal
on Scientific Computing, 26:6, 2005.

24. Oishi, S., Tanabe, K., Ogita, T., Rump, S.M., Yamanaka, N.: A Parallel Algorithm
of Accurate Dot Product. Submitted for publication, 2007.

25. Rump, S.M.: Intlab - Interval Laboratory. Developments in Reliable Computing,
pp. 77-104, 1999.

26. Rump, S.M.: Kleine Fehlerschranken bei Matrixproblemen. Dissertation, Univer-
sity of Karlsruhe, 1980.

27. Stoer, J.; Bulirsch, R.: Introduction to Numerical Analysis. Springer-Verlag, New
York, 1980.

28. Zimmer, Michael: Laufzeiteffiziente, parallele Loeser fuer lineare Intervallgle-
ichungssysteme in C-XSC. Master thesis, University of Wuppertal, 2007.

