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1 Abstract

Computing enclosures of the range of functions using interval arithmetic often leads to overestimations due to variables
(parameters) appearing more than once within the expression to be evaluated (dependency problem). An experimental im-
plementation of a generalized interval arithmetic which has been proposed by Hansen [2] in 1975 is now available [1, 3]. In
many cases generalized intervals are well suited to reduce the dependency problem and/or the so called wrapping effect.

2 Introduction and Notation

Let us consider the following problem: Compute the range of the expression f(x) = (10 + x)(10 − x) over the interval
[−r, r]. If we replace the point x by the corresponding interval X = [−r, r] we get 10 + x ∈ [10 − r, 10 + r], 10 − x ∈
[10− r, 10 + r] and finally [10− r, 10 + r][10− r, 10 + r] = [100− 20r + r2, 100 + 20r + r2] as an enclosure of the exact
range {f(x)|x ∈ [−r, r]} = [100− r2, 100]. The diameter of this interval enclosure is 40r whereas the diameter of the exact
range is r2. For r = 1/10 the overestimation factor is 400 and for r = 1/100 it is 4000. Replacing every occurrence of x by
X (interval evaluation) leads to a significant loss of information about correlations between quantities (dependency problem).

To avoid this loss of information Hansen [2] introduced so called generalized intervals. In this paper we do not use Hansen’s
notation. Our notation is similar to the more convenient notation introduced in [5]. A generalized interval (we call it Hansen
form) is written as x̂ := x0 +

∑n
k=1 xkεk. x0 is called central value, xk partial deviation, εk noise symbol with |εk| ≤ ck

and n being the (fixed) number of noise symbols. The central value and the partial deviations are allowed to be (ordinary)
intervals. A typical Hansen form is x̂ = [1, 2]+[2, 3]ε1 +[0, 1]ε2 with−ck ≤ εk ≤ ck, k = 1, 2. Ordinary input intervals may
be easily transformed into generalized intervals: [a, b] = mid[a, b]+rad([a, b])εk with |εk| ≤ 1. mid() denotes the midpoint
and rad() the radius of an interval. Hansen forms imply interval bounds: Reduce the unevaluated Hansen form to an ordinary
interval using ordinary interval arithmetic, i. e. compute the interval [x̂] := x0 +

∑n
k=1 xk[−ck, ck].

3 Properties of Hansen forms

3.1 Hansen forms can ’see’ correlations

Let us again consider f(x) = (10 + x)(10− x) with x ∈ [−r, r]. x̂ = 0 + r · ε with −1 ≤ ε ≤ 1 yields 10 + x̂ = 10 + r · ε,
10− x̂ = 10− r · ε, so that (10 + x̂)(10− x̂) = 100 + 0 · ε− r2 · ε2 with corresponding Hansen form 100 + [−r2, 0] + 0 · ε.
Reducing this Hansen form results in the ordinary interval [100 − r2, 100] which is equal to the exact range of f(x). In this
simple example Hansen form computations do not introduce any overestimation.

3.2 Remarks on basic operations

To evaluate a formula, we must replace each of its elementary operations z ←− f(x, y) for real numbers by an equivalent
operation ẑ ←− f̂(x̂, ŷ) for generalized intervals, where f̂ is a procedure that computes a generalized interval form for
z ←− f(x, y) that is consistent with x̂, ŷ. We have z ←− f(x, y) = f(x0 + x1ε1 + . . . + xnεn, y0 + y1ε1 + . . . + ynεn) =
f̂(x̂, ŷ) = f∗(ε1, . . . , εn).

The challenge now is to replace f∗(ε1, . . . , εn) by a generalized interval form z = z0 +z1ε1 + . . .+znεn that preserves as
much information as possible about the correlations between x, y, and z. Concrete formulae for the basic oprations +,−, ∗, /
can be found in [2]. We only note that for Hansen forms with point coefficients x̂ + ŷ, x̂ − ŷ, α · x̂, α + x̂ are error-free
(in these cases the operations have to be applied to the coefficients individually). Multiplication and division introduce some
overestimation because nonlinear terms have to be linearized in some way to get a valid Hansen form for the (true) result.
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3.3 Elementary functions like exp, log, etc.

We will demonstrate two different approaches for
√

x. The first method (proposed by Hansen) is based on the Taylor expan-
sion:

f(x̂) = f(x0) +
∂f(x0 + ϑ(x1ε1 + . . . + xnεn))

∂x̂
(x1ε1 + . . . + xnεn) with 0 ≤ ϑ ≤ 1,

yielding
√

x̂ =
√

x0 +
x1ε1 + . . . + xnεn

2
√

x0 + ϑ(x1ε1 + . . . + xnεn)
∈
√

x0 +
x1ε1 + . . . + xnεn

2
√

[x̂]
.

This means that the coefficients of the resulting Hansen form are given by

z0 :=
√

x0, zi :=
xi

2
√

[x̂]
, i = 1(1)n.

The second method is based on a linear best approximation to √ within the reduced interval [x̂]. Using the Maple worksheet
[4] (please feel free to contact the author) we find:

With [a, b] := [x̂] = x0 + x1[−c1, c1] + . . . + xn[−cn, cn], α := 1/(
√

a +
√

b), β := 0.125/α + 0.5α
√

a
√

b, τ :=
0.125α(

√
a−
√

b)2, (ordinary) interval coefficients

z0 := αx0 + β + [−τ, τ ], zi := αxi, i = 1(1)n

and εi ∈ [−ci, ci], i = 1(1)n it holds that
√

x0 + x1ε1 + . . . + xnεn ⊆ z0 + z1ε1 + . . . + znεn (this is the Hansen form we are looking for).

3.4 Numerical results
√

x within [1, 4](= [x̂]) using the Taylor ansatz:

x̂ = x0 + x1ε1 :=
5
2

+
3
2
ε1,−1 ≤ ε1 ≤ 1 =⇒

√
x̂ ∈
√

x0 +
x1

2
√

[x̂]
ε1.

The coefficients of the resulting Hansen form are

z0 :=
√

x0 =

√
5
2
, z1 :=

x1

2
√

[x̂]
=

3
4
√

[1, 4]
= [

3
8
,
3
4
],

yielding the reduced Hansen form [ẑ] = [
√

5
2 −

3
4 ,

√
5
2 + 3

4 ] ⊂ [0.831, 2.34].
√

x within [1, 4] using the linear best approximation (again, we use [4] to obtain α = 1/3, β = 17/24, τ = 1/24): The
coefficients of the resulting Hansen form are now

z0 = [
18
12

,
19
12

], z1 =
1
2

yielding [ẑ] = [12/12, 25/12] = [1, 2 1
12 ] ⊂ [1, 2.084] which shows that the second method gives a much better enclosure of

the true range [1, 2].
Computing

√
x̂−
√

x̂ with the same data gives in the first case [−18/12, 18/12] and in the second case [−1/12, 1/12]. Both
results are much better than the interval [−1, 1] resulting from ordinary interval evaluation. Please note that, in both cases,
reducing the intermediate Hansen forms leads to ordinary intervals that are worse than the intermediate result

√
[1, 4] = [1, 2]

computed with ordinary interval arithmetic.

3.5 Related topics

For the reader interested in related topics (centered forms, affine arithmetic, zonotopes, Minkowski sums, Taylor models, . . .)
we list the names of some further authors: Comba, Stolfi, Figueiredo, Iwaarden, Gay, Kühn, Tupper, Kolev, Berz, . . .
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