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Abstract

To get guaranteed machine enclosures of a special function f(x), an up-
per bound ε(f) of the relative error is needed, where ε(f) itself depends
on the error bounds ε(app), ε(eval) of the approximation and evaluation
error respectively. The approximation function g(x) ≈ f(x) is a rational
function (Remes algorithm), and with sufficiently high polynomial de-
grees ε(app) becomes sufficiently small. Evaluating g(x) on the machine
produces a rather great ε(eval) because of the division of the two erro-
neous polynomials. However, ε(eval) can distinctly be decreased, if the
rational function g(x) is substituted by an appropriate continued fraction
c(x) which in general needs less elementary operations than the original
rational function g(x). Numerical examples will illustrate this advantage.

Keywords: C-XSC, continued fractions, error bounds, Special Functions.
MSC(2000): 65G30, 65G50, 41A50, 11A55.

1 Introduction

In general the exact sum a + b of two machine numbers a, b is not a machine
number itself and must therefore be rounded to the IEEE system S(2,53). If
the rounding is realized to one of the neighboring machine numbers, denoted by
a⊕ b, the relative error εa+b is defined by (a + b)− (a⊕ b) = εa+b · (a + b) and
it holds [2]

|εa+b| ≤ ε∗ := 2−52 = 2.220446 . . . · 10−16, (high accuracy).

ε∗ is the error bound of the elementary operations in high accuracy.
If f̃(x) denotes the machine approximation of the exact function value f(x),

the relative error εf is defined by f̃(x)− f(x) = εf · f(x) and for the error
bound ε(f) it holds for all machine numbers x of the domain Df

|εf | ≤ ε(f) ∀x ∈ Df ∩ S(2, 53).

If f(x) is approximated by g(x) ≈ f(x) and if g̃(x) denotes the machine value
of g(x) ≈ g̃(x) then f̃(x) = g̃(x) and with f(x) ≈ g(x) ≈ g̃(x), together with
the definitions

f(x)− g(x) = εapp(x) · f(x), |εapp(x)| ≤ ε(app) ∀x ∈ Df ,

g(x)− g̃(x) = εeval · g(x), |εeval| ≤ ε(eval, g) ∀x ∈ Df
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the triangle inequality delivers

(1) ε(f) = ε(app) + ε(eval, g) · [1 + ε(app)] ∀x ∈ Df ∩ S(2, 53),

so guaranteed values of the upper bounds ε(app) and ε(eval, g) are needed for
calculating an guaranteed upper bound ε(f) of the relative error εf .

Let [a, b] ⊂ Df be a given approximation interval, where f(x) is a positive
and monotonic increasing function then a guaranteed enclosure of all function
values f(x) is given by the following interval

f(x) ∈

[
f̃(a)

1 + ε(f)
,

f̃(b)
1− ε(f)

]
∀x ∈ Df ∩ S(2, 53),

so ε(f), depending on ε(app) and ε(eval, g), is essential for implementing interval
functions, and for tight enclosures small values of ε(app) and ε(eval, g) are
needed.

2 Approximation Error

In contrast to the elementary functions by special functions the approximation
intervals [a, b] are widespread, not containing the origin in general. Therefore a
rational function

g(x) :=
PM (x− x0)
QN (x− x0)

≈ f(x), M,N ∈ IN,

calculated with the Remes algorithm, delivers an optimal approximation of f(x),
i.e. ε(app) is for example much smaller than the appropriate error bound, cal-
culated with the Padé algorithm using the same values of M,N . The typical
behavior of the relative approximation error εapp(x), caused by best approxi-
mation with M = N = 4, is shown in figure 1.

Relative approximation error

a b
x

y

Figure 1: Best approximation with g(x): εapp(x), M = N = 4.
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There are M + N + 2 = 8 equal values of the absolute extrema of εapp(x). The
coefficients of the polynomials PM , QN are calculated with the algebra system
Mathematica, using a precision of 50 decimal digits. However, in practice these
coefficients must be rounded to the IEEE system and hereby the maximum of
|εapp(x)| will be enlarged roughly by factor 2. The typical influence of this
rounding is shown in figure 2, where the rounding is done to 17,16,15 and 14
decimal digits.
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Figure 2: εapp(x); rounding the coefficients to 17,16,15,14 decimal digits

For the best approximation with g(x) Mathematica delivers an approximation
error, which however can only be used as an estimated value to realize the
proper polynomial degrees M,N , because there is no information about the
used algorithm. Furthermore, concerning the described rounding effects, the
approximation error must be re-evaluated to get a reliable value of the upper
bound ε(app), [4]. With a C-XSC program a guaranteed upper bound ε(app)
can be calculated, [2]. So, with sufficiently high values of M,N, ε(app) can be
treated as a nearly optimal and reliable value.

3 Evaluation Error

In [2] a C-XSC library is described for calculating reliable upper bounds ε(eval)
of the evaluation errors concerning the elementary operations. Additionally C-
XSC functions are implemented for calculating guaranteed upper bounds of the
relative evaluation errors, if polynomials or rational functions are evaluated in
the IEEE system.

In practice, for not too wide intervals [a, b] and with a proper point of expan-
sion x0 ∈ [a, b] for polynomials we have ε(eval) ∼ 4 · ε∗. Hence, for a rational
approximation function g(x) it holds ε(eval, g) ∼ (2 · 4 + 1) · ε∗ = 9 · ε∗. In
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comparison with the upper bound of the approximation error, which should be
ε(app) ∼ 0.1·ε∗, the upper bound ε(eval, g) is much too great and should ideally
be reduced to ε(eval) ∼ 1 · ε∗.

To get such a small evaluation error ε(eval) ∼ ε∗, the approximation function
g(x) ≈ f(x) should be a sum

S + s(x− x0), S, x, x0 ∈ S(2, 53), with(2)
|S| � |s(x− x0)|,(3)

where S must be an error-free summand, which should be rather great in com-
parison to the erroneous second summand s(x− x0), [2].

4 Approximation with Continued Fractions

Starting from the rational function g(x) = PM (x−x0)/QN (x−x0) the question
is now, how to get a nearly equivalent sum S + s(x − x0) ≈ g(x), fulfilling the
condition (3). S + s(x− x0) must be nearly equivalent to g(x) in order to keep
the small approximation error ε(app) ∼ 0.1 · ε∗.

To achieve the sum (2) we perform simple polynomial divisions, where two
strategies can be pursued

1. Discarding in PM (x− x0) the summand with the highest exponent M ,

2. Discarding in PM (x− x0) the summand with the exponent 0.

Strategy 1. is demonstrated with the following example, setting u = (x− x0)

g(x) = (2 + 4u− 2u2) : (1− u + u2) = −2 +
4 + 2u

1− u + u2
(4)

= −2 +
1

1− u + u2

4 + 2u

= −2 +
1

1
2
u− 3

2
+

7
4 + 2u

= −2 +
2

u− 3 +
7

u + 2

(5)

In (5), with S = −2, we have the desired structure (2). However, the condition
(3) is only fulfilled for |u| → +∞. With strategy 2. we get

(6) g(x) = (2 + 4u− 2u2) : (1− u + u2) = 2 +
u

1
6

+
u

−18 +
u

−1
42

+
u

14,

4



now with S = +2, and condition (3) is fulfilled for |u| → 0, i.e. for x → x0. To
get a short runtime we should use (5), because here we only need 6 elementary
operations instead of 8 operations in (6).

However, in (5) we should have |u| → +∞ for x → x0. This problem is
solved by using the transformation u = 1/v in the rational function g(x), and a
subsequent polynomial division with strategy 1. and v := 1/(x− x0) delivers

(7) g(x) = (−2 + 4v + 2v2) : (1− v + v2) = 2 +
6

v − 1
3

+
7/9

v − 2
3

=: c(v).

In (7) x 6= x0 must be realized, and g(x0) := 2 is a continuous supplementation.
Now we have the desired result: |v| → +∞ for x → x0. Hence, with the
continued fraction c(v) on the right-hand side in (7) we will find rather small
evaluation errors using not too wide approximation intervals with a suitable
point of expansion x0 ∈ [a, b].

Here still a closing remark for calculating the approximation error. Starting
with c(v), defined in (7), we first have to realize a rational interval function
r(x) enclosing this finite continued fraction. The task can be done using the
recurrence formula in [7,pp. 175–177], and with a C-XSC program a guaranteed
upper bound ε(app) of the relative approximation error can be calculated, [1,2].

5 Numerical Examples

In this section the improvement of the evaluation error is demonstrated by
using a continued fraction analogously to (7) instead of the rational function
g(x) = PM (x− x0)/QN (x− x0). The special functions to be approximated are
the error function erf(x) and the complementary error function erfc(x).

-2 -1 1 2

-1

1

2

erfc
erf

Figure 3: erf(x) and erfc(x)
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The two functions erf(x) and erfc(x) are defined by

erf(x) :=
2√
π

x∫
0

e−t2dt, erfc(x) := 1− erf(x) =
2√
π

∞∫
x

e−t2dt, x ∈ IR;

5.1 Approximation of erfc(x)(x)(x), x ∈ [14, 26.5]x ∈ [14, 26.5]x ∈ [14, 26.5]

In the wide approximation interval [a, b] = [14, 26.5] we consider the asymptotic
expansion, [1, formulae 7.1.23, 7.1.24]

erfc(x) =
e−x2

√
π · x

[
1− 1

(2x2)1
+

1 · 3
(2x2)2

−+ . . . + (−1)N · 1 · 3 · · · (2N − 1)
(2x2)N

+ r

]
|r| = |r(x, N)| ≤ 1 · 3 · 5 · . . . · (2N + 1)

(2x2)N+1
, N = 1, 2, 3, . . .

With the factor e−x2
in the above asymptotic expansion erfc(x) is a strongly

decreasing function. Hence, the following approximation erfc(x) ≈ cN (v) with a
continued fraction cN (v) of length N will fail, because cN (v) itself is a strongly
decreasing function, which consequently can not fulfill the condition (3) for a
small evaluation error. However, in contrast to erfc(x), the quotient erfc(x)/e−x2

is a nearly constant function, which can successfully be approximated by a
continued fraction c4(v) of length 4; v := 1/(x− x0), x0 := 20.5;

(8)
erfc(x)
e−x2 ≈ c4(v) := b0 +

a1

v + b1 +
a2

v + b2 +
a3

v + b3 +
a4

v + b4
.

, x 6= x0.

The calculation of the rational function P4(x − x0)/Q4(x − x0), the transfor-
mation u := x − x0 = 1/v and the computation of the ak, bk is done with the
algebra system Mathematica. Approximations of the ak, bk ∈ S(2, 53) are listed
in the following table:

k ak := nearest(.) bk := nearest(.)

0 +0.000000000000000000 · 10+0 +2.748881515193487221 · 10−2

1 −1.337745866182817076 · 10−3 +4.860780872578862971 · 10−2

2 +2.771654901614425610 · 10−6 +4.826766715012656847 · 10−2

3 +5.428546251910422025 · 10−6 +4.793524916454342483 · 10−2

4 +7.982629192430865797 · 10−6 +4.740017176613045964 · 10−2

Table 1: Approximations of the ak, bk ∈ S(2, 53) with 19 decimal digits.

Notice, that erfc(x0)/e−x2
0 will be approximated by b0 = 2.74888151519 . . .·10−2.

As erfc(x)/e−x2
and c4(v) are nearly constant functions in [a, b], the condition
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(3) for a small evaluation error of c4(v) will fairly well be fulfilled, and a C-XSC
program delivers the guaranteed upper bound ε(eval, c4(v)) of the evaluation
error

(9) ε(eval, c4(v)) = 5.353163 · 10−16 ≈ 2.41 · ε∗.

If the approximation is done by the rational function g(x)

erfc(x)
e−x2 ≈ g(x) :=

P4(x− x0)
Q4(x− x0)

≈ c4(v), x ∈ [a, b],

with the same point of expansion x0 = 20.5, then with another C-XSC program
we get the guaranteed upper bound ε(eval, g(x)) of the evaluation error

(10) ε(eval, g(x)) = 3.469925 · 10−15 ≈ 15.6 · ε∗.

Comparing the results in (9) and (10) we get an improvement of the evaluation
error by the factor 6.5 using the continued fraction c4(v) instead of the rational
function g(x).

Up to now we have approximated only the quotient erfc(x)/e−x2
. However,

in practice erfc(x) is evaluated by h(x):

erfc(x) ≈ h(x) := e−x2
· c4(v), v =

1
x− x0

.

The machine value h̃(x) is defined by

h̃(x) := expmx2(x)� c̃4(ṽ(x)), ṽ(x) := 1� (x	 x0),

where expmx2(x) is the C-XSC function for calculating e−x2
, provided with

the error bound ε(e−x2
) = 4.618919 · 10−16. {⊕,	,�,�} is the set of the

erroneous floating-point operators. The upper bound ε(eval, h(x)) of the relative
evaluation error εeval is defined by

h̃(x)− h(x) = εeval · h(x), |εeval| ≤ ε(eval, h(x)) = 1.233494 · 10−15,

and calculated with a special C-XSC program.
Using the upper bound ε(app, erfc(x)) = 7.7344 · 10−17 of the approximation

error [2], together with (1) we finally get

εerfc :=
erfc(x)− h̃(x)

erfc(x)
, |εerfc| ≤ ε(erfc(x)) = 1.3109 · 10−15 ∀x ∈ [a, b].

5.2 Approximation of erf(x)(x)(x), x ∈ [4.75, 6]x ∈ [4.75, 6]x ∈ [4.75, 6]

As can be seen in figure 3, erf(x) is a nearly constant function for x ∈ [a, b] =
[4.75, 6]. Hence, an approximation with the continued fraction c5(v)

(11) erf(x) ≈ c5(v) := b0 +
a1

v + b1 +
a2

v + b2 +
a3

v + b3 +
a4

v + b4 +
a5

v + b5
.
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v =
1

x− x0
, x 6= x0, x0 =

43
8

= 5.375;

will lead to a rather small evaluation error of c5(v), because condition (3) is
fulfilled now very well. As in section 5.1 the calculation of the rational function
P4(x−x0)/Q4(x−x0), the transformation u := x−x0 = 1/v and the computa-
tion of the ak, bk is done with the algebra system Mathematica. Approximations
of the ak, bk ∈ S(2, 53) are listed in the following table:

k ak := nearest(.) bk := nearest(.)

0 +0.000000000000000000 · 10+0 +9.999999999999707074 · 10−1

1 +3.201486811957019238 · 10−13 +5.376690224467207768 · 10+0

2 +9.971477472292114810 · 10+0 −8.665555788956434789 · 10−2

3 +2.021756014259896991 · 10+0 −1.023626941358960172 · 10−1

4 +9.110335999780354109 · 10−1 −2.340999377105155262 · 10−1

5 +4.483072053115112668 · 10−1 −4.994571201677685505 · 10−1

Table 2: Approximations of the ak, bk ∈ S(2, 53) with 19 decimal digits.

Notice, that erf(x0) will be approximated by b0 = 9.99999999999970 . . . · 10−1

without any evaluation error. With the erroneous machine value c̃5(ṽ) the rel-
ative evaluation error εeval is defined by

εeval =
c̃5(ṽ)− c5(v)

c5(v)
, ṽ = 1� (x	 x0).

A C-XSC program delivers for the upper bound ε(eval, c5(v)) the following result

(12) |εeval| ≤ ε(eval, c5(v)) = 2.220447 · 10−16 ≈ 1 · ε∗.

As we have already supposed, with the continued fraction c5(v) we now get a
rather small and optimal upper bound of the relative evaluation error.

If the approximation is done by the rational function g(x)

erf(x) ≈ g(x) :=
P5(x− x0)
Q5(x− x0)

≈ c5(v), x ∈ [a, b],

with the point of expansion x0 = 4.875, then with another C-XSC program we
get the guaranteed upper bound ε(eval, g(x)) of the evaluation error

(13) ε(eval, g(x)) = 3.450345 · 10−15 ≈ 15.5 · ε∗.

Comparing the results in (12) and (13) we get an improvement of the evaluation
error by the factor 15.5 using the continued fraction c5(v) instead of the rational
function g(x).
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With the upper bound ε(app, erf(x)) = 2.0982 · 10−17 of the approximation
error [2], together with (1) we finally get a rather small error bound:

εerfc :=
erfc(x)− h̃(x)

erfc(x)
, |εerfc| ≤ ε(erfc(x)) = 2.4303 · 10−16 ∀x ∈ [a, b].

Both examples demonstrate a drastic reduction of the evaluation error by using
a continued fraction of structure (7) instead of an equivalent rational approxima-
tion function. Furthermore the runtime can be reduced, because the evaluation
of c5(v) in (11) needs only 17 elementary operations in contrast to the rational
function P5(x− x0)/Q5(x− x0), which requires 22 operations.
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