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Abstract

For the implementation of mathematical functions on a computer often a large num-
ber of different expressions are used in different parts of the domain of the function
under consideration. Deriving corresponding a-priori error bounds for the numeri-
cal evaluation of these expressions by hand is a very tedious and error-prone task.
We discuss software tools implemented in C-XSC which can be used to automati-
cally compute a priori error bounds for the numerical evaluation (using IEEE-754
floating-point operations) of arithmetic expressions. The tools are available as open
source software and have been used with great success to find reliable and tight
worst-case error bounds for mathematical function expressions. For a very simple
example numerical results will be shown.
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1 Introduction

In general the computer evaluation of a function expression f() leads to a
defective machine value f̃(x̃) for IEEE machine numbers x̃ ∈ [a, b] as argu-
ments. With the exact function value f(x̃) the absolute error can be written
as f̃(x̃) − f(x̃) = εx · f(x̃), where εx is the relative error depending on the
argument x̃, the used expression term (mathematically equivalent expressions
in general lead to different error bounds), and the actual rounding mode of the
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CPU. If |εx| ≤ ε(f) ∀x̃ ∈ [a, b] and if f is, for example, a positive, monotonic
function then for all real arguments x ∈ [a, b] the function values f(x) are
included by

f̃(a)

1 + ε(f)
≤ f(x) ≤ f̃(b)

1− ε(f)
∀x ∈ [a, b] (1)

Hence, for the implementation of interval standard functions we need the
relative error bounds ε(f), which have been calculated e. g. in [5, 11, 4, 13,
7, 9, 10]. In [1] these ε(f)-values are computed automatically by reading the
actual approximation term of the function under consideration. Here we use a
more expensive but more flexible method, where each of the basic operations
in the function term will be handled by an appropriate function call in a C-
XSC program [2]. In some cases the ε(f)-values can be improved by choosing
different function terms in different regions of the domain and by using refined
error bounds for elementary operations with special operands. We demonstrate
these techniques With numerical examples. For the algorithms of the functions√

x2 − 1 and e−x2
we give some hints for getting small error bounds.

2 Calculating error bounds

2.1 Error bounds of the elementary operations

Let S(2, 53) denote the system of IEEE-numbers. In general the sum ã + b̃
of two machine numbers ã and b̃ is not a machine number itself and must be
rounded to ã ⊕ b̃ ∈ S(2, 53). If εã,b̃ is the relative error, the absolute error is

given by (ã ⊕ b̃) − (ã + b̃) = εã,b̃ · (ã + b̃) depending on ã and b̃ and on the
actual rounding mode of the CPU. If we allow the rounding to any of the two
neighbouring machine numbers (in this case we use the term high accuracy)
then for the four elementary operations with results in the normalized range
|εã,b̃| ≤ 2−52 =: ε∗ ,and the absolute error of our sum can be estimated in high
accuracy:

|(ã⊕ b̃)− (ã + b̃)| ≤ ε∗ · |ã + b̃| (2)

If all error estimations are done with the rounding of the elementary operations
in high accuracy, the calculated error bounds are valid independently from the
actul rounding mode of the CPU.

2.2 Calculating error bounds in C-XSC

We assume real values a and b ∈ IR with a ∈ AAA and b ∈ BBB, where AAA,BBB are
machine intervals and interpret a as an exact result value, which has been
evaluated on a computer with the machine result ã = a + δa. Furthermore we
assume |δa| ≤ ∆(a) ∀a ∈ AAA (the bound Delta(a) is a known quantity). If we
calculate the machine sum ã⊕ b̃ of the defective function values ã and b̃ then
the absolute error is defined by δ+ := ã⊕ b̃− (a + b). With ∆ := ∆(a) + ∆(b)
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the absolute error |δ+| is bounded by

|δ+| ≤ ∆(+) := ∆ + ε∗ · (∆ + |AAA 3+ BBB|) a ∈ AAA, b ∈ BBB, (3)

where |AAA 3+ BBB| is the maximum of the absolute values of the interval sum
AAA 3+ BBB. Here 3+ denotes interval addition. Appropriate bounds ∆(◦), ε(◦) for
the absolute and relative errors of the elementary operations ◦ ∈ {+,−, ·, /}
are given in [1]. Our simple example of the addition demonstrates that for cal-
culating the error bound of an elementary operation we only need the inclusion
intervals AAA,BBB of the exact operands a and b and their absolute or relative error
bounds. Hence, for any elementary operation of a given expression we need
an appropriate function call with the input data AAAand BBB together with the
error bounds of the operands which deliver the error bound of the operation
and an inclusion interval RRR for all exact operation results a ◦ b. The described
functions are available in C-XSC, and an error bound of a given expression
can be calculated by a sequence of appropriate function calls [2]. The follow-
ing program fragment shows the calculation of a relative error bound for the
simple term T1(x) = 1− x2, x̃ ∈ [2−12, 0.658]:

#include "abs_relh.hpp" //basic C-XSC routines for the computation
// of worst case relative or absolute
// error bounds for the elemntary
// operations and functions

#include "bnd_util.hpp" //function Max_bnd_Xi() based on subdivision
#include <iostream> //input/output
using namespace cxsc;
using namespace std;

//Compute error bound for the function term T1 over the interval x
real T1(const interval& x, const real& errx)
{ // T1(x)= 1 - x^2;

interval x2, res; real errx2, relerr;
abs_mulh1(x,errx,x,errx,x2,errx2); //x2= x^2
rel_1mx_delh(x2,errx2,res,relerr); //r = 1-x^2
return relerr; //relative error bound

}

int main() {
interval X(comp(0.5,-11),0.658); //interval [2**(-12),0.658]
real bound; //output parameter (worst case rel. error bound)
real diam=1e-5; //diameter of subintervals
real errx=0; //function arguments are error free flp numbers
Max_bnd_Xi(T1,X,errx,diam,bound); //compute the maximum error

// bound for T1() over X
// using subintervals of X
// of diameter <= 1e-5

cout << "Rel. error bound eps(T1,X) = " << RndUp << bound << endl;
}
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The computed relative error bound is 2.67...E − 16.

3 Improvements of the error bounds

To get error bounds as small as possible there are two essential facilities.
Firstly, in special cases of the elementary operations we should try to find error
bounds in different regions of the operands compared to the right hand side
of (2). Secondly, for a given function expression a mathematically equivalent
expression should be found to minimize the error bound.

3.1 Special cases of elementary operations

In [1] several improvements for the elementary operations have already been
treated. Here for the addition ã + b̃ we consider the special case ã = 1 and for
the term 1 + x̃ with x̃ ∈ [−1

4
, −1

8
] the inequality (2) delivers the error bound:

|(1⊕ x̃)− (1 + x̃)| ≤ ε∗ · (1− 1
8
) = 7

8
· ε∗. But rounding the bit pattern of the

exact sum 1+ x̃ to the neighbouring machine number in high accuracy we get
for all x̃ ∈ [−1

4
, −1

8
] the smaller upper bound |(1⊕ x̃)− (1+ x̃)| ≤ 3

8
· ε∗ < 7

8
· ε∗.

For some intervals XXX 3 x̃ Table 1 lists the improved error bounds α and the
error bounds β calculated with the right hand side of (2).

x̃ ∈XXX α β x̃ ∈XXX α β x̃ ∈XXX α β

[−254,−253) 1 4 (−1
4

, −1
8

] 3
8
· ε∗ 7

8
· ε∗ [0, 1

2
) ε∗ 3

2
· ε∗

[−253, −1
2

] 0 2 (−1
8

,−2−4] 7
16
· ε∗ 15

16
· ε∗ [1

2
, 1) ε∗/2 2 · ε∗

(−1
2

, −1
4

] ε∗/4 3
4
· ε∗ [−2−4, 0] ε∗/2 ε∗ [1, 2) ε∗ 3 · ε∗

Table 1: Improved error bounds α of the term 1 + x̃, x ∈XXX

The improvement of the error bounds α compared to the β-values emphasizes
that the right hand side of (2) delivers only a general upper bound, which can
be reduced for the term 1 + x in special intervals XXX. The complete table and
the proof of the error bounds α are given in [2].

3.2 Appropriate function terms

For the simple function f(x) = 1 − x2 let us calculate an error bound for
all machine values x̃ ∈ [2−12, 1]. First we use the two equivalent expressions
T1(x) := 1−x2 and T2(x) := (1−x)(1+x). In C-XSC the relative error bounds
ε(T1) and ε(T2) are calculated for different subintervals XXX ⊂ [2−12, 1] with help
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of the error calculus described above. Results are listed in the following table:

x̃ ∈XXX ε(T1) ε(T2) x̃ ∈XXX ε(T1) ε(T2)

[2−12, 2−11] 0.5001 · ε∗ 2.4999 · ε∗ [2−1, 0.6755] 1.2991 · ε∗ 1.6667 · ε∗

[2−11, 2−1] 0.8334 · ε∗ 2.1667 · ε∗ [0.6755, 0.9999] 5000 · ε∗ 1.2985 · ε∗

Table 2: Relative error bounds ε(T1) and ε(T2) for different subintervals XXX

In the ε(T1)-column the ε(T1)-values are increasing with x̃ coming nearer to 1
because of the well known cancellation effects, whereas the ε(T2)-values are de-
creasing. Hence, if we chose T1(x) in x̃ ∈ [2−12, 0.6755] and T2(x) in [0.6755, 1]
then the relative error is ε(T1, T2) = 1.2991 · ε∗. In the ε(T1)-column with a
first error free-summand 1 the error bounds become smaller with decreasing
values of the second defective summand x̃2 compared to 1.

However, we can still improve the relative error bound if we again use T1(x)
in [2−12, 0.658]. In the remaining interval [0.658, 1] we set x̃ = 1 − d. Then
the difference d := 1 	 x̃ ≡ 1 − x̃ can be calculated error-free, and f(x)
can be written in the form f(x̃) = 1 − x̃2 = 2d − d2 =: T3(d). Now again
with our error calculus we find the smaller error bound ε(T1, T3) = 1.2063 · ε∗.
With this simple example we demonstrated that proper expressions in different
subintervals are essential for a small error bound in the total interval.

3.3 Hints for getting small error bounds

• Use the improved C-XSC tools for calculating error bounds of the elemen-
tary operations described in [2], where many application examples can be
found.

• Use in the domain of a given function in different subintervals the proper
expression to get error bounds as small as possible.

• Use sums with an error-free first summand and a defective second summand,
which should be as small as possible.

• Avoid products with defective factors. Decompose such factors in two sum-
mands, and evaluate the product with simulated higher precision [7].

4 Hints for small error bounds of additional standard functions

In Table 3 we list new enhanced standard functions, implemented in C-XSC,
together with their relative error bounds, for machine arguments in the do-
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mains of the respective functions.

f(x) ε(f) f(x) ε(f) f(x) ε(f)

√
x + 1− x 2.2501 · ε∗

√
x2 + 1

√
x2 − 1 1.0004 · ε∗

√
1− x2 1.6667 · ε∗ ln(

√
x2 + y2) 2.3242 · ε∗

√
x2 + y2

e−x2
2.0801 · ε∗

Table 3: Some C-XSC functions with improved relative error bounds

In the following two subsections we give some hints for getting small error
bounds for the functions

√
x2 − 1 and e−x2

.

4.1 f(x) =
√

x2 − 1, x ≥ 1f(x) =
√

x2 − 1, x ≥ 1f(x) =
√

x2 − 1, x ≥ 1

For 1 ≤ x̃ ≤ 44000 we use Newton’s method starting with the machine num-
ber ỹ0 ≈

√
x2 − 1, where in different subintervals different function expres-

sions should be evaluated. With a sufficient good approximation ỹ0 Newton’s
method converges quadratically, and the next iterative refinement is

y1 :=
1

2

(
ỹ0 +

x̃2 − 1

ỹ0

)
≡ ỹ0 +

1

2
· (x̃2 − 1)− ỹ2

0

ỹ0

∈ IR. (4)

If we evaluate the first term in (4) then because of the factor 1/2 both sum-
mands in the parentheses must be of the same order, and the calculated error
bound ε(1) = 1.9996·ε∗ cannot be optimal. However, if we use the second term
in (4) then because of the quadratic convergence property the second summand
must be very small compared to the error-free first summand ỹ0. This is the
ideal condition for getting small error bounds, and we get ε(2) = 1.0004 · ε∗.
The new problem, how to evaluate the small numerator (x̃2 − 1)− ỹ2

0 with a
sufficient accuracy, is discussed in [2].

For x̃ ≥ 44000 we use the approximation f(x) ≈ x − 1
2x

. Again the second
summand is quite small compared to the error-free first summand x,so we
get the small error bound ε(3) = 1.0004 · ε∗. [2] includes a discussion of the
approximation error in the two intervals [1, 44000) and [44000,∞).

4.2 f(x) = e−x2
, x ≥ 0f(x) = e−x2
, x ≥ 0f(x) = e−x2
, x ≥ 0

The simplest algorithm f̃(x̃) := exp(x̃ � x̃) leads to an unacceptable error
bound of order 10−13 (it should be smaller by a factor of about 1/500), so a
more sophisticated algorithm is needed. Here exp() is a call of the C-XSC
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exponential function with the error bound ε(exp) = 2.357962556 · 10−16 =
1.0620 · ε∗. We use the approximation:

e−x2 ≈


g1(x) := 1, 0 ≤ x ≤ 2−26

g2(x) := 1− x2 + x4

2!
− x6

3!
, 2−26 ≤ x ≤ 2−6

g3(u, v) := e−u − v · e−u, 2−6 ≤ x ≤ x0 = 26.61 . . .

g4(x) := 0, x > x0

(5)

For machine values x̃ > x0 the function values f(x̃) lie in the denormalized
range, so an error estimation is only needed in 0 ≤ x̃ ≤ x0.

g1(x̃) ≡ 1 is a machine number, so only the approximation error must be
considered. The Taylor series of f(x) is an alternating Leibniz series whose
relative error can be estimated by

∣∣∣∣∣e−x2 − 1

e−x2

∣∣∣∣∣ ≤ x2

1!
· ex2

=: r1(x).

To find an upper bound of the relative error the monotonic function r1(x)
must be evaluated at the boundary point x̃ = 2−26; r1(2

−26) < 1.000001 · ε∗.

In the second interval the relative approximation error can be estimated by
the monotonic function ε(appx) := x8ex2

/4!, evaluated at the boundary point
x̃ = 2−6. We use Horner’s scheme for g2(x):

g2(x) = 1− x2 ·
(

1− x2

2
·
(

1− x2

3

))
, and an error estimation delivers∣∣∣∣∣f(x̃)− g̃2(x̃)

f(x̃)

∣∣∣∣∣ ≤ ε(fg2) = 1.1051 · ε∗.

The remaining interval is 2−6 ≤ x̃ ≤ x0, with e−x2 ≈ g3. With an auxiliary
function we use the exact decomposition x̃2 ≡ u+v with the machine numbers
u := x̃� x̃ and v := x̃2 − u. e−x2

can then be written in the form

e−x2

= e−u · e−v = e−u · (1− v + rv)

= e−u − (v − rv) · e−u = e−u − h(v) · e−u.

To provide overestimations by interval calculations we use a sufficiently small
subinterval XXX. Then u ∈ X2X2X2 := XXX 3· XXX and e−u ∈ exp(−X2X2X2). With d :=
Sup(X2X2X2) − pred(Sup(X2X2X2)) ; v ∈ VVV := [−d, d]. If we define h̃(v) := v then
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the evaluation error

rv := e−v − (1− v) =
v2

2!
− v3

3!
+

v4

4!
± . . . can be estimated by

|rv| ≤
v2

2
· 1

1− |v|
≤ d2

2
· 1

1− |d|
=: R.

Then h(v) is included by h(v) := v−rv ∈ VVV +[−R, +R]. Herewith all necessary
inclusions for an error estimation are known. With g3(u, v) := e−u − v · e−v

our error calculus delivers∣∣∣∣∣f(x̃)− g̃3(x̃)

f(x̃)

∣∣∣∣∣ < ε(f) := 2.0802 · ε∗ ∀x̃ < x0.

Our algorithm is fast, has a small error bound and doesn’t need any additional
constants. An underflow is possible in evaluating v · e−v in g3(u, v) for x̃ → x0.
This can be avoided by an appropriate scaling of g3(u, v) (again see [2]).
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