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In this paper we discuss a selfverifying solver for systems of linear equations Ax = b with banded
matrices A and the future adaptation of the algorithms to cluster computers. We present an imple-
mentation of an algorithm to compute efficiently componentwise good enclosures for the solution of
a sparse linear system on typical cluster computers. Our implementation works with point as well as
interval data (data afflicted with tolerances). The algorithm is implemented using C-XSC library (a
C++ class library for extended scientific computing). Our goal is to provide software for validated
numerics in high performance environments using C-XSC in connection with the MPICH library.
Actually, our solver for linear system with banded matrices runs on two different clusters: ALiCE1

at the University of Wuppertal and LabTeC2 at UFRGS. Our preliminary tests with matrix-matrix
multiplication show that the C-XSC library needs to be optimized in several ways to be efficient in
a high performance environment (up to now the main goal of C-XSC was functionality and porta-
bility, not speed). This research is based on a joint research project between German and Brazilian
universities (BUGH, UKA, UFRGS and PUCRS) [5].

1. Introduction

For linear systems where the coefficient matrix A has band structure the general algorithm for
solving linear systems with dense matrices is not efficient. Since an approximate inverse R is used
there this would result in a large overhead of storage and computation time, especially if the bandwidth
of A is small compared with its dimension. To reduce this overhead, we will replace the approximate
inverse by an approximate LU -decomposition of A which needs memory of the same order of magnitude
only as A itself. Then we will have to solve systems with triangular banded matrices (containing point
data) in interval arithmetic. This seems to be a trivial task and several methods have been developed
using such systems and simple forward and backward substitution in interval arithmetic, see e.g.
[8], [12]. However, at this point there appears suddenly a very unpleasant effect which makes the
computed intervals blow up very rapidly in many cases. This effect is known in literature as wrapping

effect (see e.g. [13]) and was recognized first in connection with the verified solution of ordinary
initial value problems. However it is a common problem within interval arithmetic and may show

1Cluster with 128 Compaq DS10 Workstations, 616 MHz Alpha 21264 processors, 2 MB cache, Myrinet multistage
crossbar connectivity, 1 TB disc space and 32 GB memory.
2Cluster with 20 Dual Pentium III 1.1 GHz (40 nodes), 1 GB memory RAM, HD SCSI 18 GB and Gigabit Ethernet.
Cluster server (front-end) with Dual Pentium IV Xeon 1.8 GHz, 1 GB memory RAM, HD SCSI 36 GB and Gigabit
Ethernet. LaBTeC Cluster Homapage: http://www.inf.ufrgs.br/LabTeC
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up whenever computations in IRn, n > 1, are performed, e.g. if an interval vector is multiplied
repeatedly by matrices or more general if a function f : IRn → IRn is applied repeatedly to an
argument x, xn = f(f(· · · f(f(x)) · · ·)). It should be noted that the wrapping effect is not related to
roundoff errors or any other sources of errors in an algorithm (like truncation errors, discretization
errors and the like) but it is introduced solely by interval arithmetic itself (though any additional
errors may contribute to an increase of the wrapping effect).

2. The Algorithms

The algorithms implemented in our work were described in [9] and can be applied to any system
of linear equations which can be stored in the floating point system on the computer. They will, in
general, succeed in finding and enclosing a solution or, if they do not succeed, will tell the user so.
In the latter case, the user will know that the problem is very ill conditioned or that the matrix A is
singular.

In the implementation in C-XSC, there is the chance that if the input data contains large numbers
or if the inverse of A or the solution itself contain large numbers, an overflow may occur, in which
case the algorithms may crash. In practical applications, this has never been observed, however. This
could also be avoided by including the floating point exception handling which C-XSC offers for IEEE
floating point arithmetic [2].

For this work we implemented interval algorithms for solution of linear systems of equations with
dense and sparse matrices. There are numerous methods and algorithms computing approximations
to the solution x in floating-point arithmetic. However, usually it is not clear how good these approx-
imations are, or if there exists a unique solution at all. In general, it is not possible to answer these
questions with mathematical rigour if only floating-point approximations are used. These problems
become especially difficult if the matrix A is ill conditioned.

We implemented some algorithms which answer the questions about existence and accuracy auto-
matically once their execution is completed successfully. Even very ill conditioned problems can be
solved with these algorithms. Most of the algorithms implemented here can be found in [14] and [15].

3. Band Matrices

Matrices with band structure and difference equations are closely related. There the difference
equations could be rewritten equivalently as a linear system with band matrix which was triangular
even. Similarly we can go in the other direction and write a triangular banded matrix as a difference
equation.
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is equivalent with the difference equation

ai,i−m+1xi−m+1 + · · · + ai,ixi = bi , i = m, . . . , n, (2)

of order m − 1 with the starting values

xi = (bi − ai,i−1xi−1 − · · · − ai,1x1)/ai,i , i = 1, . . . ,m − 1 . (3)

In [9] we saw that the solution of triangular systems by interval forward substitution can result in
severe overestimations. Therefore we use the relationship to difference equations and solve triangular
banded systems with the method for difference equations which was presented in [9].

For general banded systems we will then apply a LU -decomposition without pivoting to the coeffi-
cient matrix A and derive an interval iteration similar to

[y]k+1 = R♦(b − Ax̃) + ♦(I − RA)[y]k (4)
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Here, however, we will not use a full approximate inverse R but rather the iteration will be performed
by solving two systems with banded triangular matrices ( L and U ).

A similar approach to banded and sparse linear systems can be found, e.g. , in [12]. There, however,
the triangular systems were solved by interval forward and backward substitution which often results
in gross overestimations as we have seen already.

For a different approach to the verified solution of linear systems with large banded or arbitrary
sparse coefficient matrix see Rump, [15].

The mathematical background for the verified solution of large linear systems with band matrices
is exactly the same as it was already in [6] for systems with dense matrices.

For dense systems the interval iteration (4) was derived by use of an approximate inverse R of the
coefficient matrix A. This is however what we want to avoid for large banded matrices A. Therefore
we chose a different approximate inverse, namely

R := (LU)−1 ≈ A−1 (5)

where

LU ≈ A (6)

is an approximate LU -decomposition of A without pivoting. Since we do not use pivoting both L and
U are banded matrices again, and of course they are lower and upper triangular, resp.

The analogue of the iteration (4) now reads in our case

yk+1 = (LU)−1(b − Ax̃) + (I − (LU)−1A)yk (7)

or, multiplying with LU and taking intervals:

LU [y]k+1 = ♦(b − Ax̃) + ♦(LU − A)[y]k. (8)

Therefore we have to solve two linear systems with triangular, banded coefficient matrices, L and
U , in order to compute [y]k+1, i.e. to perform one step of the iteration (8). In each iteration we first
compute an enclosure for the solution of

L[z]k+1 = ♦(b − Ax̃) + ♦(LU − A)[y]k

and then [y]k+1 from

U [y]k+1 = [z]k+1.

In both systems we do not use just plain interval forward or backward substitution, however, as
discussed above, we treat the systems as difference equation and apply the corresponding method.
Here again, as in [6], the inclusion test

[y]k+1 = F ([y]k) ⊂ [y]◦k (9)

has to be checked in the same way and if it is satisfied then the same assertions hold as in the dense
case.

Remark:

If we compute the LU -decomposition with Crout’s algorithm, then we can get the matrix ♦(LU−A)
virtually for free, since the scalar products which are needed here have to be computed in Crout’s
algorithm anyway.

4. Tests and Results

A very well known set of ill conditioned test matrices for linear system solvers are the n×n Hilbert

matrices Hn with entries (Hn)i,j := 1
i + j − 1 . As a test problem, we report the results of our program

for the linear systems Hnx = e1, where e1 is the first canonical unit vector. Thus the solution x is the
first column of the inverse H−1

n of the Hilbert matrix Hn. We give results for the cases n = 10 and
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n = 20. Since the elements of these matrices are rational numbers which can not be stored exactly in
floating point, we do not solve the given problems directly but rather we multiply the system by the
least common multiple lcmn of all denominators in Hn. Then the matrices will have integer entries
which makes the problem exactly storable in IEEE floating point arithmetic. For n = 10, we have
lcm10 = 232792560 and for n = 20, we have lcm20 = 5342931457063200.

For the system (lcm10H10)x = (lcm10e1), the program computes the result showed in (10), which
is the exact solution of this ill conditioned system.
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For the system (lcm20H20)x = (lcm20e1), the program computes the enclosures (here an obvious
short notation for intervals is used) showed in (11), which is an extremely accurate enclosure for the
exact solution (the exact solution components are the integers within the computed intervals).
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As other example, we compute an enclosure for a very large system. We take the symmetric Toeplitz
matrix with five bands having the values 1, 2, 4, 2, 1 and on the right hand side we set all components
of b equal to 1. Then the program produces the following output for a system of size n = 200000
(only the first ten and last ten solution components are printed):

Dimension n = 200000

Bandwidths l,k : 2 2

A = 1 2 4 2 1

change elements ? (y/n) n

b = =1

change elements ? (y/n) n
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x =

1: [ 1.860146067479180E-001, 1.860146067479181E-001 ]

2: [ 9.037859550210300E-002, 9.037859550210302E-002 ]

3: [ 7.518438200412189E-002, 7.518438200412191E-002 ]

4: [ 1.160876404875081E-001, 1.160876404875082E-001 ]

5: [ 1.003153932563721E-001, 1.003153932563722E-001 ]

6: [ 9.427129202687645E-002, 9.427129202687647E-002 ]

7: [ 1.028361799416204E-001, 1.028361799416205E-001 ]

8: [ 1.005240450090008E-001, 1.005240450090009E-001 ]

9: [ 9.874921290539136E-002, 9.874921290539138E-002 ]

10: [ 1.004617422430963E-001, 1.004617422430964E-001 ]

199990: [ 1.001953939326196E-001, 1.001953939326197E-001 ]

199991: [ 1.004617422430963E-001, 1.004617422430964E-001 ]

199992: [ 9.874921290539136E-002, 9.874921290539138E-002 ]

199993: [ 1.005240450090008E-001, 1.005240450090009E-001 ]

199994: [ 1.028361799416204E-001, 1.028361799416205E-001 ]

199995: [ 9.427129202687645E-002, 9.427129202687647E-002 ]

199996: [ 1.003153932563721E-001, 1.003153932563722E-001 ]

199997: [ 1.160876404875081E-001, 1.160876404875082E-001 ]

199998: [ 7.518438200412189E-002, 7.518438200412191E-002 ]

199999: [ 9.037859550210300E-002, 9.037859550210302E-002 ]

200000: [ 1.860146067479180E-001, 1.860146067479181E-001 ]

max. rel. error = 1.845833860422451E-016 at i = 3

max. abs. error = 2.775557561562891E-017 at i = 1

min. abs. x[3] = [ 7.518438200412189E-002, 7.518438200412191E-002 ]

max. abs. x[1] = [ 1.860146067479180E-001, 1.860146067479181E-001 ]

5. Integration between C-XSC and MPI Libraries

As part of our research, we did the integration between C-XSC and MPI libraries on cluster com-
puters. This step is necessary and essential for the adaptation of our solvers to high performance
environments. This integration was developed using, with first tests, algorithms for matrix multi-
plication in parallel environments of cluster computers. Initially, we did some comparations about
the time related to the computational gain using parallelization, the parallel program performance
depending on the matrix order, and the parallel program performance using a larger number of nodes.
We also studied some other information like the memory requirement in each method to verify the
performance relation with the execution time and memory.

We want to join the high accuracy given by C-XSC with the computational gain provided by
parallelization. This parallelization was developed with the tasks division among various nodes on
the cluster. These nodes execute the same kind of tasks and the communication between the nodes
and between the nodes and the server uses message passing protocol.

Measures and tests were made to compare the routines execution time in C language, C using MPI
library, C using C-XSC library and C using C-XSC and MPI libraries. The developed tests show
that simple and small changes in the traditional algorithms can provide an important gain in the
performance [11]. We observed the way that the processor pipeline is used, and we notice that it is
decisive for the results. Based in these tests, we could also observe that the use of just 16 nodes is
enough for this multiplication.

In the results obtained with these tests, the execution time of the algorithms using C-XSC library
are much larger than the execution time of the algorithms that do not use this library. Even in this
tests, it is possible to conclude that the use of high accuracy operations make the program slower. It
shows that the C-XSC library need to be optimized to have an efficient use on clusters, and make it
possible to obtain high accuracy and high performance in this kind of environment.
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6. Conclusions

In our work we provide the development of selfverifying solvers for linear systems of equations with
sparse matrices and the integration between C-XSC and MPI libraries on cluster computers. Our
preliminary tests with matrix multiplication show that the C-XSC library needs to be optimized to be
efficient in a High Performance Environment (up to now the main goal of C-XSC was functionality and
portability, not speed). Actually we are working in to finish this integration and in the development
of parallel software tools for validated numerics in high performance environments using the C++
class library C-XSC in connection with the MPICH library.
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[5] Hölbig, C.A., Diverio, T.A., Claudio, D.M., Krämer, W., Bohlender, G.: Automatic Result Verification in
the Environment of High Performance Computing In: IMACS/GAMM INTERNATIONAL SYMPOSIUM
ON SCIENTIFIC COMPUTING, COMPUTER ARITHMETIC AND VALIDATED NUMERICS, 2002,
Paris. Extended abstracts, pg. 54-55 (2002).
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