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COMPUTER-ASSISTED PROOFS AND
SYMBOLIC COMPUTATIONS 1

Walter Krämer

Abstract

We discuss some main points of computer-assisted proofs based on reli-
able numerical computations. Such so called self-validating numerical meth-
ods in combination with exact symbolic manipulations result in very pow-
erful mathematical software tools. These tools allow to prove mathematical
statements (existence of a fixed point, of a solution of an ODE, of a zero of a
continuous function, of a global minimum within a given range, etc.) using
a digital computer. To validate the assertions of the underlying theorems
fast finite precision arithmetic is used. The results are absolutely rigorous.

To demonstrate the power of reliable symbolic-numeric computations we
investigate in some details the verification of very long periodic orbits of
chaotic dynamical systems. The verification is done directly in Maple, e.g.
using the Maple Power Tool intpakX or, more efficiently, using the C++
class library C-XSC.

ACM Computing Classification System (1998): G.1.0, G.1.5, G.4.

Keywords: Computer-assisted proofs, symbolic computations, self-validating
numerical methods, dynamical system, verified periodic orbit, intpakX, C-XSC

1. Introduction. Several computer assisted proofs concerning the
Kepler conjecture, the Double Bouble conjecture, the Dirac-Schwinger conjecture,
as well as some Chaos conjectures are discussed e.g. in [2]. More recent papers
are [11, 17, 18]. The lists of references therein are also very beneficial and a good
starting point for further investigations. This paper does not consider so called
formal proofs and computer programs known as proof assistants [5].

1This work was partially supported by DFG grant KR1612/7-1
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Let us start our discussion about computer-assisted proofs with a theorem
that has already been proved about 400 years ago [12]:
Theorem 1 (Ludolf van Ceulen 1610).

π − 3.14159 26535 89793 23846 26433 83279 50288 < 10−35

We call this statement ”theorem”, because at the time the invention was made,
it was extremely hard to find the given approximation and to prove its accuracy.
Based on the algorithm of Archimedes using the perimeters of inscribed and cir-
cumscribed regular n-gons to the unit circle with more and more sides to find
lower and upper bounds for the circumference 2π of the unit circle, it took Ludolf
van Ceulen about 14 years of tedious and probably error prone manual numerical
computations to find this result. The algorithm of Archimedes (about 250 BC)
was well known since antiquity but at that time nobody checked the correctness
of van Ceulen’s ”implementation” of it (the reader should compute some bounds
to π using regular n-gons to get a better feeling what has to be done: derive
formulas going from the side length of a regular n-gon to the side length of a
regular 2n-gon, compute manually bounds for

√
2 and

√
3, think about a stop-

ping criterion, think about error propagation, and so on [7, 12]). At that time the
computer was a human being probably much more error prone in doing numerical
tasks using 40 digits numbers than a digital computer of today. Nevertheless, the
theorem is correct and was always regarded as correct. Replacing the numerical
calculations done by van Ceulen by numerical computations on a digital com-
puter, using directed rounded multiple precision operations or multiple precision
interval operations, lead to what we nowadays call a computer-assisted proof. Or
the other way around: call van Ceulen a ”computing device”, then the proof from
around 1600 is a perfect computer-assisted proof.

2. Symbolic manipulations/self-validating methods. Sym-
bolic manipulations use built in mathematical knowledge to find results like [4]

sin(
π

5
) =
√

2
√

5−
√

5
4

.

Such an equality result can not be verified by a self-validating numerical method
based on some kind of machine numbers with only finitely many digits. Even
using multiple precision numbers does not allow a reliable decision.

The nature of the next example is very similar but more challenging:

16 cos(x)3 cosh(
x

2
) sinh(x)− 6 cos(x) sinh(

x

2
)− 6 cos(x) sinh(

3x
2

)
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= cos(3x)(exp(
3x
2

) + exp(
x

2
)(1− exp(−2x)) .

In this case it is also quite difficult to establish equality using a computer algebra
system like Maple. But it is still doable with some (manual) help. Again, this
result can not be verified numerically. Due to the fact that an arbitrarily small
change in the input data (here the formulas left and right to the equality sign)
leads to a totally different result (equality changes to inequality). Remark: to
establish the fact of inequality can be done by using reliable numerical methods,
e.g. using multiple precision interval computations: if the intersection of the left
hand side interval enclosure with the interval enclosure of the right hand side is
empty, equality can not hold. The fact that the left hand side and the right hand
side differ does not change for sufficiently small changes in the input data (in
contrast to checking for equality as described above).

As a further example let us briefly discuss integration. Risch’s algorithm
(1969, see [15, 16]) can be used to decide algorithmically whether some func-
tion f consisting of basic arithmetic operations, roots, powers, and elementary
functions can be integrated in finite terms, and if so, to compute a close for-
mula for F for the integral. E.g., it allows to proof that no finite combination
of arithmetic operations, powers, or elementary functions equals to

∫
exp(x2)dx

i.e., there is no finite combination F (x) of elementary operations whose deriva-
tive F ′(x) is equal to f(x) = exp(x2). Now, the question is how reliable are
current implementations of this algorithm. Can we really rely on say Maple’s
implementation? This question arises because transforming the Risch decision
procedure into an algorithm, which can be executed by a computer, is a very
complex task that requires the use of heuristics and many refinements (no soft-
ware - as of March 2008 - is known to implement the full Risch algorithm,
see http://en.wikipedia.org/wiki/Risch algorithm). E.g., no software is
known to find an antiderivative for

f(x) =
x2 + 2x+ 1 + (3x+ 1)

√
x+ lnx

x
√
x+ lnx(x+

√
x+ lnx)

,

while the antiderivative for this expression has the short form

F (x) = 2(
√
x+ lnx + ln(x+

√
x+ lnx)) + C,

C being an arbitrary constant value (we checked this statement for Maple 13,
2009). Note: to show that F (x) is really the antiderivative of f(x) is quite
simple. Just compute F ′(x) and show that the result is indeed equal to f(x).
Doing this is a quite simple task for Maple. Thus we have to ask: if the result of
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say Maple’s implementation of Risch’s algorithm applied to the integrand f(x)
does not find the antiderivative, does this really mean that the antiderivative
can not be composed using only a finite number of elementary operations? More
general: We have to think about the question: ”What is a proof and what is a
computer-assisted proof?”

3. Some general remarks on ”What is a proof?” Let us list
some thoughts concerning mathematical proofs:

• The traditional mathematical proof can be followed line by line with pencil
and paper (this is still the classical way mathematicians work).

• Human being might draw false conclusions.

• There are examples of theorems that were accepted for years but proved
later to be false.

• A proof becomes approved by human beings reading, understanding, and
accepting it.

• If a proof becomes lengthy and difficult, naturally the number of mathe-
maticians who really follow the ideas decrease.

• Acceptance of a proof is based on mutual trust: if trustworthy colleagues
accept a proof, we also tend to accept it.

There are different levels of trust:

• The line of human (expert) reasoning is perfectly accepted.

• The use of pocket calculator is widely accepted.

• The use of computer algebra systems is more or less accepted.

• The use of floating-point arithmetic seems questionable to many mathe-
maticians.

However:

• Humans may draw (and have drawn) false conclusions.

• There are examples where pocket calculators give wrong results.

• There are examples where computer algebra systems give wrong results.
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• There is a possibility to use floating point operations to get guaranteed
results: interval computations (trusting in hard- and software; see also [1])

Let us now consider the last point in more detail.
3.1. Remarks on interval computations.

• To do interval computations, floating point operations are replaced by (ma-
chine) interval operations and numerical and symbolic constants by intervals
that contain these quantities.

• If an interval algorithm works, we get a guaranteed set valued numerical
result.

• If algorithm does not work (e.g., due to ill conditioning, insufficient expo-
nent range, inappropriate method, overestimation effects, . . .), the user gets
a message, i.e., no false conclusions are drawn and no fictitious solutions
are computed (in contrast to pure floating point algorithms).

• Meanwhile, a wide range of applications (expression evaluations, interval
systems of linear equations, differential equations, integral equations, op-
timization problems, first results with PDEs, . . . ) is covered by interval
methods.

• Interval operations are based on (directed rounded) floating point opera-
tions, i.e. they are very fast compared to symbolic computations methods.

Why does interval arithmetic not have the best reputation? Used naively, in-
terval results tend to give (useless) bounds −∞ to +∞ on the true result due
to overestimations and due to the so called dependency problem. Therefore a
warning: Do not construct interval methods naively. Typically, interval methods
first compute an ordinary floating point approximation x̃ to the solution x of the
problem. Using this approximation and feeding back (in some clever way) the
original data of the problem, a range computation resulting in the interval E for
the error of this approximation with respect to the true solution is done. If the
method works on a digital computer, we finally get

x ∈ x̃+ E

and this result is guaranteed in the sense of a mathematical proof.
3.2. The interval Newton method. The interval Newton method

allows a computer-assisted proof for the existence or non-existence of a zero of a
nonlinear system of equations described by a sufficiently smooth function.
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For the continuously differentiable function f : IRm −→ IRm in an m-
dimensional interval [x] ⊂ IRm we define for a point x ∈ [x] the interval Newton
operator

N([x]) := x− f ′([x])−1f(x).

Here, f ′([x])−1 denotes the interval matrix containing all matrices of the form
f ′(x)−1 for x ∈ [x].

Theorem 2. 1.) If N([x]) ⊆ [x], then there exists exactly one point
x∗ ∈ [x] s. t. f(x∗) = 0.
2.) If N([x]) ∩ [x] = ∅, then there is no zero of f in [x].
3.) Remark: If N([x]) only intersects [x] but is not contained in [x] no conclusion
about the existence of a zero of f in [x] can be drawn without further investiga-
tions.
Proof concerning 1.) and 2.): traditional mathematical proof performed by pen-
cil and paper based on Brouwer’s fixed point theorem (note: interval vectors are
nonempty, compact, convex sets by their definition). Theorem 2 means that we
have to check

1.) N([x]) = x− f ′([x])−1f(x) ⊂ [x]
or
2.) N([x]) ∩ [x] = ∅.

On a digital computer we verify the inclusion property using machine interval
operations. Overestimation in computing the left hand side does not invalidate
the statement of the theorem. If the machine evaluation N�[x] of N [x] fulfills
N�([x]) ⊂ [x], we trivially have N([x]) ⊂ [x], proving the existence of a zero
x∗ ∈ N�([x]) of f .
The same reasoning works in case of 2.)

4. Computer-assisted proof – a case study. In this section we
want to apply the interval Newton method to prove period n-cycles for large n of
a (chaotic) dynamical system. We will see that it is necessary to adapt the more
or less theoretical considerations of Paragraph 3 to the concrete situation. The
Jacobian involved in the Newton operator is of dimension n. For say n about
1 000 000 or even larger (we are interested in cycles with very long period) it is
not possible to work with full matrices. We will see that the Jacobian is very
sparse and that working with only a few arrays of length n instead of an n by
n matrix will lead to a successful computer-assisted proof of very long period
n-cycles.

4.1. Proving long period n-cycles. The dynamical system is taken
to be the very simple logistic map

xn+1 = rxn(1− xn), n = 0, 1, . . .
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where xn ∈ [0, 1] represents the population at year n, and hence x0 represents the
initial population (at year 0). r ∈ [1, 4] represents a combined rate for reproduc-
tion and starvation. The numerical behaviour of this iteration is very complex
(chaotic) for parameter values r close to 4. E.g., to find just the first two leading
digits of x1000 for the parameter value r = 375/100 and x0 = 1/2 one has to
perform more than 150 digit long multiple-precision computations [9]. In each
iteration step only 3 arithmetic operations are performed. Nevertheless, trying
to find x1000 using rational arithmetic is not possible. To represent x20 exactly
as a rational number we already need decimal digits. And going from xk to xk+1

typically doubles the number of digits needed to represent the new iterate [9].
We are interested to proof that the logistic equation with given values for

r and x1 has a period n-cycle. Let us denote the iteration formula describing the
logistic map by f , i.e.

f : IR −→ IR with f(x) = rx(x− 1)

and let g be defined by

g(x) := x− f(f(. . . f︸ ︷︷ ︸
n times

(x) . . .)).

Applying the interval Newton method to g we get: N([x]) ⊂ [x] −→ period-n
cycle of f(x) is guaranteed. This direct approach works only for small values of n.
For larger n the diameters of g([x]) and g′([x]) are large (e.g., due to wrapping).

But we can use the following alternative approach: Define the continu-
ously differentiable function F : IRn −→ IRn, z := (x1, x2, . . . xn)T :

F1(z) := x2 − f(x1)
F2(z) := x3 − f(x2)

. . .

Fn−1(z) := xn − f(xn−1)
Fn(z) := x1 − f(xn)

z is a zero of F iff x1 is a fixed point of g(x) := x− f(f(. . . f︸ ︷︷ ︸
n times

(x) . . .)).

Let us find the interval Newton operator for F . It holds: ∂Fi(z)/∂xi = −f ′(xi), i =
1 . . . n and ∂Fi(z)/∂xi+1 = 1, i < n.
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For the Jacobian F ′ of F at z = (x1, . . . , xn)T we get:

F ′(z) =



−f ′(x1) 1 0 0 . . . 0
0 −f ′(x2) 1 0 . . . 0
...

. . . . . .

0 0 . . . 0 −f ′(xn−1) 1
1 0 0 . . . 0 −f ′(xn)


.

To prove existence of a unique periodic orbit in the interval vector [z]
we have to verify N([z]) = z − F ′(([z])−1F (z) ⊂ [z].
Difficulty: computing F ′([z])−1F (z) if n is large. The special structure of the
Jacobian F ′ allows to proceed as follows:
Let [z] ∈ IIRn and z ∈ [z]. Compute intervals

[ak] := 1/f ′([xk]), k = 1, . . . , n
[gk] := f(xk)− xk mod n + 1, k = 1, . . . , n

[h1] := (1− [a1][a2] · · · [an])−1
n∑

i=1

[a1] · · · [ai][gi]

[hk] := [ak]([hk mod n + 1] + [gk]), k = n, . . . , 2,

then z − [h] is an enclosure of N([z]) and, if z − [h] ⊂ [z], it follows that there
exists a unique period-n orbit of f in [z].
4.2. Some numerical results. Galias [3] used the method described above
in 2002 to prove e.g. for parameter r = 3.9 and starting at x = 0.7 a pe-
riodic orbit of length n = 8 076 157. We reverified this result using Maple
together with the Maple Power Tool intpakX [8]. Using the more efficient C++
class library for verified scientific computations C-XSC [6] we additionally ver-
ified an even longer period n-cycle for e.g., the prime number n = 10 032 157,
r =roundToNearest(39/10), and x close to 0.62. The C-XSC source code is avail-
able from [19]. The program produces the following output:

n: 10032157
r: [ 3.8999999999999999, 3.9000000000000004]
seed: 0.62

Calculation of initial approximation using forward iteration...

8



x[ 1]: 0.6200000000000000
x[n+1]: 0.5447592057705667

Floating point Newton steps ...

x[ 1]: 0.6200000000000000
x[n+1]: 0.6167104600538781

x[ 1]: 0.6200000000000000
x[n+1]: 0.6199924494913677

x[ 1]: 0.6200000000000000
x[n+1]: 0.6199999999598529

x[ 1]: 0.6200000000000000
x[n+1]: 0.6199999999999999

Starting interval Newton method using the last improved
approximation to verify periodic orbit ...

Result VERIFIED (inclusion property fulfilled):
x[ 1]: [ 0.6199999999999996, 0.6200000000000005]
x[n+1]: [ 0.6199999999999987, 0.6200000000000013]

First an initial approximation to the orbit is computed via an ordinary floating
point forward iteration (n steps). It can be seen that the initial approximation
is far away from being periodic (x[1] is far away from x[n+1]). After a few
Newton steps based on conventional floating point operations to improve the
initial approximation, an interval Newton step is performed. It allows to verify
successfully the period 10 032 157-cycle.

5. Conclusion. Self-validating methods use machine interval oper-
ations in a sophisticated way to produce guaranteed results (proofs). Interval
operations are based on directed rounded floating point operations. The real-
ization of such operations in hardware or software is based on quite simple well
known algorithms [10]. The level of trust in such operations (which can be per-
formed in a pure mechanical way) seems to be orders of magnitude higher than
the level of trust in the infallibility of human reasoning. The reliance in the
work of engineers when realizing simple and well known algorithms should be not
less than the trust in correct reasoning of mathematicians to proof mathematical
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facts. In this sense, computer-assisted proofs based on self-validating numerical
methods are as trustworthy as ordinary proofs done by mathematicians. This
is also true for proofs based on (error free) symbolic manipulations as they are
available e.g. in computer algebra packages. Whereas symbolic manipulations
are often very slow and often lead to very large and cumbersome expressions,
self-validating methods are (very) fast. But nevertheless, symbolic computations
may help to improve self-validating methods significantly, e.g. by providing a
formula simplification mechanism or providing structural information about the
problem under consideration.

Computer-assisted proofs will profit by merging symbolic computations
and self-validating methods. Up to now, only first steps have been done in this
direction (see e.g., [13, 14, 8] as well as [20] and references given there). Let’s go
ahead.

As a final remark we want to mention that in 2008 a new GAMM activity
group ”Computer-assisted proofs and symbolic computations” has been founded.
See http://www.math.uni-wuppertal.de/org/WRST/gamm/
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