Example: Complex Disc Arithmetic The Task Define two disc intervals with midpoints at 1 and -1+i and mulitply them using centered and area optimal multiplication.  Enclose the range of the complex polynomial on the disc interval [-0.2,0.4,1] with midpoint at -0.2+0.4i and radius 1 using three different evaluation methods. The Solution Here's the Maple Worksheet solving the task with intpakX. This is to load intpakX: > restart; > libname:="/usr/maple/intpakX/lib", libname; > with(intpakX); And this is the solution: > A1:=[1,0,1]; > B1:=[-1,1,1]; > C1:=A1 &cmult B1; > D1:=A1 &cmult_opt B1; > cmd1:=complex_disc_plot(A1,color=black): cmd2:=complex_disc_plot(B1,color=black): cmd3:=complex_disc_plot(C1,color=red): cmd4:=complex_disc_plot(D1,color=blue): > display([cmd1,cmd2,cmd3,cmd4],scaling=constrained); > p1:=(0.1+0.1*I)*z^5+0.2*I*z^4-0.1*I*z^3+(-0.2-0.1*I)*z+2.0+1.0*I; > Z:=[-0.2,0.4,1]; > pH:=horner_eval_cent(p1,Z); > pO:=horner_eval_opt(p1,Z); > pC:=centred_form_eval(p1,Z); > cp:=complex_polynom_plot(p1,Z): c1:=complex_disc_plot(pH,color=blue,linestyle=4): c2:=complex_disc_plot(pO,color=green,linestyle=3): c3:=complex_disc_plot(pC,color=black,linestyle=2): > display([c1,c2,c3,cp],scaling=constrained); >

intpakX     Wiss. Rechnen / Softwaretechnologie     FB Mathematik     Bergische Universität Wuppertal