N
I
it
N\
N

N
TT.
N\

N
|
D

NS

N
1
N\

Bergische Universitat
Wuppertal

Extension of the C-XSC Library
with Scalar Productswith Selectable Accuracy

Michael Zimmer, Walter Kramer, Gerd Bohlender, Werner Hofschuster

Preprint
BUW-WRSWT 2009/4

Wissenschaftliches Rechnen/
Softwaretechnologie

Wr»
swt

|mpressum

Herausgeber: Prof. Dr. W. Kramer, Dr. W. Hofschuster
Wissenschaftliches Rechnen/Softwaretechnologie
Fachbereich C (Mathematik und Naturwissenschaften)
Bergische Universitat Wuppertal
Gaul3str. 20
42097 Wuppertal, Germany

| nternet-Zugriff

Die Berichte sind in elektronischer Form erhaltlich ibder World Wide Web Seiten

http://ww. mat h. uni -wuppertal .de/wswt/Iliteratur. htm

Autoren-Kontaktadresse

Michael Zimmer, Walter Kramer, Werner Hofschuster
Bergische Universitat Wuppertal

Gaulf3str. 20

42097 Wuppertal, Germany

E-mail:
[zi nrer, kr aener, hof schust er] @mat h. uni - wuppertal . de

Gerd Bohlender

Institute for Applied and Numerical Mathematics 2
KIT - Karlsruhe Institute of Technology
KaiserstralRe 12

D-76131 Karlsruhe

E-mail: ger d. bohl ender @i t . edu

EXTENSION OF THE C-XSC LIBRARY WITH SCALAR
PRODUCTS WITH SELECTABLE ACCURACY

Michael Zimmer, Walter Krdmer, Gerd Bohlender, Werner Hofschuster

Abstract

The C++ class library C-XSC for scientific computing has been extended with
the possibility to compute scalar products with selectable accuracy in version 2.3.0.
In previous versions, scalar products have always been computed exactly with the
help of the so-called long accumulator. Additionally, optimized floating point com-
putation of matrix and vector operations using BLAS-routines are added in C-XSC
version 2.4.0. In this article the used algorithms and their implementations, as
well as some potential pitfalls in the compilation are described in more detail. Ad-
ditionally, the theoretical background of the used DotK algorithm and the neces-
sary modifications of the concrete implementation in C-XSC are shortly explained.
Run-time tests and numerical examples are presented as well.

ACM Computing Classification System (1998): G.1.0, G.4

Keywords: DotK algorithm, error-free transformations, C-XSC, scalar products,
long accumulator, K-fold accuracy

1. Introduction and Notation. C-XSC [10, 8] is a C++-class library for
verified scientific computing. In addition to basic types for calculating with real and
complex (floating point) data, C-XSC also provides corresponding matrix and vector
data types and in particular data types and algorithms for interval arithmetic.

For all calculations of scalar products, which may be explicit or implicit (in the
relevant operators), the so-called long accumulator [13, 14, 5] is used and is realized in
the dotprecision data types. In the accumulator all scalar products of vectors with
floating point components are calculated exactly in a sufficiently long fixed-point rep-
resentation. With that, all calculations relevant for scalar products can be accomplished
exactly. Only the final result has to be rounded into working precision. However, un-
less supported by hardware, such a scalar product calculation with the long accumulator

is very time-consuming and is the main reason for the low run-time performance of
C-XSC, e.g. in comparison to Intlab [18].

The goal of the changes described in this article is to introduce the selectable
accuracy K (with respect to double-accuracy) for scalar products. Depending on the
chosen accuracy, a different algorithm will be used (long accumulator, normal floating-
point calculation, DotK algorithm [16]). To assure the compatibility with older pro-
grams, the changes were conducted in such a way that without any special declaration
the case K = 0 will be assumed. That means, the long accumulator is used which is
consistent with the behavior of older C-XSC versions.

With these changes, programs can now be better adapted to a particular task.
That means, calculations which don’t require maximal accuracy can now be executed
considerably faster, depending on the chosen accuracy K. Additionaly, pure floating
point calculations based on optimized BLAS routines are also available for some opera-
tions, leading to drastically improved run time performance in certain situations.

Let IF denote the set of floating-point numbers and F* the set of floating-point
vectors of length n. The real operations 4+, —, - have to be replaced with the floating-
point operations B, 5, [-]. If a real-valued term F has to be calculated in floating-point

n—1
arithmetic, we denote it in the short form fi(E). E. g. fi(> p;+p») denotes the floating-
n—1 =
point evaluation of the term > p; + py,, which is the result of the calculation of p; H
p2 .. .Hp, (all operations of tlhe1 real-valued term are replaced by the according floating-
point operations). This article assumes the double format of the IEEE standard [2] as
the underlying floating point format. eps denotes the relative error bound of rounded
floating-point operations; for IEEE double operations, eps = 2753 holds.

The article is structured as follows. First, the current status with regard to ex-
plicit as well as implicit (i. e. hidden in operator calls) scalar product calculations in
C-XSC is clarified in simple examples. In section 3 the theoretical background of the
DotK algorithm is shortly explained. Section 4 describes the actual implementation,
especially the modifications which were applied to the DotK algorithm and how and
where optimized BLAS routines are used. In section 5 some important points concern-
ing compilation are highlighted, especially regarding performance and numerical accu-
racy. Finally, in section 6 some examples for the usage and also time measurements are
presented.

2. Computation of Exact or Maximally Accurate Scalar Products in
C-XSC. The following code in C-XSC

//Real matrices

rmatrix A(m,n); //m-by-n
rmatrix B(n,p); //n-by-p
rmatrix R(m,p); //m-by-p

//..matrices A and B are
//initialized with double wvalues...

//maximally accurate matrix-matrix
//multiplication
R= AxB;

computes the result R of the multiplication of the real floating point matrix A with the real
floating point matrix B. Each element of the resulting matrix R is computed with maximal
accuracy. For the calculation of the end result with maximal accuracy, internally, the
scalar product of the corresponding row of matrix A with the corresponding column of
matrix B is calculated componentwise exactly(!) in the so-called long accumulator. The
exact result is rounded to the nearest floating point number (maximally accurate floating
point result). This long accumulator is realized with the data type dotprecision
offered in C-XSC, which is also directly available to the user. The scalar product of two
floating-point vectors can thus be calculated exactly as follows:

rvector x(n);
rvector y(n);

//...components of x and y are
//initialized with double values...

//accu is initialized with 0
dotprecision accu(0);

accumulate (accu, x,V) ;
//exact value of the scalar product
//xxy 1s available in accu

The leading r in the name of the data types rvector and rmatrix indicate that their
element are real.

After execution of this program fragment, the dotprecision variable accu
contains the exact value of the scalar product of the two floating point vectors x and
y. The C-XSC routine accumulate allows to exactly add the exact value of the

scalar product of vectors x and y to the previous value which is already stored in the
dotprecision variable accu (here, this is 0). In this computation, neither over-
flow nor underflow can occur (but this can, of course, happen in a later assignment of
the (rounded) exact value to a floating-point variable). The exact value of such a scalar
product is typically not a floating point number.

The described feature of the exact calculation of scalar products of floating point
vectors is used in C-XSC to realize all basic operations with maximum accuracy. This
applies also to all matrix and vector operations, to complex operations and to operations
with floating point intervals. The long accumulator (dotprecision data type) is right
now unfortunately not supported by any special hardware. Thus, the long accumulator
is realized in software as a fixed-point format with sufficient mantissa length, so that op-
erations which use this data type are relatively slow (e.g. matrix-matrix multiplication).

In order to improve the run-time of C-XSC programs two modifications are in-
troduced. First, so-called error free transformations are used to accelerate the higher
precision scalar products (compared to the software solution of the long accumulator).
This is the central theme in this article. The second step is to use highly optimized
BLAS-routines for some floating point operations (especially matrix-matrix multiplica-
tions), which will also be elaborated on later in this paper.

The DotK algorithm described in the following section uses only floating point
operations for calculations of scalar products of floating point vectors in a simulated
higher precision. This algorithm is significantly faster compared to scalar product cal-
culations with a software emulation of the long accumulator. In contrast, the hardware
realization of the long accumulator (which is possible with moderate additional hard-
ware cost [15]) would be significantly faster than the DotK algorithm. It should also
be noted that the DotK algorithm normally does not guarantee matrix-vector-operations
with maximum accuracy. A hardware solution of the long accumulator would always
be maximally accurate. The availability of the DotK algorithms in C-XSC is motivated
only by the unfortunate non-availability of the long accumulator in hardware.

3. The DotK-Algorithm. The DotK algorithm for the fast calculation of
scalar products of floating point vectors in simulated higher precision (K-fold double
accuracy is simulated) was introduced in original form in [16, 20]. It is based on the use
of error-free transformations: For all a,b € F and o € {+,—,-} thereexistsay €
withaob=2x 4+ yand x = fl(aob).

Each of the operations occurring in a scalar product can be converted exactly
into the sum of two floating point numbers = and y, where z is the result of the normal
floating point calculation and ¥ represents the emerging rounding error. This also applies

whenever (intermediate) results are produced in the underflow range. Each scalar prod-
uct of vectors with floating point components can thus be transformed error-free into a
sum of floating point numbers.

The calculation of error-free transformations is possible with mere floating-point
operations [7, 6, 16, 20, 19]. Error-free transformations were already used in the seven-
ties in order to compute scalar products with higher accuracy [17] or even with maximum
accuracy [4].

The algorithm 1 (TwoSum) is used for the transformation of the sum of two
floaing point numbers, the algorithm 3 (TwoProduct) is used for the tranformation of
the multiplication. It utilizes algorithm 2 (Sp1it), which splits a floating point number
into the sum of two floating point numbers with non-overlapping mantissas.

Input : Two floating-point numbers a,b € F
Output: Two floating-point numbers x,y € F with x = o H b and

a+b=x+y
r=aHlb
z=xHa

y= (a8 (xBz2)BbEz2)
Algorithm 1: TwoSum

Input : A floating-point number a € F

Output: Two floating-point numbers z,y € F witha =z +y
factor =22"H 1

¢ = factor L a

x=cB(cBa)

y=aBHz

Algorithm 2: Split

Input : Two floating-point numbers a, b € F

Output: Two floating-point numbers x,y € F witha -b=z +y

r=allb

[a1, a2] =Split(a)

(b1, ba] =Split(b)

y:a2DbgE|(((iL'ECLlDbl)EGQDbl)Ealmbg)
Algorithm 3: TwoProduct

These algorithms can be implemented directly in C++, where factor of the
algorithm Split should be implemented as a constant. In the implementation extreme
care should be taken that all calculations are conducted according to the IEEE standard
for double precision. In particular, many modern processors use 80 bit wide registers
for floating point calculations. The usage of such excess precision registers can lead to
wrong results during the error-free transformations. Details on this topic can be found
in section 5.

Based on the error-free calculations, the summation of the single elements of
a vector of floating-point numbers can be implemented in K-times working precision
(algorithm 4, SumK). The principle in doing so is to implement the summation with the
help of TwoSum, carrying the floating point result along and saving the error-terms as
the corresponding element of the vector. With each run, the condition number improves
by almost a factor eps (relative rounding error). After K — 1 repetitions and a final
summation in normal floating point, K -times accuracy is achieved.

Input : A vector p € F", desired accuracy K
Output: The sum fI(> p;), in K-fold working accuracy
fork=1:K-1do
fori=2:ndo
L | [pi, pi—1] = TwoSum(p;,p;—1)

n—1
res =fI(Y pi + pn)
=1

Algorithm 4: SumK

Now the actual algorithms for the computation of the scalar product in K -fold
accuracy can be formulated. For this purpose the scalar product is converted into a
sum of floating point numbers with the help of the error free transformations, which
can then be calculated in K -fold precision with the algorithm SumK. In the case of
K = 2, an optimized version of the algorithm (algorithm 5, Dot 2) is used, because it
is not necessary to store the error-terms of the error-free transformations in an array or a
vector. For K > 2 the algorithm 6 (DotK) will be used.

It is also possible to determine an error bound for these algorithms via mere
floating-point calculation. This method is not further illustrated here, more detailed
information can be found in [16]. The necessary calculations are specified in section 4 in
the exemplification of the concrete implementation. In this section, some modifications
of the original version of the DotK algorithm (described above) are enlarged on, which
essentially serve for a reasonable integration in the accumulator classes.

In [12, 21] a more detailed summary of the DotK algorithm can be found, as well

as the description of an earlier implementation for C-XSC in the form of an additional
package of separate classes. It is also possible to convert the result of a dot product to
staggered precision, thisis described in [3].

Input : Two vectors z,y € F"
Output: The scalar product res = x - y, as if calculated with double
working accuracy
[p,s] = TwoProduct(x1,y1)
for i=2:ndo
[A,r] = TwoProduct(x;,y;)
[p,q] = TwoSum(p,h)
s =s H (gHr)
res=pHs

Algorithm 5: Dot2

Input : Two vectors x,y € F”, desired accuracy K
Output: The scalar product x - y, as if calculated with K -times working

accuracy
[p,r1] = TwoProduct(x1,y1)
for i=2:ndo

[A,r;] = TwoProduct(x;,y;)
L [p.rn+i—1] = TwoSum(p,h)
Ton =P
res = SumK(r, K-1)
Algorithm 6: DotK

4. Implementation. In this section, the changes to the C-XSC library and the
modifications to the algorithm from section 3 are described in more detail. The changes
were implemented in such a way that existing programs behave exactly the same like
with previous C-XSC versions. Absolutely no changes in the code should be necessary
to retain compatibility.

4.1. Changes to the dotprecision-Classes. Since the accuracy for the
calculation of scalar products should now be selectable (i. e. switchable at run time), the

dotprecision classes need a new member variable for the currently chosen accuracy.
For this the following changes are conducted in all dotprecision-classes:

e A new member variable int k to store the current accuracy with the following
meaning:

— k = 0: Calculation with accumulator (as in old C-XSC versions).

— k = 1: Pure floating-point calculations (enclosure or error-bound is calcu-
lated via switching of the rounding mode).

— k > 2: Use of the DotK algorithm for calculation in K -fold accuracy.

e New member functions void set_k (unsigned int) and int get_k ()
for setting and reading-out the current accuracy level.

e Corresponding adjustment of the constructors (accuracy is by default set to 0,
in the copy-constructor the accuracy of the original is chosen) and assignment
operators (accuracy is not assigned but always retained).

In addition, an error variable err of type real for the class dotprecision
is required, because now the currently saved value does not need to be exact anymore.
During the call of the function rnd to round the result to double precision this er-
ror bound is now taken into account. The same applies to comparison operators. All
other dotprecision classes do not need such an error variable, because they are
composed of real dotprecision objects (the class idotprecision uses e.g. two
dotprecision objects for representing the infimum and the supremum of the result-
ing interval, respectively).

4.2. Implementation of the new Computation Functions. For the actual
computation of the scalar product, a new function (or rather several overloaded versions)
addDot (dotprecisioné&, const S&, const T&) isintroduced, whichis avail-
able only internally. This function is implemented as a template with parameters S and T.
This is done to directly support auxiliary data types of C-XSC such as rvector_slice
which are used for cutting out slices of vectors and matrices. Thus, one does not have to
write an adapted version of the function for each auxiliary data type (since correspond-
ing data types have the same set of operators, the source code for the computation would
be identical).

This function, with all required auxiliary functions (implementation of the error-
free transformations as well as the algorithm SumK, which is required by the DotK

algorithm for K > 2), is implemented in a new file dotk.inl (and idotk.inl,
cdotk.inl and cidotk. inl for the appropriate data type). The declarations of the
function do not appear in any header-file. They can thus not be called by the user of the
library directly (instead, the user calls the accumulate function, which in turn calls
addDot if necessary).

These new files have to be included in the . cpp-files in which the scalar product
calculations are required (see section 4.3). That way, the code for the computations is
compiled directly into the library, the definitions are not, as usual in C-XSC, embedded
into the header. This is required because in many cases special compiler flags are needed
to guarantee the correct execution of error-free transformations. Otherwise, the user
would have to set these flags in each compilation of a C-XSC program using the DotK
algorithm to guarantee correct results (see also section 5).

Listing 1: Computation function for real scalar products

template<typename S, typename T>
inline void addDot (dotprecision &val,
const S &x, const T &y) {

int n = Ub(x)-Lb(x)+1;
int 1bl = Lb(x);
int 1b2 = Lb(y);
real res,err=0.0;

int rnd;

//Check rounding mode
if ((rnd=getround()) != 0) {
setround (0) ;

}

if(val.k == 0) { //use accumulator
for(int i=1 ; i<=n ; i++)
accumulate (val, x[i+1bl-1],y[i+1b2-1]);
} else if(val.k == 1) { //use floating point
real resd = 0.0, resu = 0.0;

setround (-1);
for(int i=1 ; i<=n ; i++)
resd += x[i+1lbl-1] * y[i+1lb2-1];

setround (1) ;
for(int i=1 ; i<=n ; i++)
resu += x[i+lbl-1] * y[i+1lb2-1];

setround (0) ;
res = resd+ (resu-resd)*0.5;
setround(1l);
val.err = val.err + resu-res;
val += res;
} else if(val.k == 2) { //use DotK optimized for K=2
real p, s, h, r, g, t;

TwoProduct (x[1bl],y[1b2],p,s);
err += abs(s);

for(int i=2 ; i<=n ; i++) {
TwoProduct (x[1bl+i-1],y[1b2+i-1],h, r);
TwoSum(p,h,p,q);
t =g+ r;
s += t;
err += abs(t);

val += p;
val += s;
res = p+s;

real alpha, delta, error;

delta
alpha

(n*Epsilon) / (1.0-2#n*Epsilon);
(Epsilonxabs (res)) +
(deltaxerr+3+«MinReal /Epsilon);
error = alpha / (1.0 - 2xEpsilon);

setround (1) ;

val.err = val.err + error;
} else { //use Dotk

real r = 0, h;

realx t = new real[2xn];

for(int i=1 ; i<=n ; i++) {
TwoProduct (x[1bl+i-1], y[lb2+i-17,
h, t[i-11);
TwoSum(r, h, r, t[n+i-2]);

}

t[2+«n-1] = r;
SumK (t, 2+n, val.k-1, err, val);

setround (1) ;
val.err = val.err + err;

delete[] t;
}

//Reset rounding mode to former value
setround(rnd) ;

}

Listing 1 shows the implementation of addDot for the real scalar product. Ac-
cording to the value of the member variable k of the dotprecision object, an ap-
propriate calculation method is used. The case K = 2 shows how the error bound can
be computed with simple floating-point calculations. For K > 2 the error bound is
calculated in a similar manner in the SumK function.

If no interval scalar product is calculated, a special variant of addDot exists in
which the computation of the error bound is omitted. This version is used in the real or
complex operators of the matrix and vector classes (see section 4.4), since these opera-
tors do not compute enclosures and thus need no error bound. That way, the execution
time can be reduced. This variant without error calculation is also directly available for
the user in the form of the function accumulate_approx (as described, this function
is not available for interval scalar products, since then correct enclosures are expected
in general).

An important modification compared to the original algorithm is made possible
through the usage of the accumulator. Since the result of every scalar product calcula-
tion must be saved intermediately in the respective accumulator anyway, one can take
advantage of its ability to store very long numbers exactly. The result may be calculated
in such a way that the data in the accumulator can be converted to a staggered represen-
tation later on, if necessary. For this purpose, the current error term (the sum of the error

10

terms of the single operations) is individually added to the accumulator in every run of
the DotK algorithm. This error term decreases by a factor of eps in every run. Finally, at
the end of the calculation, the computed end result is added. The remaining error terms
are used to compute the final error. Thus, the result stored in the accumulator has K-fold
double length. Together with the error bound, all necessary information for a staggered
representation of the result is stored in the dotprecision object. For intervals and
complex numbers, equivalent implementations are used. This topic is described in more
detail in [3].

For K = 1, 1i. e. pure floating-point calculation, the normal operators of the class
interval are not used in the real interval case, since this would be very slow due to
the frequent switching of the rounding mode. Instead, the vectors for the scalar products
to compute the infimum and the supremum the result vector generated according to the
interval multiplication chart. The scalar product for the infimum and supremum of the
result can then be calculated separately. That way, in total, the rounding mode has
to be switched only twice. Complex intervals, use midpoint-radius representation for
performance reasons [18]. However, the real part and the imaginary part are computed
separately, so no complex disc arithmetic is used.

4.3. Adjustment of the Calls of accumulate. The actual computation
of the scalar product is always started with a call of an accumulate function, both
for direct calculation with the dotprecision data types and also for the usage of an
appropriate operator. Due to the fact that the calculation source code has to be directly
compiled into the library for the above mentioned reasons, the calls of accumulate
can no more be carried out "inline".

But all newly added functions, especially addDot, are declared as inline,
which means the function call in the accumulate function is for free in the best case.
Unfortunately, the call of accumulate itself can no more be carried out "inline" for
the mentioned reasons. Time measurements show that this seems to have only minor
consequences on the execution time in general.

4.4. Adjustment of the Operators with Implicit Scalar Products and
BLAS support. In many operators of the vector and matrix classes, one or many scalar
products are implicitly calculated. These calculations have to be adapted to the previous
changes. For this reason a new global variable opdotprec is introduced (analogous to
stagprec when using staggered arithmetic). This variable indicates the desired accu-
racy of the scalar products, which are calculated during the call of appropriate operators.

11

During the call of the operator, a local variable of type dotprecision is now
created, whose accuracy is set to the current value of opdotprec. With the help of this
variable all occurring scalar products can be calculated.

If precision opdotprec=1 is selected, the operators can also be computed
using BLAS-routines. For this, the compile switch CXSC_USE_BLAS hast to be set
during compilation and the program hast to be linked to an appropriate BLAS library and
the CBLAS interface library. The computations of the operator are then not computed by
calls to accumulate, but by converting the C-XSC data types into appropriate BLAS
arrays and calling the corresponding BLAS routine.

For intervals. manipulation of the rounding mode of the processor is used to
compute reliable enclosures. Also, in some cases, especially for products of interval
matrices, midpoint radius representation is used to save run time. The algorithms used
in this case are similar to the ones described in [18].

With these changes all scalar products in C-XSC can now be calculated in se-
lectable accuracy, either by setting the member variable k of the dotprecision data
types for the direct calculation or by setting the global variable opdotprec for the
calculation with operators. An example is shown in section 6. When double precision
is sufficient, optimized BLAS routines can now be used, which can result in huge speed
ups. Also, most BLAS routines are already multithreaded, so the performance gain on
multicore or multiprocessor machines may be even higher.

5. Remarks on the Compilation. For the compilation of the library some
important aspects have to be taken into consideration, because on the one hand the per-
formance of the DotK calculations can heavily collapse, and on the other hand even
totally wrong results can emerge, if the compiler flags are not set appropriately. In the
following some remarks will be given on important points regarding performance and
accuracy during the compilation.

5.1. Performance. A really crucial factor for the performance is — as for
the whole C-XSC library — the activation of inlining and its corresponding application
through the compiler. In the past, inlining in C-XSC had to be activated by setting the
compiler switch _CXSC_INLINE. Starting with version 2.3.0, inlining is activated by
default.

To be able to use the speed advantages due to inlining, appropriate compiler op-
tions have to be set. For this, either compilation with full optimization (-03) is required
or inlining has to be activated separately (-finline—functions). (This refers to

12

the GNU-compiler, other compilers might activate inlining at other optimization levels
or not at all without explicit setting of the switch.) However, in general at least the opti-
mization level —O1 in connection with inlining should be set for the compilation of the
DotK algorithms, in order to achieve an acceptable performance. The optimization level
is selectable during the installation of C-XSC with the corresponding installation script.

The compiler version is also of great importance. In GCC version 4.3.x, inlin-
ing support is innately much better than in version 4.0.x. This is due to the considerably
higher standard limits for the allowed size of inline functions. In older versions the lim-
its can be increased by setting of some parameter (see [1], section Command Options /
Options That Control Optimization), which can possibly lead to better results. However,
the correct setting of the limits is not trivial (the compilation time as well as the code
size can increase dramatically if these limits are set to liberally). Generally, it is recom-
mended to use a newer compiler version. Similar considerations should also apply to
other compilers.

5.2. Numeric Accuracy. Many modern processors, especially nearly all Intel
processors, use 80 bit wide registers for floating-point calculations, i. e. they inter-
nally use a higher accuracy than the IEEE standard defines for the data type double.
With activated compiler optimization, intermediate results during the computation of the
error-free transformations are kept in the registers, because this offers enormous speed
advantages compared to writing the intermediate results back into the main memory or
cache.

However, under these conditions the algorithms for the error-free transforma-
tions may deliver incorrect results, because they require accurate compliance with the
IEEE standard. If within the compilation of the DotK-code no compiler switch is used
which enforces this behavior, the program might compute completely wrong results.

The best option on modern x86 processors is the usage of SSE registers (Stream-
ing SIMD Extensions) for floating-point calculations. The SSE instruction set extension
was introduced by Intel for SIMD calculation (single instruction, multiple data) around
the turn of the millennium, especially with regard to multimedia application. Since the
introduction of the SSE2 instruction set, this extension also supports computations with
double values in special registers which are 128 bits wide (one register is able to hold
two double values and can apply a calculation on both at the same time). This in-
struction set with corresponding registers is included in every x86 processor since the
Pentium 3 (the same applies for AMD).

For the usage of the SSE-registers for floating-point calculations a compiler
switch normally has to be activated:

13

e For GCC: The Option -mfpmath=sse for the usage of the SSE instruction set
for floating-point calculations as well as the option —msse2 for the activation
of the SSE2 instruction set should be activated (in newer processors, the newer
versions of the instruction set should be activated, e.g. —msse3). When 64 bit
code is generated, these options are activated by default.

e For the Intel-compiler: Option ~-msse2 (or -msse3 etc.) has to be activated,
floating-point calculation will be automatically adapted. The activation of this
option also activates auto-vectorization, which means that the compiler tries to
optimize parts of the code, like for-loops, for the SIMD instructions which may
increase the performance. Similar optimizations are also possible in GCC since
version 4.4.0.

If the processor uses excess precision, but does not support the SSE instruction
set (or an equivalent solution), a different option has to be activated. The Intel compiler
offers the possibility to control the accuracy and the speed of floating-point calculation
with the option —fp-model [9]. During the usage of ~fp-model source e.g. the
accuracy given in the source code (here double) is strictly maintained. This normally
leads to performance losses, since the intermediate results are not maintained in the
registers but are stored in main memory.

An alternative version in GCC is —ffloat—-store, with which all interme-
diate results are written back to the memory. This also causes dramatic performance
losses.

The relevant compiler switches are set automatically by the installation script on
many platforms. If not, they have to be added by hand during the optimization option,
or the Makefile has to be adjusted accordingly.

6. Examples and Time Measurements. In the following, a short example
for the usage of the changed C-XSC library will be given. Then some time measurements
will follow demonstrating which performance and which accuracy can be expected with
the correct compilation of the library according to section 5 and the remarks presented
here.

6.1. Example. Listing 2 shows a small example which clarifies the usage of
the new scalar products with corresponding comments.

14

Listing 2: Code Example

int n=1000;

rvector x(n), x2(n);
ivector y(n);
rmatrix A(n,n);
imatrix B(n,n);
interval z;

//£i11ll vectors and matrices

dotprecision dot (0.0);
idotprecision idot (0.0);

//set accuracy for scalar products
//in operators
opdotprec = 1;

//dot calculates with two-fold double accuracy
dot.set_k (2);
//idot calculates with maximal accuracy (accu)
idot.set_k (0);

//calculate z in floating point, since opdotprec=1
// (uses BLAS if CXSC_USE_BLAS is set)
Z = X*Y;

opdotprec = 3;

//is calculated in three-fold accuracy
B = Axy;

//calculates x2=Axx in two-times accuracy
//without error-bound
for (int i=1 ; i<=1000 ; i++) {
dot = 0.0;
accumulate_approx (dot, A[i], x);
x2[i] = rnd(dot);
}

//calculates y = Bxx in maximal accuracy
for (int i=1 ; i<=1000 ; i++) {

idot = 0.0;
accumulate (idot, BI[i], x);
y[i] = rnd(idot);

6.2. Time Measurements. The following output was produced by a test pro-
gram which may be downloaded from
http://www.math.uni-wuppertal.de/~xsc/cxsc/examples/#SJC1
For real scalar products on a machine with two Intel Xeon 2.26 GHz processors (Ne-
halem architecture) and 24GB RAM the listed results were achieved (however, since
no threading was used, only one core of one processor is involved in the computations).
The GNU compiler version 4.4.1 was used with full optimizations. The accuracy and the
relative speed should be similar on most other systems, when compiled correctly. The
dimension of the scalar product is n = 1000 000, the condition is 101, i. e. extremely
ill conditioned, and every calculation was repeated 10 times.

15

Exact result: +1.0000000000000000E-100

k=0:
[+1.0000000000000000E~100,+1.0000000000000001E~-100]
Is an enclosure of the correct result!

Time used: 0.890723s

k=1:
[-1.0667230210259506E-008,+1.0652418946932587E-008]
Is an enclosure of the correct result!

Time used: 0.0423551s

k=2:
[-9.9645319516326720E-020,+9.9645373537521509E-020]
Is an enclosure of the correct result!

Time used: 0.102189s

k=3:
[-1.0537382008712601E-033,+1.0537377990909645E-033]
Is an enclosure of the correct result!

Time used: 0.185942s

k=4:
[-1.6669881848134855E-047,+1.6669879319579374E-047]
Is an enclosure of the correct result!

Time used: 0.229s

k=5:
[-9.5915709584447162E-062,+9.5915715380081772E-062]
Is an enclosure of the correct result!

Time used: 0.286885s

k=6:
[-1.1797502641781892E-075,+1.1797502950635348E-075]
Is an enclosure of the correct result!

Time used: 0.356305s

k=7:
[-7.0011492809898146E-090,+7.0011493687712463E-090]
Is an enclosure of the correct result!

Time used: 0.404176s

k=8:
[+9.9999718505357947E-101,+1.0000028149462135E-100]
Is an enclosure of the correct result!

Time used: 0.458884s

k=9:
[+9.9999999999999989E-101,+1.0000000000000002E-100]
Is an enclosure of the correct result!

Time used: 0.515731s

k=10:
[+1.0000000000000000E-100,+1.0000000000000001E-100]
Is an enclosure of the correct result!

Time used: 0.573675s

Table 1 shows an overview over the measured run-times on the above system for
corresponding scalar products with all four basic data types. Here the dimension is also
n = 1000 000 and all measurements were repeated ten times.

The results show that even with an accuracy of K = 10 the DotK algorithm is
still faster on the test system than the old calculation method using the long accumulator.
If the accuracy does not matter, e.g. in the calculation of approximate solutions, a speed
increase by the factor of 10 to even 40 can be achieved by setting the accuracy to K = 1.

To demonstrate the effect of the BLAS routines, the time needed for a matrix-

16

K real interval complex cinterval
0 0.89 2.10 3.50 8.52
1 0.04 0.31 0.10 0.52
2 0.10 0.46 0.30 1.84
3 0.19 0.70 0.97 2.88
4 0.23 0.82 1.19 3.36
5 0.29 0.94 1.42 3.82
6 0.36 1.06 1.65 4.28
7 040 1.17 1.88 4.74
8 0.46 1.29 2.11 5.21
9 0.52 1.40 2.34 5.67
10 0.57 1.52 2.57 6.13

Table 1: Time measurement for scalar products with dimension n = 1000000 in sec-
onds, each repeated ten times

matrix product with two 500 x 500 matrices was measured for all four basic datatypes
for precision 0 to 5. The results can be seen in Table 2. The Intel Math Kernel Library
version 11.1 was used as BLAS library on the above mentioned systems. The number of
threads for the BLAS routine was set to one so that again only one core was used in all
computations.

The results show that the optimized BLAS routines can significantly enhance
run time performance if no increased accuracy is needed (the times reported using BLAS
for the cases of interval matrices and complex interval matrices comprise the time needed
for intermediate conversions to midpoint/radius representation). The results for the other
precisions are consistent with the measurements of the single scalar products.

7. Conclusion and Future Prospect. Scalar product calculations are an
essential element of most numeric calculations. They should be as accurate and efficient
as possible, or if both is not possible, the user should be able to decide how the priorities
have to be set. The safe error bounds which are required for verified numeric methods
are also delivered by the available routines [21, 12, 11, 3].

17

K real interval complex cinterval

0 10.66 23.54 41.93 107.6
1 0.65 3.16 0.81 6.78
1 (BLAS) 0.014 0.072 0.066 0.35
2 1.84 4.99 3.99 20.41
3 2.77 6.65 10.31 26.42
4 3.43 8.01 13.19 31.86
5 4.14 9.39 16.16 37.34

Table 2: Time measurement for 500 x 500 matrix-matrix products

With the new possibilities in the calculation of scalar products, the C-XSC li-
brary gains considerable flexibility. Scalar products, which need not be executed with
maximal accuracy, can be computed with a selected accuracy. Our run-time measure-
ments show clearly that remarkable speed increases can be achieved. Due to the fact that
the accuracy requirements in scalar product calculations can be switched any time in the
simplest way, the user has now the possibility to optimize his program towards numeric
accuracy as well as towards high performance.

Possible extensions for the future are e.g. the usage of the new summation
algorithm presented by Rump [19] which is faster than SumkK, at least in theory.

Remark: The usage of the so-called DotK algorithm in C-XSC clearly leads
to improved execution times. This is, however, only due to the regrettable fact that the
long accumulator is still not supported in hardware on today’s processors. With such
commonly claimed hardware support, scalar products of floating point vectors could al-
ways be computed exactly and with optimal speed (that means clearly faster than with all
known scalar product algorithms based on error free transformations, even if supported
by hardware as well).

References

[1] GCC. Online documentation, http://gcc.gnu.org/onlinedocs

[2] ANSI/IEEE. Std. 754-1985, A Standard for Binary Floating-Point Arithmetic.
New York, 1985; reprinted in SIGPLAN 22:2, pp. 9-25, 1987.

18

(3]

[4]

(5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

BLOMQUIST, F., HOFSCHUSTER, W., KRAMER, W. A Modified Staggered Cor-
rection Arithmetic with Enhanced Accuracy and Very Wide Exponent Range. Lec-
ture Notes in Computer Science LNCS 5492, pp. 41-67, Springer, 2009.

BOHLENDER, G. Genaue Berechnung mehrfacher Summen, Produkte und
Wurzeln von Gleitkommazahlen und allgemeine Arithmetik in héheren Program-
miersprachen. Dissertation, Universitit Karlsruhe, 1978.

BOHLENDER, G. What do we need beyond IEEE Arithmetic? In Computer
Arithmetic and Self-validating Numerical Methods, pp 1-32, Academic Press, San
Diego, 1990.

BOHLENDER, G., WALTER, W., KORNERUP, P., MATULA, D.W., KORNERUP,
P., MATULA, D.W. Semantics for Exact Floating Point Operations. Proceedings,
10th IEEE Symposium on Computer Arithmetic, 26-28 June 1991, pp. 22-26,
IEEE, 1991.

DEKKER, T.J. A floating-point technique for extending the available precision.
Numer. Math., 18:224, 1971.

HOFSCHUSTER, W., KRAMER, W. C-XSC 2.0: A C++ Library for Extended Sci-
entific Computing. Numerical Software with Result Verification, Lecture Notes in
Computer Science, Volume 2991/2004, Springer-Verlag, Heidelberg, pp. 15-35,
2004.

INTEL. C++ Compiler User and Reference Guides. Available on the Intel Compiler
Homepage http://software.intel.com/en-us/intel-compilers

KLATTE, R, KULISCH, U., WIETHOFF, A., Lawo, C., RAUCH, M. C-XSC -
A C++ Class Library for Extended Scientific Computing. Springer-Verlag, Heidel-
berg, 1993.

KOLBERG, M. Parallel Self-Verified Solver for Dense Linear Systems. PhD The-
sis, 124 pages, PUCI, Porto Alegre, 2009.

KRAMER, W., ZIMMER, M. Fast (Parallel) Dense Linear System Solvers in C-
XSC Using Error Free Transformations and BLAS. Lecture Notes in Computer
Science LNCS 5492, pp. 230-249, Springer, 2009.

KuLiscH, U., MIRANKER, W. The arithmetic of the digital computer: A new
approach. STAM Rev., 28(1):1-40, 1986.

19

[14] KuLIiscH, U. Die fiinfte Gleitkommaoperation fiir Top-Performance Computer.
Berichte aus dem Forschungsschwerpunkt Computerarithmetik, Intervallrechnung
und numerische Algorithmen mit Ergebnisverifikation, 1997.

[15] KuLiscH, U. Computer Arithmetic and Validity - Theory, Implementation and
Applications. De Gruyter, Berlin, 2008.

[16] OGITA, T., RUMP, S.M., OISHI, S. Accurate sum and dot product. SIAM Journal
on Scientific Computing, 26:6, pp. 1955-1988, 2005.

[17] PicHAT, M. Correction d’une somme en arithmétique a virgule flottante. Numer.
Math., 19:400-406, 1972.

[18] RuMP, S.M. Intlab - Interval Laboratory. In: Developments in Reliable Computing
(Ed. T. Csendes), pp. 77-104, Kluwer Academic Publishers, 1999.

[19] Rump, S.M. Ultimately Fast Accurate Summation. SIAM Journal on Scientific
Computing, 31:5, pp. 3466-3502, 2009.

[20] YAMANAKA, N., OGITA, T., RUMP, S.M., OI1sHI, S. A Parallel Algorithm for
Accurate Dot Product. Parallel Computing, 34, pp. 392-410, 2008.

[21] ZIMMER, MICHAEL. Laufzeiteffiziente, parallele Loser fiir lineare Intervall-
gleichungssysteme in C-XSC. Master Thesis, University of Wuppertal, 2007.

8. Appendix. A test program program which measures the run-time of point
and interval scalar product calculations (real and complex) may be downloaded from
http://www.math.uni-wuppertal.de/~xsc/cxsc/examples/#SJC2.

The results give a first impression of the run-time savings to be expected depend-
ing on the used algorithm. They are as far as possible self-explaing. A penalty factor
is printed for each specific kind of scalar product calculation. It refers to a simple C++
loop for the calculation of a scalar product of floating-point vectors, whose components
are double precision numbers (this should be the fastest kind of calculation, but possibly

with imprecise or even totally wrong numeric results).
Executing this program on an Intel Xeon 3.4GHz processor with 2GB RAM, the
following output (shortened by hand) is produced:

Time measurements for different kinds of
dot product computations
Vector length: 100000

20

repMax: 100

baseTime using IEEE double: 0.076174

ds: 1.21578e+06

1) Double ds+= dxx*dy:

Penalty 1.0, time used 0.0764107704
ds: 1215777.3156745557

2) Double array ds+= dax[i]xday[i]:

Penalty 1.0, time used 0.0774068832
ds: 1215789.4735692909

2b) Double arrays created with new:
Penalty 1.0, time used 0.0777688026
ds: 1215789.4735692909

3) Real rs+= rx*ry:

Penalty 0.2, time used 0.0147631168
rs: 1.215777E+006

4) Real using rvector rs+= rvx[i]*xrvy[i]:
Penalty 0.7, time used 0.0536749363
rs: 1.215777E+006

5) Interval is+= ixx*iy:

Penalty 75.5, time used 5.7542631626
is: [1.215777E+006,1.215778E+006]

6) Dotprecision rdots+= rxxry:

Penalty 7.4, time used 0.5653319359
rdots: 1.2157773158E+0006

7) Idotprecision with idots+= ixxiy:
Penalty 47.1, time used 3.5909459591
9) Dot product using rvectors and Dotl:
Penalty 0.7, time used 0.0548717976
10) Dot product using rvectors and Dot2:
Penalty 2.3, time used 0.1721401215

11) Dot product using rvectors

and Dot0 (accu):
Penalty 15.8, time used 1.2017669678
12) Interval dot product using

ivectors and Dotl:
Penalty 6.9, time used 0.5260379314
13) Interval dot product using

ivectors and Dot2:
Penalty 8.5, time used 0.6460938454
14) Interval dot product using

ivectors and DotO (accu):
Penalty 35.0, time used 2.6678440571

21

These results show for example that the calculations of a real scalar product
with the help of the long accumulator (parameter X = 0) are 7.4 times slower than the
simple C++ loop on the selected machine (result 6). If one simulates quadruple precision
(double-double accuracy, parameter K = 2) with the help of the DotK algorithm, it is
just 2.3 times slower than the simple C++ loop and thus more than 3 times faster than
the calculation with the long accumulator.

Here it should be emphasized again that the usage of a long accumulator real-
ized in hardware would lead to identical working speed as the simple C++ loop. Unfor-
tunately, this hardware support is not available on current processors. The scalar product
via the long accumulator would not only be always maximally accurate (this also applies
to the software solutions), but also about 2.3 times faster than the DotK algorithm with
K = 2. Since the DotK algorithm for K > 1 always needs more operations than the
simple C-loop, this algorithm stays slower even with appropriate hardware support and
thus also slower than the always exact scalar product using a hardware accumulator.

Michael Zimmer, Department of Mathematics and Computer Science, University of
Wauppertal GauBstrale 20 D-42097 Wuppertal
e-mail: michael.zimmer@math.uni-wuppertal.de

Walter Krdmer, Department of Mathematics and Computer Science, University of Wup-
pertal GauB3strae 20 D-42097 Wuppertal
e-mail: Walter. Kraemer @math.uni-wuppertal.de

Gerd Bohlender, Institute for Applied and Numerical Mathematics 2,
KIT - Karlsruhe Institute of Technology, Kaiserstral3e 12, D-76131 Karlsruhe
e-mail: gerd.bohlender@kit.edu

Werner Hofschuster, Department of Mathematics and Computer Science, University of

Wuppertal GauBstral3e 20 D-42097 Wuppertal
e-mail: hofschuster @math.uni-wuppertal.de

22

