Bilateral Project: Bulgaria - Germany |
Embedding C-XSC interval computations in Mathematica
via communication protocols
Institutions involved in the project:
The bilateral project "Embedding C-XSC interval computations in Mathematica
via communication protocols"
is funded by
Deutsche Forschungsgemeinschaft (DFG)
under grants No KR 1612/7-1.
Principal investigators:
Bulgarian Academy of Sciences, Sofia
Institute of Mathematics and Informatics
Section "Biomathematics
Assoc. Prof. Dr. Evgenija D. Popova
and
Bergische Universität Wuppertal (BUW),
FB C, Fachgruppe Mathematik,
Prof. Dr. Walter Krämer
Scientists involved in the project:
Exchange of experts:
- Assoc. Prof. Dr. Evgenija D. Popova, October/November 2009 in Wuppertal
- Assoc. Prof. Dr. Evgenija D. Popova, May/June 2010 in Wuppertal
- Assoc. Prof. Dr. Evgenija D. Popova, October 2010 in Wuppertal
Papers and Preprints:
- Krämer, W.:
Computer-Assisted Proofs and Symbolic Computations
Serdica Journal of Computing 4(1), p. 73-84, 2010.
- Popova, E.; Kolev, L.; Krämer, W.:
A Solver for Complex-Valued Parametric Linear Systems
Serdica Journal of Computing 4(1), p. 123-132, 2010.
- Popova, E.; Krämer, W.; Russev, M.:
Integration of C-XSC Automatic Differentiation in Mathematica
Preprint 3/2010, IMI-BAS, Sofia, 2010
().
- Popova, E.; Krämer, W.:
Communicating Functional Expressions from Mathematica to C-XSC
In K. Fukuda et al. (Eds.): Mathematical Software -- ICMS 2010, LNCS 6327, pp. 354--365, 2010.
- Popova, E.; Krämer, W.:
Embedding C-XSC Nonlinear Solvers in Mathematica
To appear in Comptes rendus de l'Academie bulgare des Sciences.
- Popova, E.:
Mathematica Connectivity to Interval Libraries filib++ and C-XSC
In Cuyt, A. et al. (eds.), Numerical Validation. LNCS 5492, Springer,
Heidelberg, p. 117-132, 2009.
().
Software:
- ADExpressions: Software Communicating Functional Expressions from Mathematica
to C-XSC Automatic Differentiation Objects.
- Software Embedding C-XSC Modules for Automatic Differentiation in
Mathematica.
- Software Embedding C-XSC Modules for nonlinear problem-solving in
Mathematica.
Link to former project:
"Parametric Linear Interval Systems" (Bulgarien - Deutschland)