
Bergische Universität
Wuppertal

A Parallel Solver for (Systems of) Linear Fredholm
Integral Equations of the second kind in C-XSC

Markus Grimmer

Preprint
BUW-WRSWT 2007/3

Wissenschaftliches Rechnen/
Softwaretechnologie

Impressum

Herausgeber: Prof. Dr. W. Krämer, Dr. W. Hofschuster
Wissenschaftliches Rechnen/Softwaretechnologie
Fachbereich C (Mathematik und Naturwissenschaften)
Bergische Universität Wuppertal
Gaußstr. 20
42097 Wuppertal, Germany

Internet-Zugriff

Die Berichte sind in elektronischer Form erhältlich überdie World Wide Web Seiten

http://www.math.uni-wuppertal.de/wrswt/literatur.html

Autoren-Kontaktadresse

Markus Grimmer
Bergische Universität Wuppertal
Gaußstr. 20
42097 Wuppertal, Germany

E-mail: grimmer@math.uni-wuppertal.de

A Parallel Solver for (Systems of) Linear Fredholm IntegralEquations of the
second kind in C-XSC

Markus Grimmer
University of Wuppertal

Department of Mathematics and Natural Sciences
Scientific Computing / Software Engineering

42097 Wuppertal, Germany
markus.grimmer@math.uni-wuppertal.de

Abstract

We present a parallel verified solver for linear Fred-
holm integral equations of the second kind based on a se-
rial method by Klein. The serial and parallel methods are
described, and test results from the new C-XSC implemen-
tation on the supercomputer ALiCEnext in Wuppertal, Ger-
many, are given. At the same time, new and enhanced soft-
ware components in C-XSC as an MPI interface for C-XSC
data types and a parallel verified linear system solver, as
well as the solution visualization via the Maple package int-
pakX are presented.

1. Introduction

Linear Fredholm integral equations of the second kind
can be solved in the following manner firstly described by
W. Klein [7, 8]: The kernel of the equation is split up into a
degenerate and a non-degenerate part. First, a solving trans-
formation for the non-degenerate part is computed. This
transformation is then applied to the elements of the degen-
erate part yielding a new integral equation with degenerate
kernel. An important part in the computation of the solution
for the latter consists in the solution of a linear system.

The solution algorithm can be extended to systems of
linear Fredholm integral equations of the second kind by
transforming the system into a suitable matrix/vector nota-
tion. The possibility to solve systems of integral equations
allows to obtain better results for a single equation by split-
ting it up into a system of integral equations with smaller
domains. For growing system sizes, time increase is lower
than for growing Taylor order when representing functions
as Taylor approximations.

The system approach, unlike the approach for the sin-
gle equation, is well suited for parallelization. We present a

parallel verified solver for the above problem. Based on an
old serial Pascal-SC implementation in [7], a new version
as well for the single case as for the system case was imple-
mented in C-XSC [6]. A newly developed parallel solver
for integral equation systems reduces time effort, making
more accurate solutions computable in reasonable time.

The implementation particularly includes a number of
new software components which can also be used indepen-
dently:

• An extended Interval Taylor arithmetic in C-XSC
based on works by Bräuer, Krämer, Blomquist and
Hofschuster [2, 3]

• A parallel verified linear system solver in C-XSC using
”Rump’s Device” [10]

• A new package for MPI communication with C-XSC
data types [5], which was completed by MPI commu-
nication routines for Taylor arithmetic objects from the
above Taylor arithmetic, and STL vectors.

Additionally, an interface for the export of the solution
to Maple is provided. This allows both the visualization
of the range of the solution and further computations with
the solution functions, using theMaple PowerTool Interval
Arithmetic/intpakX[4].

The parallel solver was tested on the parallel supercom-
puter ALiCEnext [1] in Wuppertal, Germany. Some results
of the above implementations are presented.

2. Solving Fredholm Integral Equations of the
second kind - An Approach

Firstly, some definitions and notations have to be given.
Let k : [a, b] × [a, b] → R, α, g : [a, b] → R be continu-

ous andy be the unknown result function.

y(s) − λ

∫ b

a

k(s, t)y(t) dt = g(s) (1)

is calledlinear Fredholm Integral Equation of the second
kind.

If the kernel has a representation

k(s, t) =

T∑

i=1

ai(s)bi(t)

with continuous functionsai, bi : [a, b] → R, i = 1...T it is
calleddegenerate kernel of order T. In this case, the integral
equation can be written as

y(s) − λ

T∑

i=1

ai(s)

∫ b

a

bi(t)y(t) dt = g(s). (2)

For a kernelk of an integral equation, the corresponding
integral operator

K : C[a, b] → C[a, b]

is defined as

(Ky)(s) :=

∫ b

a

k(s, t)y(t) dt.

Then (1) can be written as

(I − λK) y = g

with the identityI in C[a, b].
For the solution of linear Fredholm integral equations of

the second kind with degenerate and non-degenerate ker-
nels, the following two theorems apply.

Theorem 1 Every solution of a linear Fredholm Integral
Equation of the second kind with degenerate kernel(2) and
λ 6= 0 is of the form

y(s) = g(s) + λ

T∑

i=1

ai(s) ξi (3)

and (3) is solution of(2) if and only if theξi solve the fol-
lowing linear system:

ξi − λ

T∑

i=1

∫ b

a

bi(t)aj(t) dt ξj =

∫ b

a

bi(t)g(t) dt

i = 1 . . . T .

The proof is given in [7] and can also be found in a couple
of books on functional analysis.

Theorem 2 For K : C[a, b] → C[a, b] let

lim
n→∞

‖λnKn‖
1

n < 1.

Then the Fredholm integral equation(1) has exactly one
solution which is given by

y := y(λ) =

∞∑

n=0

λnKng. (4)

The proof, again, is given in [7] and can also be found in
some books on integral equations.

q(s, t) :=

∞∑

n=0

λnkn(s, t)

is calledsolving kernel, the corresponding operatorQ solv-
ing transformationof the equation.

This theorem induces aFixed Point Iterationwhich can
be applied to solve the integral equation from theorem 2:

y0 := g,

yn+1 := g + λKyn, n = 0, 1...

In general, the kernel of an integral equation (1) can be
represented as

K = KE + KN

with a degenerate partKE and a non-degenerate partKN.
For instance, Taylor expansion of the kernel function yields
this representation, with the Taylor summands forming the
degenerate part and the remainder terms forming the non-
degenerate part.

In [7], Klein proposes substituting this representation in
the original equation. In that way we obtain

y − λKEy − λKNy = g

y − λKNy = g + λKEy

and thus an integral equation with non-degenerate kernel
with modified right-hand side. Applying thesolving trans-
formationQ of the iterative method yields:

y = g + λKEy + Q(g + λKEy)

= (g + Qg
︸︷︷︸

(*)

) + λ(KEy + QKEy
︸ ︷︷ ︸

(**)

)

The results of the fixed point iterations(*) and(**) yield
a new integral equation with degenerate kernel.

This yields a method for the solution of a general integral
equation (1).

2

3. The Approach for Systems of Fredholm In-
tegral Equations of the second kind

We now show how Klein applies the above method to
systems of Fredholm Integral Equations of the second kind.

A system of Fredholm Integral Equations of the second
kind is given by

yi(s) − λ

N∑

j=1

∫ βj

αj

kij(s, t)yj(t) dt = gi(s) (5)

for i = 1...N with continuous kernel functionskij on
[αi, βi] × [αj , βj] with

αi := a +
i − 1

N
(b − a), βi := a +

i

N
(b − a), i = 1...N.

With

Y := (y1, ..., yN)T

G := (g1, ..., gN)T

K := (kij)i,j=1...N

we get

Y (s) − λ

∫ b

a

K (s, t)Y (t) dt = G (s) (6)

With this denotation and matricesAm, Bm, m = 0..T

for degenerate kernels, a system of integral equations (5)
can be written just like a single integral equation (1) and the
method for single equations can be applied.

In the next section, we give the general algorithm and
describe its parallelization.

4. A Parallel Method

In Method 4.1 we show the general algorithm for Klein’s
system method using the notations of the above section.

It has to be pointed out that all statements mentioned
above are applicable to interval functions and interval coun-
terparts of the defined terms and objects, and Schauder’s
fixed point theorem is applicable to prove the existence of
verified solutions.

The highlighted parts of the algorithm are to be paral-
lelized. The remaining parts are of minor importance since
they only have a small share of the method’s overall com-
plexity.

The parts (A), (B) and (C) from method 4.1 have been
parallelized in the following way.

Iterations
Part (A) can be parallelized in an easy way since the it-

erations can be carried out independently and thus need no

Method 4.1 : General System Method

For j := 1...N, n := 1...2T :

Compute integrals of basic monomials(t − t
j
0)

n.

Carry out the iteration

F 0 := G ; F i+1 := G + KNF
i, i := 0, 1, ...

until F := F i+1 ⊆ F i (or abort).

Form := 0...T : (A)

For j := 1...N :

Carry out the iteration

C j,0
m := A j

m; C j,i+1
m := A j

m + KNC
j,i
m

i := 0, 1, ...

until C j
m := C j,i+1

m ⊆ C j,i
m (or abort).

Compute the entries (B)

• M := (M ij)i,j=0...T ,M ij :=
∫ b

a
B i(t)Cj(t)dt

• R := (R i)i=0...T , R i :=
∫ b

a
B i(t)F (t)dt

of the interval linear system for the final application of the

method for degenerate kernels.

Solve the interval linear system (C)

(I − λM)X = R .

Compute the solution functionY := G + λ
∑T

m=0 CmXm.

intermediate communication between processes. Hence, it-
erations can be distributed to the processes, either evenlyor
using an active distribution strategy. Tests have shown that
an even distribution already yields quite acceptable results
so that there isn’t a great need for active distribution.

Computation of linear system entries

The matrix of the linear system to be finally solved can
be computed elementwise by the processes involved. El-
ements, again, can be computed independently. For best
use in the subsequent solution of the linear system, the de-
sired distribution of data for the linear system solver should
already be taken into account in this step so that every pro-
cess computes the entries of the matrix it will store during
the linear system solution.

Parallel linear system solver

The linear system solver is also parallelized. Since it is
implemented as a separate component, it is described in the
next section convering software components.

3

5. Software Components

For a full implementation of the described application,
a number of software components were newly developed
or enhanced. All components were implemented in C-XSC
[6], adding new and extending existing modules in the range
of XSC software.

The following components are available:

• MPI communication facilities for (NEW)

– C-XSC data types

– Taylor arithmetic types

• Parallel verified linear system solver (Rump’s
method) (NEW)

• 1D and 2D Taylor arithmetic in C-XSC (ENHANCED)

• Output interface for Maple (NEW INTERFACE)

The implementation of these components is described in
the next paragraphs.

5.1. MPI communication package for C-
XSC

To successfully implement parallel programs with C-
XSC data types, you need communication facilities for
those types. Communication with user defined data types
can be done in different ways:

• Direct application of existing routines, applied to sin-
gle data elements of objects

• Usage of the MPI data packing/unpacking mechanism

• Definition of the data type in MPI using MPI’s data
type definition mechanism

These approaches all have advantages and disadvan-
tages.

Direct application, naturally, is a way that always works.
Unfortunately, MPI routines can’t simply be applied to the
data object you use in your application since MPI only
knows to handle elements or arrays of elements of a num-
ber of basic types as long as you don’t do more specification
work. This is inconvinient for the programmer of the appli-
cation and at the same time unnecessarily time consuming,
since communication for a single object often needs a num-
ber of communication calls.

MPI offers two strategies to make communication of
data more convenient. The first of these is thepack-
ing/unpackingmechanism. It is the more versatile of the
two since it allows to pack, then send, receive and finally
unpack every kind of data you like. On the debit side there

is an extra copying process which also uses additional mem-
ory.

The second strategy is the definition of new MPI types.
There is a collection of routines for data type definition in
MPI making it possible to virtually assemble data by defin-
ing a so calledtype mapand giving it a name, but it has
limitations. Namely, no dynamically allocated data can be
incorporated into the new type this way, and lenghts of any
data structures of variable size have to be known beforehand
to construct the new type.

Hence, the package implemented for C-XSC data types
uses the first of the two strategies for types that incorporate
dynamic memory allocation and/or array-like structures like
vector and matrix types.

It uses data type definition for the basic C-XSC data
types real, interval, complex and cinterval,
and includes packing/unpacking routines and communica-
tion routines as template functions for the types derived
from these. In general, all C-XSC types are included:

• Basic types: real, interval, complex,
cinterval

• Vector and Matrix data types for the basic types

• Staggered (= multiple precision) data types

• Dotprecision (”accumulator”) data types

Additionally, types from the Taylor package briefly de-
scribed in paragraph 5.3 are covered including STL vectors
of these types.

Regarding MPI communication, the following routines
are covered:

• MPI_Pack, MPI_Unpack

• Point-to-point communication:

– MPI_Send, MPI_Bsend, MPI_Ssend,
MPI_Rsend

– MPI_Isend, MPI_Ibsend, MPI_Irsend,
MPI_Issend

– MPI_Recv

• Collective Communication:

– MPI_Bcast

• Additional versions of the above routines for subma-
trices/rows/columns are included as well.

In a general interface or package, it is not possible to
offer general versions of further collective communication
routines, since data subdivision for gather/scatter processes
can be done in various ways, and the decision how to sub-
divide and distribute data has to be left to the author of the
application.

4

5.2. Parallel verified linear system solver

The parallel verified linear system solver uses Rump’s
method [10], i.e. a Newton-like iteration for an approximate
inverseR of a matrixA followed by a repeated iteration
for the approximate inverseS of RA if the first step is not
successful.

Method 5.1 : Parallel linear system solver

Compute approximate inverseR of A.

(*)p0: p1, ..., pq:

Apply real residual iteration

to obtain better initial value.

Compute enclosure[z].

Compute enclosure

[C].

Apply verified iteration

[x](i+1) := [z] + [C][x](i),

i = 0, 1, ...

ComputeRA.

If successful:[x] := x̃+[x]. (Approx. solution + residuum)

Else: Compute approx. inverseS of RA, let R := SR.

Repeat(*).

If successful:[x] := x̃ + [x]. Else: failed.

The iteration step is defined as follows:

yk+1 = R(b − Ax̃)
︸ ︷︷ ︸

=:z

+ (I − RA)
︸ ︷︷ ︸

=:C

yk, k = 0, 1, ... (7)

Based on this notation, method 5.1 shows the general
parallel algorithm of the parallel solver.

The solver is implemented as a module with various in-
terface versions that can be used in all appropriate appli-
cations. Matrix inversion and further matrix operations are
parallelized and offered in separate units, so that they can
be used independently as well.

5.3. Taylor arithemetic in C-XSC

Bräuer, Blomquist, Hofschuster and Krämer imple-
mented a Taylor arithmetic package in in C-XSC in [2, 3].
This implementation was extended to cover

• the Gaussian error functionerf and complementary er-
ror functionerfc as new functions

• a number of operators for more convenient use of the
package

This Taylor arithmetic package is used in the integral
equation solver, and MPI communication routines for these
types are included in the MPI communication package for
C-XSC described above.

5.4. Maple interface

Finally, there is a Maple interface included in the integral
equation application. It offers output of solution functions
as Maple code and output of the range enclosure of the so-
lution functions for display in Maple.

Interval arithmetic in Maple is provided by the Maple
package intpakX [4].

Example
Given the integral equation

y(s) −
1

2

∫ 1

0

(s + 1)e−sty(t) dt

= e−x −
1

2
+

1

2
e−x+1, s, t ∈ [0, 1]

which, according to Kress [9], has the analytic solution

y : s → e−s,

the Taylor coefficients of the first component of the solution
(computed with the system method) are computed as

[0.969232610773108516, 0.969235565177278713]
[-0.969233189716268040,-0.969233131674795078]
[0.484616598544399534, 0.484616637435440978]
[-0.161554269639638399,-0.161550720767527217]
[0.038892044738204872, 0.041956101920650240]

The function output in Maple code is

IGLSys_Lsg[0] := x ->
[0.969232610773108516, 0.969235565177278713]
&+ ([-0.969233189716268040,-0.969233131674795078]
&* ((x
&- [0.031250000000000000, 0.031250000000000000])

&intpower 1))
&+ ([0.484616598544399534, 0.484616637435440978]
&* ((x
&- [0.031250000000000000, 0.031250000000000000])

&intpower 2))
&+ ([-0.161554269639638399,-0.161550720767527217]
&* ((x
&- [0.031250000000000000, 0.031250000000000000])

&intpower 3))
&+ ([0.038892044738204872, 0.041956101920650240]
&* ((x
&- [0.031250000000000000, 0.031250000000000000])

&intpower 4)) ;

The solution can be visualized in Maple as shown in figure
1.

5

0,9

0,4

0,5

0,40,2 1

0,8

0,8

1

0,7

0,6

x

0

0,6

Integral_Equation_System_Solution_Enclosure

Figure 1. Maple visualization of integral equa-
tion solution.

6. Some results

A range of tests with the packages presented above has
been done.

These tests include:

• Tests of the performance of the C-XSC/MPI commu-
nication package

• Tests of the parallel performance of the integral equa-
tion solver

• Analysis of the parameters in the system approach

The test environment was the supercomputer ALiCEnext
installed in Wuppertal, Germany since 2004:

• 1024 1.8 GHz AMD Opteron 64 Bit Processors on 512
nodes

• 2004: Top 500 Rank 74

• LINPACK max. performance 2083 GFlops

First, we give some results on the performance of the C-
XSC/MPI communication package.

The following table shows communication times for
communicating a C-XSCimatrix through 16 processors
using

• manual elementwise communication

• our package (packing/unpacking)

• manually programmed derived data types for matrices
with fixed sizes sending only the matrix data without
organisational data like index bounds

Dimension 512 1024 2048 4096
Elementwise 0.97-2.09 4.11-8.35 16.99-22.57 67.8-101.6

Package 0.09-0.11 0.23-0.36 0.80-1.07 4.82-5.42
Derived Type 0.07-0.10 0.25-0.31 0.96-1.10 3.17-3.67

(Time in sec.)

We can see that communicating data elementwise is
highly inefficient for objects that consist of a big number of
elements. At the same time, our package and manually con-
structed derived types for fixed matrix sizes (not including
communication of index bounds) have much better commu-
nication times that are similar to each other.

Next, we have times of the integral equation solver for a
random example function. (Of course, times depend on the
functions involved.) We show times for varying numbers of
processors.

Processors serial 4 16 64 128
Time 2060-2343 510-540 114-142 31-39 18-23

(Time in sec.)

The numbers show that the integral equation solver par-
allelizes almost linearly.

We also analyzed time shares of different parts of the
program:

• Iteration phase

• Computation of the entries of the linear system

• Linear system solution (including approximate matrix
inversion and further matrix operations, e.g. matrix
multiplications)

Figure 2 shows these phases for an example with 16 pro-
cessors and an integral equation with Taylor order 6 and
system order 64 - a medium sized example. The overall
computation time was∼ 140 seconds.

In general, the following was observable:

• Idle times resulting from the even and non-adaptive
distribution of tasks occur but do not dominate in any
way so that there is no urgent need for an adaptive dis-
tibution strategy

• The linear system solver had a greater time share for
smaller system sizes. This is probably due to commu-
nication overhead that dominates computation times
for small system sizes.

• The parts of ”minor importance” as for their time
share behave like supposed above: Even for the
medium sized example shown, time shares of those
parts (O(n2) complexity) are negligible.

Finally, we show a table concerning result accuracy that
shows to what extent it is possible to increase the accuracy

6

Iteration Phase
Communication and idle time
Linear system entry computations
Real matrix inversion
Further matrix operations

Figure 2. Time shares for parallel integral
equation solver

of the result when splitting up a single integral equation into
an integral equation system.

In the following table, you find the result accuracy of the
solution of an example integral equation dependent on the
order of the Taylor expansion of the involved functions and
dependent on the order of the integral equation system.

System order→ 4 8 16 32 64 128
↓ Taylor order

3 0 0 1 1 1 1
4 0 0 1 1 2 2
6 1 3 4 5 4 4
8 5 7 8 10 9 9
12 12 16 18 20 20 -

(Number of correct binary digits)

We find that increasing system order does not always
work wonders, especially when Taylor order is fixed to a
very small value. Nevertheless result accuracy can be con-
siderably increased in most cases. Tests showed that for
many examples increasing the system order further than
∼ 64 didn’t result in even higher accuracy. Still, there
were examples (e.g. functions with denominators near to
0) which could only be solved for a system order of over
500.

Hence, we can conclude that the parallel verified integral
system solver gives us the chance to successfully compute
the verified solution of linear Fredholm integral equationsof
the second kind with high accuracy that couldn’t previously
be solved this accurate or even at all unless you spent a huge
amount of computing time.

References

[1] ALiCEnext information. http://www.alicenext.uni-
wuppertal.de.

[2] F. Blomquist, W. Hofschuster, and W. Krämer.
Real and complex Taylor Arithmetic in C-
XSC. Preprint BUW-WRSWT 2005/4, Univer-
sity of Wuppertal, 2005. http://www.math.uni-
wuppertal.de/wrswt/literatur/litwrswt.html.

[3] M. C. Bräuer. Berechnungsmethoden für Ableitungen und
Steigungen und deren Realisierung in C-XSC. Master’s the-
sis, University of Karlsruhe, 1999.

[4] M. Grimmer. Interval Arithmetic in Maple with intpakX.
In PAMM - Proceedings in Applied Mathematics and Me-
chanics, number Vol. 2, Nr. 1, pages 442–443. Wiley-
InterScience, 2003.

[5] M. Grimmer. An MPI Extension for the use of C-XSC
in parallel environments. Preprint BUW-WRSWT 2005/3,
University of Wuppertal, 2005. http://www.math.uni-
wuppertal.de/wrswt/literatur/litwrswt.html.

[6] W. Hofschuster and W. Krämer. C-XSC 2.0 – a C++ class li-
brary for extended scientific computing. In R. Alt, A. From-
mer, B. Kearfott, and W. Luther, editors,Numerical Soft-
ware with Result Verification, pages 15–35. Springer Lecture
Notes in Computer Science 2991, 2004.

[7] W. Klein. Zur Einschließung der Lösung von linearen
und nichtlinearen Fredholmschen Integralgleichungssyste-
men zweiter Art. PhD thesis, University of Karlsruhe, 1990.

[8] W. Klein. Enclosure methods for linear and nonlinear sys-
tems of Fredholm integral equations of the second kind.
In E. Adams and U. Kulisch, editors,Scientific computing
with automatic result verification, Boston, 1993. Academic
Press.

[9] R. Kress.Linear Integral Equations. Springer, Berlin, Hei-
delberg, 1989.

[10] S. Rump. Kleine Fehlerschranken bei Matrixproblemen.
PhD thesis, University of Karlsruhe, 1980.

7

