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Visualization of Parametric Solution Sets

Evgenija D. Popova, Walter Krämer

Abstract. We characterize the boundary ∂Σp of the solution set Σp of a parametric linear
system A(p)x = b(p) where the elements of the n × n matrix and the right-hand side vector
depend on a number of parameters p varying within interval bounds. The characterization of
∂Σp is by means of pieces of parametric hypersurfaces, the latter represented by their coordinate
functions depending on corresponding subsets of n − 1 parameters. The presented approach
has a direct application for efficient visualization of parametric solution sets by utilizing some
plotting functions supported by Mathematica and Maple.

Keywords: Linear systems with depended data, interval uncertainties, parametric solution set,
visualization.

AMS subject classification (2000): 15A06, 65G99, 65S05, 68U05.

1 Introduction

Consider the linear algebraic system

A(p) · x = b(p), (1)

where the elements of the n × n matrix A(p) and the vector b(p) are either nonlinear functions

aij(p) = aij(p1, . . . , pk), bi(p) = bi(p1, . . . , pk), i, j = 1, . . . , n, (2)

or affine-linear functions

aij(p) := aij,0 +
k
∑

ν=1

aij,νpν , bi(p) := bi,0 +
k
∑

ν=1

bi,νpν , (3)

aij,ν , bi,ν ∈ R, ν = 0, . . . , k, i, j = 1, . . . , n

of k parameters. The parameters are considered to be uncertain and varying within given inter-
vals

p ∈ [p] = ([p1], . . . , [pk])
>. (4)

Such systems are common in many engineering analysis or design problems, models in op-
erational research, linear prediction problems, etc., where there are complicated dependencies
between the coefficients of the system [1], [2], [10]. The uncertainties in the model parameters
could originate from an inexact knowledge of these parameters, measurement imprecision, or
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round-off errors. Linear systems with interval input data are applicable also to uncertainty the-
ories which rely on interval arithmetic for computations, such as fuzzy set theory, random set
theory, or probability bounds theory.

The set of solutions to (1–4), called parametric solution set, is

Σp = Σ (A(p), b(p), [p]) := {x ∈ R
n | A(p) · x = b(p) for some p ∈ [p]} . (5)

The well-known non-parametric interval linear system [A]x = [b], which is the most studied in
the interval literature, can be considered as a special case of the parametric linear system with
n2 + n independent parameters aij ∈ [aij], bi ∈ [bi], i, j = 1, . . . , n. For a parametric system
(1–4), the corresponding non-parametric one with [A] = ([aij]) ∈ IR

n×n, [b] ∈ IR
n can be

obtained as

[aij] = �{aij(p) | p ∈ [p]}, [bi] = �{bi(p) | p ∈ [p]}, i, j = 1, . . . , n,

where � denotes the interval hull, defined by �S := [inf S, sup S] for a nonempty bounded
set S ⊆ R

n. The non-parametric solution set, called also united solution set, is defined as

Σ ([A], [b]) := {x ∈ R
n | ∃A ∈ [A],∃b ∈ [b], A · x = b} .

The parametric solution set Σp is much more complicated than the corresponding non-
parametric solution set. For example, Σp is generally not convex even in a single orthant.
Therefore, it would be interesting and helpful to see how some parametric solution sets look
like. The visualization of Σp (even only in 2D or 3D) would be helpful not only for graphical
illustration but also for exploration of some properties and for comparison of some numerical
results.

In a series of papers (see e.g. [3], [4], [5] and the references therein) Alefeld, Kreinovich,
and Mayer give various descriptions of the solution sets for systems of interval linear equa-
tions with dependent coefficients, paying particular attention to the symmetric solution set. For
example, in [4] the parametric solution set is described as a semialgebraic set. The latter is a
subset of R

n which is a finite Boolean combination of sets of the form {x ∈ R
n : f(x) > 0} and

{x ∈ R
n : g(x) = 0}, where f and g are polynomials in x1, . . . , xn over the reals [14]. Unfor-

tunately, most of these descriptions do not contain a constructive process which could be used
for drawing the parametric solution set. This gap was fulfilled in [6] where the solution sets of
parametric linear systems involving affine-linear dependencies were characterized by systems
of inequalities obtained by a Fourier-Motzkin like elimination process. Provided that the pro-
posed Fourier-Motzkin like elimination process is implemented in suitable software tools, this
approach can be applied for drawing the parametric solution sets in environments supporting
tools for inequalities plotting. The algorithms for plotting inequalities are usually based on
cylindrical algebraic decomposition (CAD) [7]. Although CAD is an algorithmic process, it
becomes computationally infeasible for complicated inequalities.

Utilizing the set of inequalities by which the famous Oettli-Prager theorem [11] character-
izes the non-parametric solution set and the tools for inequalities plotting supported in Math-
ematica [15], corresponding functions for drawing non-parametric solution sets in 2D and 3D
were developed and a suitable web interface to these functions was provided [12]. Recently
some other Java-based tools for drawing non-parametric solution sets were also reported [9]. In
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[12] tools for drawing connected parametric solution sets were also reported. The correspond-
ing visualization function utilizes the available Mathematica functions for plotting parametric
curves but the quality of the produced solution set image has some deficiencies.

In this paper we present an approach for characterizing the parametric solution set which
is alternative to that based on systems of inequalities [6]. Our approach is designed particu-
larly for visualization of the parametric solution set boundary and can be easily implemented
in the environments of Mathematica [15] and Maple [8] which support functions for plotting
parametric curves and surfaces. Section 3 discusses how to utilize the plotting functions in
Mathematica and Maple for visualization the solution sets of some special cases of parametric
linear systems, in particular for visualization the solution sets of 2D linear systems involving
nonlinear dependencies. In Section 4 we derive our approach and characterize the boundary
∂Σp of the solution set Σp to a system involving affine-linear dependencies by means of pieces
of parametric hypersurfaces, the latter represented by their coordinate functions depending on
corresponding sets of k ≤ n − 1 parameters. The numerical examples given throughout the
paper demonstrate the discussed visualization approaches and illustrate some properties of the
parametric solution sets.

2 Preliminaries

Denote by R
n, Rn×m the set of real vectors with n components and the set of real n×m matrices,

respectively. A real compact interval is [a] = [a−, a+] := {a ∈ R | a− ≤ a ≤ a+}. By
IR

n, IRn×m we denote the sets of interval n-vectors and interval n × m matrices, respectively.
The end-point functionals (·)−, (·)+ are applied to interval vectors and matrices componentwise.

Theorem 2.1. If A(p) is nonsingular for all p ∈ [p] then Σp is compact and connected.

Proof. Since A(p) is non-singular for every p ∈ [p], A−1(p) exists for p ∈ [p] and x(p) :=
A−1(p) · b(p) is a function of k variables p ∈ R

k which is continuous. Since [pν ], ν = 1, . . . , k
are connected and compact, the same holds for the image Σp of x(p).

An obvious set-theoretical description of the parametric solution set is given by the follow-
ing

Theorem 2.2.
Σp (A(p), b(p), [p]) :=

⋃

p̃∈[p]

{x ∈ R
n | A(p̃) · x = b(p̃)} .

In particular, if A(p) is square nonsingular for all p ∈ [p] then

Σp (A(p), b(p), [p]) :=
⋃

p̃∈[p]

{x(p̃) = A−1(p̃) · b(p̃)}.

Denote by ∂Σp the boundary of the parametric solution set Σp. In what follows we will
characterize ∂Σp by pieces of parametric hypersurfaces. Hypersurface is an (n−1)-dimensional
surface embedded in n-dimensional space. A hypersurface is therefore the set of solutions to a
single equation

f(x1, . . . , xn) = 0.
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Definition 1. A hypersurface in n-dimensional space is called parametric if it is defined by n
coordinate functions

xi = xi(p1, . . . , pk), i = 1, . . . , n

depending on k ≤ n − 1 parameters.

Parametric hypersurface (PHS) is then a hypersurface parameterized by its coordinates.
The parametric hypersurfaces will be denoted by n-dimensional vectors x(p) where p are k-
dimensional parameter vectors and k ≤ n− 1. A parametric hypersurface is called degenerated
if it is defined by k < n − 1 parameters. In a 3D space degenerated parametric hypersurfaces
are curves and points.

Particular pieces (parts) of a parametric hypersurface will be obtained for specified ranges
of the parameters p−j ≤ pj ≤ p+

j , j = 1, . . . , k. Therefore, particular parts of a parametric
hypersurface will be denoted by x(p)

∣

∣

p∈[p]
and will be also called restricted PHS-s.

3 Special Cases

In this section we demonstrate how to utilize the plotting functions in Mathematica and Maple
for visualizing the solution set of some particular cases of 2D and 3D parametric linear systems.

Consider the parametric linear system (1–4). If A(p) is nonsingular for all p ∈ [p] and the
number of parameters is k ≤ n − 1, then x(p) = A−1(p) · b(p) defines a PHS (curve for k = 1)
in R

n which fully characterizes the parametric solution set (5), respectively its boundary.
For n = 2, k = n − 1, e.g., the parametric solution set is a parametric curve which x, y

coordinates are functions of one uncertain parameter p ∈ [p]

x = x1(p) = {A−1(p) · b(p)}1

y = x2(p) = {A−1(p) · b(p)}2.

Many computer algebra systems, e.g. Mathematica [15] and Maple [8] have built-in func-
tions for drawing 2D and 3D parametric plots. In 2D, Mathematica and Maple effectively
generate a sequence of points by varying the parameter p, then form a curve by joining these
points.

Example 3.1. (n = 2, k = 1) Let

A(p) =

(

3p 1
−2 3p − 1

)

, b(p) =

(

2p
p

)

, p ∈ [0, 1].

For these data, the parametric solution set is that part of the parametric curve

x(p) = A−1(p) · b(p) =

(

−3p + 6p2

4p + 3p2

)

/(2 − 3p + 9p2)

which is obtained for 0 ≤ p ≤ 1.
The following Maple code visualizes on Fig. 1 the parametric solution set as a part of the

corresponding parametric curve.
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> A:=[[3*p, 1], [-2, 3*p-1]]:
> b:=[2*p, p]:
> x:=linalg[linsolve](A, b):
> plot([x[1], x[2], p=0..1]);

The same figure can be generated in Mathematica by using its kernel function ParametricPlot.

-0.2 -0.1 0.1 0.2 0.3
x1

0.2

0.4

0.6

0.8

1

x2

Figure 1: The parametric solution set of the system from Example 3.1.

Mathematica and Maple can be also used for plotting either one- or two-parameter sets of
points in a 3D space. The built-in functions plot3D in Maple or ParametricPlot3D in
Mathematica create three-dimensional space curves and surfaces, parameterized by one or two
coordinates respectively. In Mathematica the surface is formed from a collection of quadrilat-
erals. The corners of the quadrilaterals have coordinates corresponding to the values of z =
z(u, v) when the parameters u and v take on values in a regular grid. The option PlotPoints
of the Mathematica function ParametricPlot3D allows a user to specify the number of
sample points used. The Mathematica package Graphics‘ParametricPlot3D‘ extends
the kernel function ParametricPlot3D by providing an alternative to the PlotPoints
option where the sampling may be specified by giving a step size in each coordinate. The pack-
age also introduces PointParametricPlot3D function for plotting either one- or two-
parameter sets of points in space.

Example 3.2. (n = 3, k = 2) Let

A(p) =





1 p q
p 2 p
q p 3



 , b(p) =





1
p2

q2



 ,
p ∈ [0, 1]

q ∈ [0, 0.9].

The following Mathematica code generates the snail represented on Fig. 2A.

In[1]:= m = {{1,p,q}, {p,2,p}, {q,p,3}};
b = {1, pˆ2, qˆ2};
s = LinearSolve[m, b];
ParametricPlot3D[s, {p,0,1}, {q,0,0.9}];

Example 3.3. (n = 3, k = 1) For

A(p) =





1 p p
p 2 p
p p 3



 , b(p) =





1
p2

p2



 , p ∈ [−0.2, 0.1],
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the one-parameter solution set is a 3D curve represented on Fig. 2B.

1

1.05

1.1

-0.15

-0.1

-0.05

0

0.05

-0.1

-0.05

0

1

1.05

1.1

-0.15

-0.1

-0.05

0

0.05

0.8

0.9

1

1.1
-0.1

0

0.1
-0.05

0

0.05

0.8

0.9

1

1.1

A B

Figure 2: One- (B) and two-parameter (A) solution sets corresponding to the 3D linear systems
from Examples 3.3 and 3.2, respectively.

For 2D systems involving more than one parameter and having nonsingular matrices for all
values of the parameters, we can get a good impression of the parametric solution set by drawing
a set of one-parameter curves obtained for the parameters after the first one taking on values in
a grid of points within the parameter intervals. This approach is implemented in a Mathematica
function ParametricSSetwhich is part of the package IntervalComputations‘Solu
tionSets‘. The following Example illustrates the usage of this function.

Example 3.4. (n = 2, k = 2) Let

A(p) =

(

p q − 1
q p

)

, b(p) =

(

−q + 1/3
q

)

, p ∈ [−2,−1], q ∈ [3, 5].

The following Mathematica code first loads the package, then defines the arguments and
calls the visualization function.

In[5]:= << IntervalComputations‘SolutionSets‘
In[6]:= m = {{p, q-1}, {q, p}}; b={-q+1/3, q};

tr = {p->Interval[{-2, -1}], q->Interval[{3, 5}]};
ParametricSSet[m, b, tr];

The function ParametricSSet[mat, vec, tr] has three obligatory arguments: mat is
the parametric matrix of the system, vec is the right-hand side vector, and tr is a list of Mathe-
matica rules specifying the parameters and their interval values. By default, ParametricSSet
draws a set of one-parameter curves taken on an uniform mesh in the parameter intervals after
the first one. The default value for the mesh step size is 1% of the interval width. Fig. 3A
represents the generated graphics image.

By an optional argument StepSize, one can specify particular values for the step size
of all parameter values after the first one. The graphics on Fig. 3B is drawn by specifying
StepSize->{0.1} regarding the second parameter q. Although the set of one-parameter
curves on Fig. 3B is more shaggy than that on Fig. 3A, the shape of the parametric solution set
is still well visible.
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0.5 0.6 0.7 0.8

-0.975

-0.95

-0.925

-0.9

-0.875

-0.85

0.5 0.6 0.7 0.8

-0.975

-0.95

-0.925

-0.9

-0.875

-0.85

0.5 0.6 0.7 0.8

-0.975

-0.95

-0.925

-0.9

-0.875

-0.85
A B C

Figure 3: The parametric solution set of Example 3.4 built by 1-parameter curves drawn on an
uniform mesh for the parameters after the first one. A: the default value for the StepSize
which is 1% of the interval width, B: StepSize= 0.1 for the parameter q, C: StepSize=
0.05 for the parameter p.

In[9]:= tr = {q->Interval[{3, 5}], p->Interval[{-2, -1}]};
ParametricSSet[m, b, tr, StepSize->{0.05}];

One can change the order in which the parameters are enlisted in the third argument of the
function ParametricSSet, and this way to represent the parametric solution set by another
set of one-parameter curves. The result of the execution of the above code can be seen on
Fig. 3C.

Based on the representation given by Theorem 2.2, a 2D parametric solution set can be
visualized by a set of one-parameter curves drawn in a mesh of values for the parameters after
the first one. This is the only approach for visualization the solution set of a 2D linear system
involving nonlinear dependencies. For example, Fig. 4 shows the graphics produced by the
function ParametricSSet for the system

A(p) =

(

a ∗ b 1
3 b2

)

, b(p) =

(

a/b
cos(a)

)

, a ∈ [1, 9], b ∈ [2, 3].

0.15 0.2 0.25 0.3
x1

-0.5

-0.4

-0.3

-0.2

-0.1

0.1
x2

Figure 4: The parametric solution set of a 2D linear system involving nonlinear dependencies.

Unfortunately, the above approach is not applicable for drawing disconnected 2D solution sets
and in the case of 3D systems. An important disadvantage is the big size of the graphics image
which increases with decreasing the mesh step size. That is why, in the next section we derive
another approach for visualization only the boundary of the parametric solution set. To this end,
the parametric solution set is characterized by parametric hypersurfaces.
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4 Main Results

In this section we consider parametric linear systems involving affine-linear dependencies. The
following definitions and notations will be used. Let K = {1, . . . , k}. For n ≤ k, define
Q(n − 1, k) as the set of all possible subsets of K containing n − 1 elements

Q(n − 1, k) := {q = {i1, . . . , in−1} | q ⊂ K, Card(q) = n − 1} .

For k < n, Q(n − 1, k) := {q | q = K}, that is Q(n − 1, k) consists of only one set which
is the set K itself. For n ≤ k the dimension of Q(n − 1, k) is Card(Q(n − 1, k)) =

(

k

n−1

)

=
k!

(k−n+1)!(n−1)!
. For a set of indexes q = {i1, . . . , in−1} ∈ Q(n− 1, k), the vector (pi1 , . . . , pin−1

)
will be denoted by pq.

For a vector p = (p1, . . . , pk) ∈ R
k and q ∈ Q(n − 1, k), define q̃ = K \ q and two vectors

pq ∈ R
n−1, pq̃ ∈ R

k−n+1 by

pq := (pi1 , . . . , pin−1
),

pq̃ := (pin , . . . , pik).

For n ≤ k, the vectors pq and pq̃ split the original vector p into two nonintersecting subvectors
defined by the set of indexes q.

Denote by U(k − n + 1) :=
{

u ∈ R
k−n+1 | |u| = (1, . . . , 1)>

}

the set of all (k − n + 1)-
dimensional sign vectors. For [a] = [a−, a+] ∈ IR

k−n+1 and u ∈ U(k − n + 1),

{au}i :=

{

a−
i if ui = −1

a+
i if ui = 1

, i = 1, . . . , k − n + 1.

Thus for an interval vector [a], au denotes a real vector whose elements are corresponding
interval end-points. The dimension of the set U(k − n + 1) is Card(U(k − n + 1)) = 2k−n+1.

Our first theorem characterizes exactly the boundary ∂Σp by parts of parametric hypersur-
faces in the special case when the number of the parameters is less than or equal to the dimension
of the system.

Theorem 4.1. If A(p) is nonsingular for all p ∈ [p] and k ≤ n, then

∂Σp =
⋃

q∈Q(n−1,k)

{

x(pq, p
−
q̃ )
∣

∣

∣

pq∈[pq ]
, x(pq, p

+
q̃ )
∣

∣

∣

pq∈[pq ]

}

.

Proof. By definition, every tuple of n− 1 parameters determines one PHS in the nD-space. So,
if k ≤ n − 1, ∂Σp consists of a piece of exactly one PHS, possibly degenerated if k < n − 1,
which is the parametric solution set itself

∂Σp = x(p)
∣

∣

∣

p∈[p]
= Σp,

where x(p) = A−1(p) · b(p) and [p] ∈ IR
k, k ≤ n − 1.
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Let k = n. For a fixed q ∈ Q(n − 1, k), pq̃ is a one-component vector. Define the set of
restricted PHS-s

Σpq ,pq̃ :=
⋃

t∈[pq̃ ]

x(pq, t)
∣

∣

∣

pq∈[pq ]
.

It is evident that Σpq ,pq̃ ≡ Σp. By Tarski’s theorem [13], Σp, respectively Σpq ,pq̃ , is a semial-
gebraic set, that is a subset of R

n which is a finite Boolean combination of sets of the form
{x ∈ R

n : f(x) > 0} and {x ∈ R
n : g(x) = 0}, where f and g are polynomials in x1, . . . , xn

over the reals [14]. From the theorem, defining a Fourier-Motzkin-like elimination process for
parameter-dependent linear systems [6], it follows that eliminating the parameter pq̃ we will
obtain an equivalent representation of Σp, resp. Σpq ,pq̃ , as a semialgebraic set where the in-
volved polynomials contain the end-points p−

q̃ and p+
q̃ instead of the parameter pq̃. Since some

of these polynomials define also the boundary of the set, the PHS-s x(pq, p
−
q̃ ) and x(pq, p

+
q̃ )

are boundaries of the set Σpq ,pq̃ . Due to Σpq ,pq̃ ≡ Σp, these end-point PHS-s are boundaries of
the parametric solution set Σp, too. For q1, q2 ∈ Q(n − 1, k), q1 6= q2 and fixed t1 ∈ [pq̃1

],
t2 ∈ [pq̃2

], in general x(pq1
, t1) 6= x(pq2

, t2), but Σpq1
,pq̃1 ≡ Σpq2

,pq̃2 . Thus, when q traces the set
Q(n−1, k), pq̃ traces all the parameters, respectively all the boundary parametric hypersurfaces,
which proves the theorem.

Figures 3B and 3C illustrate the above Theorem.

Remark 4.1. If k = n and for some q1 ∈ Q(n − 1, k), some λ ∈ {−, +}, x(pq1
, pλ

q̃1
) is

degenerated, than there exist q2 ∈ Q(n − 1, k), µ ∈ {−, +} such that x(pq2
, pµ

q̃2
) is non-

degenerated and x(pq1
, pλ

q̃1
) ∈ x(pq2

, pµ
q̃2

).

Example 4.1. Consider the parametric linear system
(

p1 p2 − 1
p2 p1

)

· x =

(

−p2 + 1/3
p2

)

, p1 ∈ [−2,−1], p2 ∈ [3, 5].

For p1 ∈ [−2,−1], p2 ∈ [3, 5], A(p) is nonsingular and

A−1(p) =

(

p1 1 − p2

−p2 p1

)

/(p2
1 + p2 − p2

2).

We have Q(n − 1, k) = Q(1, 2) = {{1}, {2}}. For q = {1},

x(p1, p
−
2 ) =

(

−2(9 + 4p1)/3
8 + 3p1

)

/(−6 + p2
1),

x(p1, p
+
2 ) =

(

−2(30 + 7p1)
5(14 + 3p1)

)

/(−60 + 3p2
1).

For q = {2},

x(p2, p
−
1 ) =

(

2 − 9p2 + 3p2
2

−p2(8 − 7 + 3p2)

)

/(−12 − 3p2 + 3p2
2),

x(p2, p
+
1 ) =

(

1 − 6p2 + 3p2
2

−p2(−4 + 3p2)

)

/(−3 − 3p2 + 3p2
2).

The corresponding parts of the above boundary curves are drawn on Figure 5. Compare Fig. 5
and Fig. 3.



4 MAIN RESULTS 12

0.5 0.6 0.7 0.8

-0.975

-0.95

-0.925

-0.9

-0.875

-0.85

x(p2, p
−

1 )

x(p2, p
+

1 )
x(p1, p

−

2 )

x(p1, p
+

2 )

Figure 5: Boundary curves for the parametric solution set from Example 4.1.

Let k > n and q ∈ Q(n − 1, k) be fixed. Since k > n, the corresponding ”free” parameters
pq̃ ∈ R

k−n+1 are more than one. Let k − n + 1 = 2. For fixed t1 ∈ {[pq̃]}1, define a set of
restricted PHS-s

Σpq ,t1 := { x(pq, t1, t2)
∣

∣

∣

pq∈[pq ]
| t2 ∈ {[pq̃]}2}.

Then the whole parametric solution set Σp can be considered as a family Σpq of sets defined by
one free parameter

Σpq :=
⋃

t1∈{[pq̃ ]}
1

Σpq ,t1 . (6)

By Theorem 4.1, ∂Σpq ,t1 = { x(pq, t1, t
−
2 )
∣

∣

pq∈[pq ]
, x(pq, t1, t

+
2 )
∣

∣

pq∈[pq ]
}, where t2 = {[pq̃]}2.

Thus, for k − n + 1 = 2 we obtain

∂Σpq ⊆ ∂Σpq ,tλ
1 =

⋃

u∈U(k−n+1)

x(pq, pu
q̃ )
∣

∣

∣

pq∈[pq ]
,

where t1 ∈ {[pq̃]}1 and λ ∈ {+,−}. By induction on the number of free parameters and by
varying q ∈ Q(n − 1, k), we prove the following theorem which generalizes Theorem 4.1 for
k > n.

Theorem 4.2. If A(p) is nonsingular for all p ∈ [p], then

∂Σp ⊆
⋃

q∈Q(n−1,k)

⋃

u∈U(k−n+1)

x(pq, pu
q̃ )
∣

∣

∣

pq∈[pq ]
⊆ Σp. (7)

The set in the middle of the relation (7) will be called set of end-point parametric hypersur-
faces.

Example 4.2. Consider the parametric linear system

(

1 p1

p1 p2

)

· x =

(

p3

p3

)

,

p1 ∈ [0, 1]

p2 ∈ [−4,−1]

p3 ∈ [0, 2].
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For the parameters varying within their intervals, A(p) is nonsingular and

A−1(p) =

(

p2 −p1

−p1 1

)

/(−p2
1 + p2).

Q(n − 1, k) = {{1}, {2}, {3}}, then we obtain the following set of PHS-s. For q = {1} the
corresponding end-point PHS-s are

x(p1, p
−
2 , p−3 ) = x(p1, p

+
2 , p−3 ) = (0, 0)>,

x(p1, p
−
2 , p+

3 ) =

(

8 + 2p1

−2 + 2p1

)

/(4 + p2
1), x(p1, p

+
2 , p+

3 ) =

(

2 + 2p1

−2 + 2p1

)

/(1 + p2
1).

Parts of these PHS-s corresponding to p1 ∈ [0, 1] are presented on Figure 6A. For q = {2} the
corresponding end-point PHS-s are

x(p2, p
−
1 , p−3 ) = x(p2, p

+
1 , p−3 ) = (0, 0)>,

x(p2, p
−
1 , p+

3 ) = (2, 2/p2)
>, x(p2, p

+
1 , p+

3 ) = (2, 0)>.

Those parts of the above PHS-s corresponding to p2 ∈ [−4,−1] are presented on Figure 6B.

0 0.5 1 1.5 2 2.5

-2

-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5

-2

-1.5

-1

-0.5

0

A B

0 0.5 1 1.5 2 2.5

-2

-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5

-2

-1.5

-1

-0.5

0

C D

Figure 6: Parts of the end-point parametric hypersurfaces for the system from Example 4.2.
A: x(p1, p

u
1̃
)
∣

∣

p1∈[0,1]
, B: x(p2, p

u
2̃
)
∣

∣

p2∈[−4,−1]
, C: x(p3, p

u
3̃
)
∣

∣

p3∈[0,2]
, where u ∈ U(2). D: The

parametric solution set represented by the set of all end-point parametric hypersurfaces for the
system from Example 4.2.

For q = {3} the corresponding end-point PHS-s are

x(p3, p
−
1 , p−2 ) = (p3,−p3/4)

>, x(p3, p
+
1 , p−2 ) = x(p3, p

−
1 , p+

2 ) = (p3, 0)
>,

x(p3, p
−
1 , p+

2 ) = (p3,−p3)
>.

Those parts of the above PHS-s corresponding to p3 ∈ [0, 2] are presented on Figure 6C. The
set of all end-point PHS-s restricted to the ranges of the corresponding parameters is presented
on Figure 6D.
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The set of all end-point PHS-s contains exceed parametric hypersurfaces. The dimension

of this set is also quite big, Card
(

⋃

q∈Q

⋃

u∈U x(pq, pu
q̃ )
)

=
(

k

n−1

)

2k−n+1, growing with the

dimension of the system and the number of free parameters. In the 3D case drawing exceed
parametric surfaces will make the plotting function take much longer to render the surface.
Therefore, we need a mechanism for filtering only the boundary PHS-s from the set of all end-
point parametric hypersurfaces. Since Remark 4.1 remains valid also for k > n, all degenerated
end-point PHS-s may be eliminated from the set of end-point PHS-s. One criterion for elimi-
nating particular end-point PHS-s is given by the following.

Theorem 4.3. Let A(p) be nonsingular for all p ∈ [p] and k > n. For fixed q ∈ Q(n − 1, k)
and λ ∈ U(k − n + 1), the corresponding restricted PHS x

(

pq, pλ
q̃

)∣

∣

pq∈[pq ]
6∈ ∂Σp if there

exist another piece of PHS, defined by r ∈ Q(n − 1, k) and µ ∈ U(k − n + 1), such that

� x(pq, p
λ
q̃ )
∣

∣

∣

pq∈[pq ]
⊂ � x(pr, p

µ
r̃ )
∣

∣

∣

pr∈[pr ]
.

Example 4.3. Consider the parametric linear system

(

2p1 −p2

p2 2p1

)

· x =

(

p3

p3

)

,
p1 ∈ [1, 2]
p2 ∈ [−1, 2]
p3 ∈ [−2, 2].

The matrix is nonsingular for all values of the parameters within their intervals and

A−1(p) =

(

2p1 p2

−p2 2p1

)

/(4p2
1 + p2

2).

Q(n − 1, k) = {{1}, {2}, {3}}, then we obtain the following set of end-point PHS-s. For
q = {1}

x(p1, p
−
2 , p−3 ) = −x(p1, p

−
2 , p+

3 ) =

(

2 − 4p1

−2 − 4p1

)

/(1 + 4p2
1),

x(p1, p
+
2 , p−3 ) = −x(p1, p

+
2 , p+

3 ) =

(

−1 − p1

1 − p1

)

/(1 + p2
1).

The corresponding pieces of these PHS-s are presented on Figure 7A. For their hulls we have

� x(p1, p
−
2 , p−3 )

∣

∣

∣

p1∈[p1]
=

(

[ −
√

2
2+

√
2
, −6

17
]

[−6
5

, −10
17

]

)

,� x(p1, p
+
2 , p−3 )

∣

∣

∣

p1∈[p1]
=

(

[−1,−3/5]

[−1/5, 0]

)

.

For q = {1} no one of the restricted PHS-s satisfies Theorem 4.3.
For q = {2},

x(p−1 , p2, p
−
3 ) = −x(p−1 , p2, p

+
3 ) =

(

−4 − 2p2

−4 + 2p2

)

/(4 + p2
2),

x(p+
1 , p2, p

−
3 ) = −x(p+

1 , p2, p
+
3 ) =

(

−8 − 2p2

−8 + 2p2

)

/(16 + p2
2).
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1
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A B

Figure 7: Restricted end-point PHS-s for the system from Example 4.3 and q = {1} (A),
q = {2} (B).

The corresponding pieces of these PHS-s are presented on Figure 7B. For their hulls we have

� x(p−1 , p2, p
−
3 )
∣

∣

∣

p2∈[p2]
=

(

[ 1√
2(−2+

√
2)

, −2
5

]

[ 1√
2(−2+

√
2)

, 0]

)

,

� x(p+
1 , p2, p

−
3 )
∣

∣

∣

p2∈[p2]
=

(

[ 1
4−4

√
2
, −6

17
]

[−10
17

, −1
5

]

)

.

Since � x(p+
1 , p2, p

−
3 )
∣

∣

p2∈[p2]
⊂ � x(p−1 , p2, p

−
3 )
∣

∣

p2∈[p2]
, by Theorem 4.3, x(p+

1 , p2, p
−
3 )
∣

∣

p2∈[p2]

is not a boundary curve. Analogously x(p−
1 , p2, p

+
3 )
∣

∣

p2∈[p2]
is not a boundary curve. Both curves

are represented on Figure 7B as dashed curves. For q = {3},

x(p−1 , p−2 , p3) =

(

p3/5
3p3/5

)

, x(p+
1 , p−2 , p3) =

(

3p3/17
5p3/17

)

x(p−1 , p+
2 , p3) =

(

p3/2
0

)

, x(p+
1 , p+

2 , p3) =

(

3p3/10
p3/10

)

.

The corresponding pieces of these PHS-s are presented on Figure 8A and their hulls are

� x(p−1 , p−2 , p3)
∣

∣

∣

p3∈[p3]
=

(

[−2
5

, 2
5
]

[−6
5

, 6
5
]

)

, � x(p+
1 , p−2 , p3)

∣

∣

∣

p3∈[p3]
=

(

[−6
17

, 6
17

]

[−10
17

, 10
17

]

)

� x(p−1 , p+
2 , p3)

∣

∣

∣

p3∈[p3]
=

(

[−1, 1]

[0, 0]

)

, � x(p+
1 , p+

2 , p3)
∣

∣

∣

p3∈[p3]
=

(

[−3
5

, 3
5
]

[−1
5

, 1
5
]

)

.

Since � x(p+
1 , p−2 , p3)

∣

∣

p3∈[p3]
⊂ � x(p−1 , p−2 , p3)

∣

∣

p3∈[p3]
, by Theorem 4.3, � x(p+

1 , p−2 , p3)
∣

∣

p3∈[p3]

is not a boundary curve. Since � x(p1, p
+
2 , p−3 )

∣

∣

p1∈[p1]
⊂ � x(p−1 , p2, p

−
3 )
∣

∣

p2∈[p2]
,

� x(p1, p
+
2 , p+

3 )
∣

∣

p1∈[p1]
⊂ � x(p−1 , p2, p

+
3 )
∣

∣

p2∈[p2]
, then by Theorem 4.3 � x(p1, p

+
2 , p−3 )

∣

∣

p1∈[p1]

and � x(p1, p
+
2 , p+

3 )
∣

∣

p1∈[p1]
are not boundary curves, too. The set of restricted end-point PHS-s

that remains after the application of Theorem 4.3 is drawn on Figure 8B. Obviously, there are
end-point PHS-s that are not boundaries but cannot be eliminated by the above criterion. For
producing a best looking graphics the exceed end-point PHS-s can be eliminated manually by
enumerating the elements of the set of end-point parametric hypersurfaces .
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A B

Figure 8: For the system from Example 4.3, A: end-point PHS-s for q = {3}; B: the set of
end-point PHS-s for q = {1}, {2}, {3} after the application of Theorem 4.3.

5 Conclusion

We characterized the boundary of a parametric solution set by parts of parametric hypersurfaces.
In view that some environments like Mathematica and Maple support tools for drawing para-
metric hypersurfaces, the presented approach is much more straightforward for visualization
of parametric solution sets than the approach based on a combination of Fourier-Motzkin like
elimination and CAD for visualization of inequalities. Furthermore, the inequalities plotting
functions cannot visualize the parametric solution set in the case k ≤ n − 1.
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