
Bergische Universität
Wuppertal

Computing and Visualizing
Solution Sets of Interval Linear Systems

Walter Krämer
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Abstract

The computation of the exact solution set of an interval linear system is a nontrivial task

[2, 13]. Even in two and three dimensions a lot of work has to be done. We demonstrate

two different realizations. The first approach (see [16]) is based on Java, Java3D, and the

BigRational package [21]. An applet allows modifications of the matrix coefficients and/or the

coefficients of the right hand side with concurrent real time visualization of the corresponding

solution sets. The second approach (see [5]) uses Maple and intpakX [22, 8, 12] to implement

routines for the computation and visualization of two and three dimensional solution sets.

The regularity of the interval matrix A is verified by showing that ρ(|I −mid−1(A) ∗A|) < 1

[14]. Here, I means the identity matrix, mid(A) denotes the midpoint matrix and ρ denotes

the spectral radius of a real matrix.

Key words: solution sets, interval linear systems, reliable computations, visualization
using computer algebra tools, intpakX.

MSC Subject Classifications: 34A30, 65F99, 65G20, 65G99, 97U99.

1 Introduction

We will first give a brief review on methods for solving interval linear systems of
equations exactly. We will first concentrate on the so called Sign-Accord Algorithm
due to Jǐŕı Rohn. This algorithm allows the computation of the interval hull of the
solution set. To be able to compute and to visualize the solution set itself, we use a
characterization of this set due to Alefeld/Mayer, which is based on a theorem of Rohn.
The solution set of a system with regular interval matrix (in general, this set is not
convex) can be described using half spaces computable from the bounds of the entries
of the interval matrix and the interval right hand side. If all entries of the (regular)
interval matrix are point intervals the true solution set is a parallelepiped (i.e. convex).

Two packages to compute and visualize the exact solution set of a regular linear
interval system are described. Both are using the Alefeld/Mayer/Rohn characterization
of the solution set. The first package has been realized by Gregor Paw [16]. It is
implemented as a Java applet. To be able to compute the corners of the solution
set exactly, the implementation uses the multiple precision package BigRational [21]
for rational computations. The 3D graphics implementation is based on the Java3D
package. The graphical user interface of the applet makes it easy to explore solution
sets. E.g. zooming, shifting, and rotations may be controlled with the mouse. Several
examples can be chosen from a predefined set of linear interval equations.
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The second package has been implemented by Sven Braun [5] in Maple using the
intpakX package [7, 12] to compute enclosures for determinants to show regularity
and/or to compute an upper bound of the spectral radius of |I − R ∗ A|. Here, R
denotes an approximate inverse to the midpoint matrix mid(A). A bound smaller
than 1 proves that the interval matrix A is regular. The corners of the solution set
are computed exactly using Maple’s rational arithmetic, and Maple’s plot facilities are
used to visualize the solution set. Other visualization tools may be found in [17, 18].

We denote by IIR, IIRn, and IIRm×n the sets of real intervals, of interval vectors
with n components, and interval matrices with m rows and n columns, respectively.

2 Characterizations of the solution set

To solve the interval linear system of equations

Ax = b ,

with A = [A, A] ∈ I IRn×n being an interval matrix and b = [b, b] ∈ I IRn being an
interval vector, means to compute the solution set

Σ(A, b) := {x ∈ IRn|Ȧx = ḃ for some real Ȧ ∈ A, ḃ ∈ b}.

For regular interval matrices A it holds

Σ(A, b) = {Ȧ−1ḃ ∈ IRn|Ȧ ∈ A, ḃ ∈ b}.

If A is not regular, the solution set is unbounded.
The computation of Σ(A, b) is very costly. Therefore, in the field of selfverifying

numerical methods often an interval vemadsonctor including the true solution set is
computed. The best possible one is the interval hull ihull(Σ) :=

⋂

X∈IIRn,X⊇Σ X. But
computing ihull(Σ) is computationally still very costly [13]. In an interval setting the
typical task is to compute a more or less sharp interval vector z ∈ I IRn containing
ihull(Σ). Frequently used methods are

– Interval Gaussian Elimination (using preconditioning),

– Rump/Krawczyk iteration Ṙb + (I − ṘA)zk ⊂ int(zk) ⇒ zk ⊃ ihull(Σ),

– Hansen-Sengupta algorithm (based on a Gauss-Seidel method).

Before we are going to describe the computation of the solution set and/or its
interval hull, we list some properties of Σ.

A first characterization of the solution set is due to Oettli and Prager

Theorem 1 (Oettli and Prager [15], 1964):

Σ(A, b) = {x ∈ IRn| |m(A)x − m(b)| ≤ r(A)|x| + r(b)}.
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m(A) ∈ IRn×n denotes the midpoint matrix, m(b) is the midpoint of the interval vector
b, r(A) is the radius matrix, and |A| ∈ IRn×n is the nonnegative matrix of absolute
values.

The following characterization of the solution set is due to Beeck.

Theorem 2 (Beeck [4], 1972):

x ∈ Σ(A, b) ⇐⇒ Ax ∩ b 6= Ø.

Σ(A, b) may be computed using the corner solutions Σcor(A, b) consisting of the
vectors Ȧ−1ḃ, where all elements in the point matrix Ȧ and point vector ḃ are chosen
as one of the end points of the corresponding interval element in A and b, resp. The
number of corner solutions is 2n

2+n.
Let conv() denote the convex hull of a bounded set. Then it holds:

Theorem 3 (Beeck [4], 1972):

conv Σ(A, b) = conv Σcor(A, b).

Thus, conv Σ(A, b) can be found via the computation of Σcor(A, b). Each element of
Σcor(A, b) is found by solving a real linear system of order n. The prohibitive complexity
of this approach is O(n32n2+n) operations to compute Σ(A, b). For n=5 about 1.34·1011

operations are required!
madson The set of extreme solutions Σextr is defined as follows.

Σextr(A, b) := {x ∈ IRn| |m(A)x − m(b)| = r(A)|x| + r(b)} ⊆ Σcor.

Using this definition Rohn showed in 1989 the following

Theorem 4 (Rohn [19], 1989)

conv Σ(A, b) = conv Σcor(A, b) = conv Σextr(A, b).

It holds: Σextr(A, b) contains only 2n elements. But to compute an element of
Σextr(A, b) now a nonlinear system of equations has to be solved.

Rohn’s Sign-Accord Algorithm [19] is probably the best method known to compute
Σextr(A, b). To be able to formulate this algorithm, let us introduce some notations.
The set of sign vectors is denoted by

Sn := {y ∈ IRn|yi ∈ {−1, 1}, i = 1(1)n} ,

and the diagonal matrix corresponding to y ∈ Sn is denoted by

Dy := diag(y1, . . . , yn) .

madson Using these notations we can formulate the following characterization:

Theorem 5 (Rohn [19], 1989)

Σextr(A, b) = {x ∈ IRn|∃y ∈ Sn s.t. m(A)x − m(b) = Dy(r(A)|x| + r(b))}.
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To compute an element of Σextr(A, b), a nonlinear system of equations has to be solved.
For sign vectors y, z ∈ Sn we define the point matrix

Ayz := m(A) − Dyr(A)Dz, and the point vector

by := m(b) + Dyr(b).

After performing the following computations
X := Ø

for each y ∈ Sn do
find the corresponding extreme solution xy

X := X ∪ {xy}
it holds conv(X) = conv Σ(A, b) and therefore ihull(X) = ihull Σ(A, b). Note, that it
does not hold conv(X) = Σ(A, b).

In this computation the extreme solution is found by the Sign-Accord Algorithm
due to Rohn [19]. This algorithm works as follows (see also [6]):

given the sign vector y ∈ Sn.
choose initial z = sign(m−1(A)by) ∈ Sn; terminate:= false;
repeat

solve linear system Ayzx = by

if all zixi ≥ 0 then xy := x; terminate:= true
else

k:= smallest j with zjxj < 0
zk := −zk

end
until terminate

The stopping criterion is that the sign of x is in accordance with the sign vector z.
Rohn showed in 1989 that the algorithm stops after at most 2n iteration steps. The
complexity is between O(n32n) and O(n322n).

Let us now discuss the Alefeld/Mayer/Rohn characterization of the solution set of
an interval system of linear equations. Let Ok denote a closed orthant of IRn (there are
2n orthants).

Theorem 6 (Alefeld/Mayer [2], 1995)

– Σ(A, b) is not convex.

– If Σ(A, b) ∩ Ok 6= Ø, it is convex, compact, connected, and a polytope.

– Σ(A, b) = ∪2n

k=1(Σ(A, b) ∩ Ok).

2.1 How to compute Σ(A, b) ∩ Ok?

A fixed orthant O is given by the sign vector s = (si) ∈ Sn (i.e. si ∈ {−1, +1}
for i = 1(1)n) corresponding to the signs of the components of an interior point of O.
Hence, if O denotes some orthant O, fixed by the signs s1, s2, . . . , sn, then x = (xi) ∈ O
fulfills

xi

{

≥ 0 if si = +1,
≤ 0 if si = −1.
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For i, j = 1(1)n, let

cij :=

{

aij if sj = +1,
aij if sj = −1

, dij :=

{

aij if sj = +1,
aij if sj = −1.

Denote by H i, Hi, i = 1(1)n, the half spaces

H i :=






y ∈ IRn|

n∑

j=1

cijyj ≤ bi






,

Hi :=






y ∈ IRn|

n∑

j=1

dijyj ≥ bi






.

Then

Theorem 7 (Rohn, 1989)

Σ(A, b) ∩ O =
n⋂

i=1

(H i ∩ Hi) ∩ O.

Note that H i, H i depend on the choice of the orthant O (2n possibilities). Denote the

half spaces H i, Hi corresponding to orthant Ok by Hk
i , H

k

i , k = 1(1)2n. Then we have
the following representation of the exact solution set of the interval system of linear
equations

Theorem 8 (Alefeld/Mayer/Rohn, [2])

Σ(A, b) =
2n

⋃

k=1

(
n⋂

i=1

(Hk
i ∩ H

k

i ) ∩ Ok )

︸ ︷︷ ︸

Ø or a convex polytope

.

To find the corners of the sets Σ(A, b) ∩Ok, the linear inequalities are transformed
into systems of linear equations augmented by n further linear equations describing the
actual orthant Ok. So for each orthant we get

(
3n

n

)

equations. To find all corners of

Σ(A, b) we have to solve 2n
(

3n

n

)

linear n×n point systems. Thus, for n = 2 we have to
solve 60 2 × 2 and for n = 3 we have to solve 672 3 × 3 systems of linear equations.

Theorem 9 The solution x to a (regular) point system is a corner of the convex set
Σ(A, b)∩Ok if and only if x simultaneously fulfills all inequalities corresponding to the
orthant Ok.
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2.2 How to plot Σ(A, b)?

We are now ready to outline the method used in the packages realized by Braun and
Paw to compute the exact solution set of a linear inteval system in 2 or 3 dimensions:

a) Check whether A ∈ IIRn is regular:

– 0 /∈ det A or

– ρ(|I − ṘA|) < 1 (Ṙ ≈ (mid(A))−1)

Give a warning if this check fails (note that it is still possible that the interval
matrix of the system is regular).

b) Compute all vertices of the sets Σ(A, b) ∩ Ok. This results in unordered sets of
points in IR2 or IR3, respectively.

c) To plot the polytope in each orthant the vertices of each face of the polytope
have to be found and sorted appropriately.

For details see the source codes of the packages [5, 16], which are available from the
author.

3 Examples

In this section we show some screenshots made with the Java applet witten by Gregor
Paw [16]. The first sreenshot (see Figure 1) shows the graphical user interface of the
applet. In the left part of the figure the solution set of the classical Barth/Nuding [3]
example Ax = b with

A :=

(

[2, 4] [−2, 0]
[−1, 0] [2, 4]

)

, b :=

(

[1, 2]
[−2, 2]

)

(1)

is displayed. The interval matrix and the right hand side are stored as a predefined
example. They are displayed in the matrix A and vector b field, respectively. Under
the heading Inequation we see the six active inequalities describing the boundaries
of the half spaces defining that part of the solution set belonging to orthant 1. Under
the heading Corners we see the exact coordinates of all corners of the solution set in
orthant 1.

The shape of the intersection of the solution set with the first orthant shown in
Figure 2 is the most general one in 2D. More than six different line segments (hexagon)
are not possible. The interval matrix A and the interval right hand side b of the
corresponding system are

A :=

(

[−2,−2] [1, 3/2]
[0, 6] [2, 3]

)

, b :=

(

[−1, 1]
[3/2, 3]

)

. (2)

If no points of the axes belong to such a 2D solution the boundary is given by at most
four different strait line segments and by at most 9 different facets in 3D.
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Figure 1: Example of Barth/Nuding.
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Figure 2: General shape of the solution set in one quadrant.
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Figure 3: Neumaier’s example.

Figure 3 shows the 3D solution set of Ax = b with

A :=






3.5 [0, 2] [0, 2]
[0, 2] 3.5 [0, 2]
[0, 2] [0, 2] 3.5




 , b :=






[−1,−1]
[−1,−1]
[−1,−1]




 . (3)

This example is taken from the book of Neumaier [14]. A corresponding graphics is
shown on the cover of the book cited.

On Figure 4 only parts of the solution set of Neumaier’s example (3) are displayed.
The Graphcontrol field of the applet has been used to activate only that parts of the
solution set lying in orthant 1 and in orthant 7. The remaining parts of the solution
set are hidden. The two cubes have only the point (0,0,0) in common.



10

Figure 4: Neumaier’s example restricted to orthants 1 and 7.
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4 Conclusion

Both packages are very well suited for displaying and manipulating solution sets of
2 and 3 dimensional interval systems of linear equations. The user may explore the
variations of the shape of the solution set by varying e.g. the interval coefficients of the
matrix and/or the right hand side. Both packages also deliver the exact coordinates of
all corner points of the exact solution set. To run the package written by Sven Braun,
one needs a valid Maple licence. To get the source code of the packages, please send
an email to kraemer@math.uni-wuppertal.de
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