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Bergische Universität Wuppertal
Gaußstr. 20
D-42097 Wuppertal

E-mail: kraemer@math.uni-wuppertal.de



Real and Complex Taylor Arithmetic in C-XSC

Frithjof Blomquist, Werner Hofschuster, Walter Krämer
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Abstract

In C-XSC the Taylor Arithmetic is implemented for real as well as for complex
variables. For a given function f : R → R or f : R

2 → R composed of the elementary
C-XSC functions together with the arithmetic operators, the Taylor coefficients
or the (partial) derivatives up to a given order p can be computed using the IEEE
format or in higher precision using the interval staggered format. Additionally the
Taylor Arithmetic is implemented in the IEEE Format for one complex variable.
Each of the described Taylor Arithmetics has a C++ class of its own, and their
elements and member functions are detailed together with simple sample programs.
With these tools the user has an easy access for solving appropriate numerical
problems.

Keywords: Taylor arithmetic, guaranteed computations, staggered arithmetic, complex
Taylor arithmetic, automatic differentiation, complex interval arithmetic, mathematical
software, C-XSC

1 Introduction

The computation of derivatives is a task which one encounters in numerical analysis
very often. Whenever a Newton method is to be applied then the derivative or the
Jacobian matrix of the functions involved in the problem must be computed somehow.
Also optimization methods use gradients or even Hesse matrices.

Many numerical textbooks consider it as difficult to compute such derivatives. Numer-
ical libraries on computers usually put the burden of supplying subroutines for derivatives
to the user of these libraries. Alternatively, derivatives are often replaced by finite dif-
ference quotients, which leads to many unnecessary additional problems like truncation
and cancellation errors. Because of these apparent difficulties many numerical textbooks
do not even try to consider methods which need derivatives of even higher order, like
methods based on Taylor expansions.

Sometimes the use of symbolic differentiation is recommended to produce expressions
for the needed derivatives. Almost all computer algebra systems can be utilized for this
purpose. Many of them have features which allow the derived expressions to be converted
to the syntax of some programming language. However, the expressions of the derivatives
obtained in this way are often extremely complex and therefore costly to evaluate and
sometimes they may even be numerically unstable to evaluate.

For many years already there exist interesting and very efficient methods to compute
derivative values exactly (if exact arithmetic is used) for a large class of functions, i.e. in
principle all functions which can be programmed in a common programming language.
These methods are known as automatic differentiation and were developed already since
the 60’s by e.g. Moore [33], and later by Rall [35] - [41], Griewank [17], [18], Iri [25],
Corliss [11], [12] Fischer, [13] - [15], Berz [6], Jerell [26] and many others. Automatic
differentiation is now recognized as a very useful tool by a wider audience in the community
of numerical analysts. An extensive bibliography, compiled by G. Corliss is contained in
[18].
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The main difference between these methods and finite differences and symbolic differ-
entiation is that automatic differentiation computes derivative values which are the exact
values of the derivatives (if exact arithmetic is used in the computation). I.e. automatic
differentiation is a numerical method just as finite differences but in contrast to the latter
it produces exact results. On the other side symbolic differentiation also produces exact
results, however, their expressions for the derivatives are calculated. Numerical values of
the derivatives are then obtained by evaluating the expressions numerically for suitable
parameters. This indirect way often makes symbolic differentiation much more costly.
Automatic differentiation can be viewed as a combination of symbolic differentiation and
numerical evaluation performed simultaneously. I.e. the differentiation rules are applied
to the given function but they are applied immediately to the numerical values not first to
the expressions. This is the reason why automatic differentiation is exact just as symbolic
differentiation but at the same time more efficient.

Also, during the last years many variants of automatic differentiation have been de-
veloped which differ primarily in the order in which the differentiation rules are applied.
We can mainly distinguish between two different types of methods which are called the
foreward mode and the reverse mode of automatic differentiation.

Historically the forward mode was used first whereas the reverse mode was developed
later. For functions in several variables the reverse mode is usually much faster than the
forward mode, the difference being very drastic: for a function f : R

n → R the time
for computing the gradient using the forward mode is proportional to n times the time
required for an evaluation of f . In contrast, for the reverse mode the time to compute
the gradient is less than about 5 times the cost for an evaluation of f , see e.g. [17], [25],
[13], [16]. Amazingly, this time ratio is independent of the dimension n !

In section 2 we will first discuss the one-dimensional case with higher derivatives, i.e.
we present an automatic differentiation method for the computation of Taylor coefficients.
This method is a forward method.

2 Functions in One Real Variable

2.1 Introduction

The computation of high derivatives of a function is often considered to be a tedious and
error-prone task which is the reason why there exist almost no numerical methods making
use of higher derivatives. Only the Taylor series method for the approximate solution
of ordinary differential equations is sometimes mentioned in textbooks. However, this
method is usually discarded immediately because it is considered to be far too expensive.
Higher derivatives often occur also in remainder terms of various numerical approximation
methods such as Taylor expansion, interpolation, numerical integration and the like.

In this section we show that the computation of such higher derivatives is indeed
very easy and efficient and that even unknown intermediate values which often appear in
remainder terms can be handled almost trivially by the use of interval arithmetic. Here
the combination of automatic differentiation and interval arithmetic has a strong effect
of synergy: Computing high derivatives efficiently and enclosing unknown intermediate
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points in intervals results in methods of totally new quality. This combination makes it
possible to estimate remainder terms rigorously and thus to derive proofs automatically on
a computer which were not possible earlier or which were at least much more complicated.

2.2 Theoretical Background

To keep the presentation simple assume that f : R → R is an analytic function. Then f
can be expanded in a Taylor series around a point x0

(1) f(x) =

∞∑
k=0

f (k)(x0)

k!
(x − x0)

k.

We introduce the following short notation for the Taylor coefficient
f (k)(x0)

k!
of f at the

point of expansion x = x0

(2) (f)k :=
f (k)(x0)

k!
=

1

k!

dkf(x0)

dxk
.

Using (2) we can rewrite (1) as

(3) f(x) =
∞∑

k=0

(f)k(x − x0)
k.

Now let us consider functions f which are the composition of arithmetic operations and
elementary functions. For functions of such structures we can recursively determine the
Taylor coefficients by applying appropriate rules for each single operation occurring in the
expression of f .
Starting with the two trivial cases we state that for a constant function f = c

(4) (c)0 = c, (c)k = 0, if k ≥ 1

and for the independent variable f = x:

(5) (x)0 = x, (x)1 = 1, (x)k = 0, if k ≥ 2.

Due to the uniqueness of power series we immediately see that for the two functions u(x)
and v(x) we have

(u ± v)k = (u)k ± (v)k.(6)

(u · v)k =
k∑

j=0

(u)j(v)k−j =
k∑

j=0

(u)k−j(v)j.(7)

(u/v)k =
1

(v)0

[
(u)k −

k∑
j=1

(v)j(u/v)k−j

]
.(8)
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Here the rule of the quotient (8) can easily be obtained as follows: writing f = u/v, then
u = v · f , and the product rule (7) delivers

(u)k =

k∑
j=0

(v)j(f)k−j = (v)0(f)k +

k∑
j=1

(v)j(f)k−j,

which must be solved for (f)k = (u/v)k to obtain the quotient rule (8).
Now let us consider functions f(u) and let u = u(x) be an analytic function of x. With

these notations we have

w(x) ≡ f(u(x))(9)

d

dx
w = w′(x) =

d f(u)

du

∣∣∣∣
u=u(x)

· u′(x) = f ′(u)

∣∣∣∣
u=u(x)

· u′(x);(10)

As a first application let us consider the square root f(u) =
√

u which can be written in
the form f · f = u. Applying the product rule (7) to f · f after some simple conversions,
for k ≥ 1, we find

(u)k = (f · f)k =

k∑
j=0

(f)j(f)k−j

= (f)0(f)k +

k−1∑
j=1

(f)j(f)k−j + (f)k(f)0

= 2(f)0(f)k +

k−1∑
j=1

(f)j(f)k−j.

Solving the last equation for (f)k, we get:

(f)k =
1

2(f)0

[
(u)k −

k−1∑
j=1

(f)j(f)k−j

]
.

Be aware that (f)j is the Taylor coefficient with respect to x, i.e.

(f)j :=
1

j!

dj

d xj
f (u(x))

∣∣∣∣
u=u(x0)

Substituting f with
√

u for the square root we get

(11) (
√

u)k =
1

2(
√

u)0

[
(u)k −

k−1∑
j=1

(
√

u)j(
√

u)k−j

]
, k ≥ 1.
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The recursive construction in (11) is obvious, i.e. for calculating (
√

u)k all Taylor coeffi-
cients (

√
u)j of order j < k must be calculated before. The sum in (11) consists of equal

summands by twos, so we get the more effective relation

(
√

u)k =




1

2(
√

u)0


(u)k − 2

(k−1)/2∑
j=1

(
√

u)j(
√

u)k−j


 , if k odd

1

2(
√

u)0


(u)k − 2

(k−2)/2∑
j=1

(
√

u)j(
√

u)k−j − (
√

u)2
k/2


 , if k even,

where the last form uses only about half as many operations as the form in (11). Due to
(f(u) )0 = f((u)0) of course we have (

√
u)0 =

√
(u)0.

Also for the square function f(u) = u2 we can write down a more economical form
than just for the multiplication in (7):

(u2)k =




2

(k−1)/2∑
j=0

(u)j(u)k−j, if k odd

2

(k−2)/2∑
j=0

(u)j(u)k−j + (u)2
k/2 if k even.

To find similar recursion formulas also for elementary functions, we need a further rela-
tionship between the Taylor coefficients of f and its derivative f ′. Differentiating (3) with
respect to x we get a series for f ′:

f ′(x) =

∞∑
k=1

k · (f)k(x − x0)
k−1 =

∞∑
k=0

(k + 1)(f)k+1(x − x0)
k.

On the other hand, in (3) we can replace f by f ′:

f ′(x) =
∞∑

k=0

(f ′)k(x − x0)
k.

Equating coefficients of these two representations yields

(12) (f ′)k = (k + 1) · (f)k+1

and (12) keeps valid, even if f is given by f = f(u(x)). In this case f ′ is defined by

f ′ :=
d f(u)

du

∣∣∣∣
u=u(x)

· u′(x)

The relationship (12) is very important in deriving new recursion formulas for elemen-
tary functions and also for other applications like the Taylor series solution of ordinary
differential equations.
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As a first application of (12) we consider the exponential function f(u) = eu. Calcu-
lating the first derivative of w(x) = f(u(x)) = eu(x) with respect to x it follows w′ = w ·u′,
and the rule of the product delivers

(w′)k−1 = (w · u′)k−1 =

k−1∑
j=0

(w)j(u
′)k−1−j, k ≥ 1.

With (12) it holds (w′)k−1 = k · (w)k resp. (u′)k−1−j = (k − j)(u)k−j, and we get

k · (w)k =

k−1∑
j=0

(w)j(k − j)(u)k−j, k ≥ 1.

Solving this for (w)k = (eu)k we get the recursion formula of the exponential function:

(eu)k =
1

k

k−1∑
j=0

(k − j)(eu)j(u)k−j, u = u(x), k ≥ 1

(eu)0 = e(u)0 , k = 0.

In a very similar way we can obtain formulas for the Taylor coefficients of sin(u) and
cos(u):

(sin u)k =
1

k

k−1∑
j=0

(k − j)(cos u)j(u)k−j,

(cos u)k = −1

k

k−1∑
j=0

(k − j)(sin u)j(u)k−j,

and also for sinh(u) and cosh(u):

(sinh u)k =
1

k

k−1∑
j=0

(k − j)(cosh u)j(u)k−j,

(cosh u)k =
1

k

k−1∑
j=0

(k − j)(sinh u)j(u)k−j.

Obviously these formulas have to be applied pair-wise.
For the power function f(u) = ua with a constant exponent a we can use the same

technique. Calculating the first derivative of w(x) = f(u(x)) = u(x)a with respect to x it
follows w′ · u = a · w · u′, and the rule of the product (7) delivers

(ua)k =
1

k · (u)0

k−1∑
j=0

[a · (k − j) − j] · (ua)j · (u)k−j, k ≥ 1.
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Almost all the other elementary functions which are implemented in C-XSC can be treated
in the following way. For w(x) = f(u(x)) the first derivative with respect to x is given by

d

dx
w = w′(x) =

d f(u)

du

∣∣∣∣
u=u(x)

· u′(x) = f ′(u)|
u=u(x)

· u′(x).

Writing f ′(u)|
u=u(x)

=
1

g(u)

∣∣∣∣
u=u(x)

or more simple f ′(u) =
1

g(u)
, it follows

(13) u′ = g · w′

Together with (12) the rule of the product (7) delivers

k(u)k = (u′)k−1 = (g · w′)k−1 =

k−1∑
j=0

(g)k−j−1(w
′)j

=

k−1∑
j=0

(g)k−j−1(j + 1)(w)j+1 =

k∑
j=1

j · (g)k−j · (w)j

=

k−1∑
j=1

j · (w)j · (g)k−j + k · (w)k · (g)0 ;

(w)k =
1

(g)0

[
(u)k − 1

k

k−1∑
j=1

j · (w)j · (g)k−j

]
, k ≥ 1.

As the Taylor coefficients of order k refer to the independent variable x, it holds (w)k =
(f(u))k = (f)k, and finally we get:

(14)

(f)k =
1

(g)0

[
(u)k − 1

k

k−1∑
j=1

j · (f)j · (g)k−j

]
, k ≥ 1

f(u) = f(u(x)); g(u) =

[
d f(u)

du

]−1

,
d f(u)

du
6= 0

Using the relation (14) the Taylor coefficients of the remaining functions can be listed in
the following table. g(u) is defined by (14).
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Recursion Formulas of the Taylor Coefficients (f)k, (part 1)

f(u) g(u) (f)k, k ≥ 1

ln u u
1

(u)0

[
(u)k − 1

k

k−1∑
j=1

j · (lnu)j(u)k−j

]

tan u cos2 u
1

cos2(u)0

[
(u)k − 1

k

k−1∑
j=1

j · (tan u)j(cos2 u)k−j

]

cotu − sin2 u
−1

sin2(u)0

[
(u)k +

1

k

k−1∑
j=1

j · (cot u)j(sin
2 u)k−j

]

arcsin u
√

1 − u2
1√

1 − (u)2
0

[
(u)k − 1

k

k−1∑
j=1

j(arcsin u)j(
√

1 − u2)k−j

]

arccos u −√
1 − u2

−1√
1 − (u)2

0

[
(u)k +

1

k

k−1∑
j=1

j(arccosu)j(
√

1 − u2)k−j

]

arctan u 1 + u2 1

1 + (u)2
0

[
(u)k − 1

k

k−1∑
j=1

j(arctanu)j(1 + u2)k−j

]

arccot u −(1 + u2)
−1

1 + (u)2
0

[
(u)k +

1

k

k−1∑
j=1

j(arccotu)j(1 + u2)k−j

]
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Recursion Formulas of the Taylor Coefficients (f)k, (part 2)

f(u) g(u) (f)k, k ≥ 1

tanh u cosh2 u
1

cosh2(u)0

[
(u)k − 1

k

k−1∑
j=1

j(tanh u)j(cosh2 u)k−j

]

coth u − sinh2 u
−1

sinh2(u)0

[
(u)k +

1

k

k−1∑
j=1

j(coth u)j(sinh2 u)k−j

]

arsinh u
√

u2 + 1
1√

(u)2
0 + 1

[
(u)k − 1

k

k−1∑
j=1

j(arsinh u)j(
√

u2 + 1)k−j

]

arcosh u
√

u2 − 1
1√

(u)2
0 − 1

[
(u)k − 1

k

k−1∑
j=1

j(arsinh u)j(
√

u2 − 1)k−j

]

artanhu 1 − u2 1

1 − (u)2
0

[
(u)k − 1

k

k−1∑
j=1

j(artanhu)j(1 − u2)k−j

]

arcothu 1 − u2 1

1 − (u)2
0

[
(u)k − 1

k

k−1∑
j=1

j(arcothu)j(1 − u2)k−j

]

u2 (u2)k =

k∑
j=0

(u)j(u)k−j

√
u (

√
u)k =

1

2(
√

u)0

[
(u)k −

k−1∑
j=1

(
√

u)j(
√

u)k−j

]

sin u (sin u)k =
1

k

k−1∑
j=0

(k − j)(cos u)j(u)k−j

cos u (cos u)k = −1

k

k−1∑
j=0

(k − j)(sin u)j(u)k−j
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Recursion Formulas of the Taylor Coefficients (f)k, (part 3)

f(u) (f)k, k ≥ 1

sinh u (sinh u)k =
1

k

k−1∑
j=0

(k − j)(cosh u)j(u)k−j

cosh u (cosh u)k =
1

k

k−1∑
j=0

(k − j)(sinh u)j(u)k−j

eu (eu)k =
1

k

k−1∑
j=0

(k − j)(eu)j(u)k−j

2u (2u)k =
ln 2

k

k−1∑
j=0

(k − j)(2u)j(u)k−j

10u (10u)k =
ln 10

k

k−1∑
j=0

(k − j)(10u)j(u)k−j

log2 u (log2 u)k =
1

ln 2
· (ln u)k

log10 u (log10 u)k =
1

ln 10
· (ln u)k

Remarks:

• For (u2)k and (
√

u)k there are more efficient recursion formulas, already listed on
page 8.

• The recursion formulas for sin u and cos u must be applied pair-wise. Analogously
the formulas for sinh u and cosh u are to be treated.
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To get inclusions of the Taylor coefficients, the recursion formulas are to by evaluated
with interval arithmetic, and so some interval overestimations are unavoidable. However,
if the point of expansion lies near a zero of some derivative, these overestimations increase
dramatically. In these cases the recursion formulas must be transformed in such a way
that the desribed overestimations are minimized to a tolerable measure.
As a first example let us consider the function

w(x) = f(u(x)) = u · lnu with u = u(x);

w′(x) = (1 + ln u) · u′(x)

For u(x0) = x0 = 1/e the expression (1+ln u) has a zero, so in their environment w′(x) will
be evaluated with severe cancellation effects. However, if a function like ln(e ·u) ≡ 1+ln u
is implemented in such a way that the described cancellations are sufficiently reduced,
then w′(x) can tightly be included, even near x0 = 1/e, so we write

w′(x) = ln(e · u) · u′(x).

With formula (12) and the rule of product (7) it holds

k · (w)k = (w′)k−1 = (ln(e · u) · u′)k−1

=

k−1∑
j=0

(ln(e · u))j(k − j)(u)k−j,

and with (w)k = (u · ln u)k we finally get the recursion formula

(u · ln u)k =
1

k

k−1∑
j=0

(k − j) · (ln(e · u))j · (u)k−j, k ≥ 1.

As a next example we consider the power function

w(x) = f(u(x)) = uu = eu·ln(u) with u = u(x) > 0;

w′(x) = ln(e · u) · eu·ln(u) · u′(x)

Again, with formula (12) and the rule of product (7), it holds

k · (w)k = (w′)k−1 = ( ln(e · u) · eu·ln(u) · u′ )k−1

=

k−1∑
j=0

( ln(e · u) · eu·ln(u) )j(k − j)(u)k−j

and with (w)k = (uu)k we get the recursion formula

(uu)k =
1

k

k−1∑
j=0

(k − j) · ( ln(eu) · eu·ln(u) )j · (u)k−j, u(x) > 0, k ≥ 1.
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As a next example we consider the function

w(x) = f(u(x)) =
√

1 + u(x) − 1, w + 1 =
√

1 + u,

w · w = u − 2w,

Then, applying the rule of product, we get

(w · w)k =

k∑
j=0

(w)j · (w)k−j = (u)k − 2(w)k

(w)0 · (w)k +

k−1∑
j=1

(w)j · (w)k−j + (w)k · (w)0 = (u)k − 2(w)k

2(w)0 · (w)k + 2(w)k = (u)k −
k−1∑
j=1

(w)j · (w)k−j ;

(f)k =
1

2
√

1 + (u)0

[
(u)k −

k−1∑
j=1

(f)j(f)k−j

]
, (f)j = (

√
1 + u − 1)j.

As a next example we consider the function

w(x) = f(u(x)) =
√

1 − u2(x), u2(x) < 1

w · w = 1 − u2.

The rule of product (7) delivers

(w · w)k = (1 − u2)k = −(u2)k, k ≥ 1

k∑
j=0

(w)j · (w)k−j = −(u2)k

2(w)0 · (w)k +
k−1∑
j=1

(w)j · (w)k−j = −(u2)k ;

(
√

1 − u2)k =
−1

2
√

1 − (u2)0

[
(u2)k +

k−1∑
j=1

(
√

1 − u2)j(
√

1 − u2)k−j

]
, k ≥ 1

For the function w(x) =
√

u2(x) − 1 we analogously find the recursion formula

(
√

u2 − 1)k =
1

2
√

(u2)0 − 1

[
(u2)k −

k−1∑
j=1

(
√

u2 − 1)j(
√

u2 − 1)k−j

]
, k ≥ 1.

The recursion formulas of the last examples are listed in the table on page 16. Be aware

that, for a shorter run time, the sums

k−1∑
j=1

(f)j · (f)k−j in the recursion formulas of the
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root functions can be written in the following form, see page 8.

k−1∑
j=0(1)

(f)j · (f)k−j =




2

(k−1)/2∑
j=0(1)

(f)j(f)k−j, if k odd,

2

(k−2)/2∑
j=0(1)

(f)j(f)k−j + (u)2
k/2, if k even.

Recusion Formulas of the Taylor Coefficients (f)k, (part 4)

f(u) (f)k, k ≥ 1

ln(e · u) (ln(e · u))k =
1

(u)0

[
(u)k − 1

k

k−1∑
j=1

j · (ln(e · u))j · (u)k−j

]

u · ln(u) (u · ln(u))k =
1

k

k−1∑
j=0

(k − j) · (ln(e · u))j · (u)k−j

eu − 1 (eu − 1)k =
1

k

k−1∑
j=0

(k − j) · (eu)j · (u)k−j

uu (uu)k =
1

k

k−1∑
j=0

(k − j) · ( ln(eu) · eu·ln(u) )j · (u)k−j

√
1 + u − 1 (f)k =

1

2
√

1 + (u)0

[
(u)k −

k−1∑
j=1

(f)j · (f)k−j

]

√
1 − u2 (f)k =

−1

2(f)0

[
(u2)k +

k−1∑
j=1

(f)j · (f)k−j

]

√
u2 − 1 (f)k =

1

2(f)0

[
(u2)k −

k−1∑
j=1

(f)j · (f)k−j

]

2.3 Implementation, IEEE Format

In C-XSC the itaylor arithmetic is declared in the module itaylor.hpp and imple-
mented in itaylor.cpp. The C++ class itaylor provides the following constructors:
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'

&

$

%

Constructors of the class itaylor:

1. itaylor(); // default constructor;

2. itaylor(const itaylor& ); // copy constructor;

3. itaylor(int order, const real& r); // (r, 1, 0, ..., 0);

4. itaylor(int order, const interval& z); // (z, 1, 0, ..., 0);

If the third constructor is invoked by itaylor t(5,0.1); then the not representable
decimal value 0.1 will first be rounded to the nearest IEEE number r0 and after this a
point interval [r0] is created, which does not includes the desired value 1/10. To avoid
the so originated conversion error, the fourth constructor must be invoked by

itaylor t( 5,z );

and the interval z must be realized as in the sample program on page 51. Only then
z delivers a thick interval, being an optimal inclusion of 1/10. The interval vector
(z, [1], [0], [0], [0], [0]) with 5 + 1 = 6 interval components is an attribute of the object
t. '

&

$

%

Initialization functions of the class itaylor:

1. itaylor const itaylor(int order, const real& r);

2. itaylor const itaylor(int order, const interval& z);

3. itaylor var itaylor(int order, const real& r);

4. itaylor var itaylor(int order, const interval& z);

With the assignments

itaylor c; c = const itaylor(6,0.25);

we get the interval vector ([0.25], [0], [0], [0], [0], [0], [0]) with 6+1 = 7 interval components.
c is a constant value in the Taylor arithmetic. With the assignments

itaylor x; x = var itaylor(6,0.25);

we get the interval vector ([0.25], [1], [0], [0], [0], [0], [0]) with 6+1 = 7 interval components.
x is now an independent variable in the Taylor arithmetic.
If the real values r are not presentable in the IEEE system then be aware of the described
conversion errors and use the initialization functions number 2 or 4 instead of 1 or 3.
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&

$

%

Assignment operators of the class itaylor:

1. itaylor operator = ( const itaylor& t );

2. itaylor operator = ( int );

3. itaylor operator = ( const real& r );

4. itaylor operator = ( const interval& z

);

With the assignments

int p=6; real r1, r2(3.5); itaylor t(p,r1); t = r2;

we get an interval vector ([3.5], [0], [0], [0], [0], [0], [0]) with 6 + 1 = 7 interval components,
which is an attribute of the class object t. If the real value r2 is not presentable in the
IEEE system, again be aware of the described conversion errors.

Be aware that the assignment operators No. 2-4 always deliver
a constant itaylor object and not an independent variable!

'

&

$

%

Access to the Taylor coefficients and derivatives; output procedure

1. int get order( const itaylor& t );

2. ivector get all coef( const itaylor& t );

3. interval get j coef( const itaylor& t, int j );

4. interval get j derive( const itaylor& t, int j );

5. void print itaylor( const itaylor& t );

The easiest way to explain the above functions is a small sample program. The Taylor
coefficients and derivatives of the given polynomial

P4(x) = 2x4 + x3 + 4x2 − 3x + 2

= (((2x + 1) · x + 4) · x − 3) · x + 2, ( Horner’s scheme )

are to be included up to the order p = 5 for given points of expansion x0 ∈ R.
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// Sample program itayl_ex1.cpp;

#include "itaylor.hpp" // Header file of class itaylor
#include <iostream> // Input | output

using namespace cxsc;
using namespace std;
using namespace taylor;

main()
{
/*--------------------------------------------------------------

Inclusions of the Taylor coefficients and derivatives up to
order p=5 for P(x) = 2x^4 + x^3 + 4x^2 - 3x +2 at
points of expansion x0 included by the interval z.

--------------------------------------------------------------*/

int p = 5; // Order of expansion
interval z; // Interval to include the point of expansion
itaylor P; // Default constructor No. 1.
while(1) {

cout << endl << "Inclusion of x0; [x0,x0] = ? "; cin >> z;
itaylor x(p,z); // Constructor No. 4,

P = (((real(2.0)*x + 1) // Polynomial of order 4.
*x + 4)
*x - real(3.0))
*x + real(2.0);

cout << SetPrecision(16,16) << Scientific << endl;
print_itaylor(P); // Output of Taylor coefficients.

ivector derivative(0,p); // interval vector with
// components from index 0 up to the order p.

for(int i=0;i<=p; i++)
derivative[i] = get_j_derive(P,i); // Derivatives

cout << "Inclusions of the derivatives up to order 5 "
<< endl;

for(int i=0; i<=p; i++) // Output of the derivatives
cout << i<<"th derivative: " << derivative[i] << endl;

}
} // main

With the point of expansion x0 = 0.1, included by the thick interval z 3 x0, the sample
program itayl test1.cpp produces the following output:

Inclusion of x0; [x0,x0] = ? [0.1,0.1]
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Output itaylor of order 5

i 0 component: [+1.7411999999999998E+000,+1.7412000000000001E+000]

i 1 component: [-2.1620000000000009E+000,-2.1619999999999994E+000]

i 2 component: [+4.4199999999999981E+000,+4.4200000000000009E+000]

i 3 component: [+1.7999999999999998E+000,+1.8000000000000008E+000]

i 4 component: [+2.0000000000000000E+000,+2.0000000000000000E+000]

i 5 component: [-0.0000000000000000E+000,+0.0000000000000000E+000]

Inclusions of the derivatives up to order 5

0th derivative: [+1.7411999999999998E+000,+1.7412000000000001E+000]

1th derivative: [-2.1620000000000009E+000,-2.1619999999999994E+000]

2th derivative: [+8.8399999999999963E+000,+8.8400000000000017E+000]

3th derivative: [+1.0799999999999998E+001,+1.0800000000000005E+001]

4th derivative: [+4.8000000000000000E+001,+4.8000000000000000E+001]

5th derivative: [-0.0000000000000000E+000,+0.0000000000000000E+000]

Remarks:

• The program input [0.1,0.1] RET delivers a thick interval z, which is an
optimal inclusion of the not presentable decimal number 1/10 ∈ z.

• The above inclusions of the Taylor coefficients and derivatives are not only guaran-
teed for 0.1 ∈ z but also for all other real numbers x0 ∈ z.

In the code line, beginning with P = (((real(2.0)*x ..., the polynomial P4(x) is eval-
uated by Horner’s scheme using the overloaded operators for the arithmetic operations
with objects of the class itaylor. For example, the algorithm of the operator ∗ for the
multiplication of two itaylor operands u=u(x),v=v(x) is given by'

&

$

%

Computation of the Taylor coefficients for u · v
input: itaylor u,v of length p + 1,

output: Enclosure of the Taylor coefficients of u · v,

for k := 0 to p do (w)k := 3

k∑
j=0

(u)j · (v)k−j;

return w; (3 denotes the interval hull of the sum.)

The returned itaylor object w is a (p + 1)-tuple containing the inclusions of the Taylor
coefficients of u·v up to the p-th order. The operators +,−, / are implemented analogously.
If only one operator is of type itaylor, then the type of the other operator can be any
element of the set
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{ int, real, interval }
and each of these three operands is interpreted as a constant value.

The elementary functions of type itaylor, implemented in C-XSC with the recursion
formulas of page 10, see part 1-4, are listed in the following table.

Elementary Functions of the Class itaylor
itaylor u=u(x); interval a; int n;

Function C-XSC Name Function C-XSC Name

u2 sqr(u) arcsin(u) asin(u)
√

u sqrt(u) arccos(u) acos(u)

n
√

u sqrt(u,n) arctan(u) atan(u)
√

1 + u2 sqrt1px2(u) arccot(u) acot(u)
√

1 − u2 sqrt1mx2(u) sinh(u) sinh(u)
√

u2 − 1 sqrtx2m1(u) cosh(u) cosh(u)
√

1 + u − 1 sqrtp1m1(u) tanh(u) tanh(u)

eu exp(u) coth(u) coth(u)

eu − 1 expm1(u) arsinh(u) asinh(u)

ua pow(u,a) arcosh(u) acosh(u)

ln(u) ln(u) artanh(u) atanh(u)

ln(1 + u) lnp1(u) arcoth(u) acoth(u)

sin(u) sin(u)

cos(u) cos(u)

tan(u) tan(u)

cot(u) cot(u)

The n-th root n
√

u is defined for (u)0 ≥ 0 and n ≥ 1; 1
√

u ≡ u. Combining the above
elementary functions with the arithmetic operators, we get expressions f of type itaylor,
i.e. (p+1)-tuples with enclosures of the Taylor coefficients of f . With the following sample
program we shew that an appropriate selection of the expression of f is essential for getting
sufficient tight enclosures of the Taylor coefficients. For this purpose we consider the two
equivalent functions g(x) ≡ h(x)

g(x) = ln(1 + ex),(15)

h(x) = x + ln(1 + e−x).(16)
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The expressions ln(1 + e±x) on the right-hand side are evaluated by the C-XSC function
calls lnp1(exp(±x)).

/*---------------------------------------------------------

Sample program itayl_ex2.cpp;

Evaluation of the equivalent functions

g(x) = ln(1+e^x) h(x) = x + ln(1+e^(-x));

---------------------------------------------------------*/

#include "itaylor.hpp" // Header file of class itaylor

#include <iostream> // Input | output

using namespace cxsc;

using namespace std;

using namespace taylor;

itaylor f1(const itaylor& u)

{

itaylor w;

interval z( get_j_coef(u,0) );

if (Inf(z)>0) w = u + lnp1( exp(-u) );

else w = lnp1( exp(u) );

return w;

}

main() {

int p = 4; // Order of expansion

itaylor f,g,h; // Default constructor No. 1.

itaylor x(p,interval(-706));

g = lnp1( exp(x) );

h = x + lnp1( exp(-x) );

f = f1(x);

cout << SetPrecision(16,16) << Scientific << endl;

cout << "Taylor coefficients of g(x) are included by:" << endl;

print_itaylor(g); // Output of Taylor coefficients.

cout << "Taylor coefficients of h(x) are included by:" << endl;

print_itaylor(h);

cout << "Taylor coefficients of f1(x) are included by:" << endl;

print_itaylor(f);

} // main

In code line itaylor x(p,interval(-706)); we choose the point of expansion x0 =
−706 and the program produces the output:

Taylor coefficients of g(x) are included by:
Output itaylor of order 4
i 0 component: [2.4439694694070749E-307,2.4439694694070798E-307]
i 1 component: [2.4439694694070745E-307,2.4439694694070798E-307]
i 2 component: [1.2219847347035370E-307,1.2219847347035399E-307]

22



i 3 component: [4.0732824490117906E-308,4.0732824490117996E-308]
i 4 component: [1.0183206122529469E-308,1.0183206122529499E-308]

Taylor coefficients of h(x) are included by:
Output itaylor of order 4
i 0 component: [-4.5474735088646412E-013,7.9580786405131221E-013]
i 1 component: [-1.7763568394002505E-015,1.8873791418627662E-015]
i 2 component: [-1.7529495936443918E-015,1.8291647933680609E-015]
i 3 component: [-1.8101109934371439E-015,1.8482185932989782E-015]
i 4 component: [-1.9720682928499407E-015,1.9863586427981288E-015]

Taylor coefficients of f1(x) are included by:
Output itaylor of order 4
i 0 component: [2.4439694694070749E-307,2.4439694694070798E-307]
i 1 component: [2.4439694694070745E-307,2.4439694694070798E-307]
i 2 component: [1.2219847347035370E-307,1.2219847347035399E-307]
i 3 component: [4.0732824490117906E-308,4.0732824490117996E-308]
i 4 component: [1.0183206122529469E-308,1.0183206122529499E-308]

With itaylor x(p,interval(706)); i.e. x1 = +706, the program output is

Taylor coefficients of g(x) are included by:
Output itaylor of order 4
i 0 component: [+7.0599999999999954E+002,+7.0600000000000080E+002]
i 1 component: [+9.9999999999999811E-001,+1.0000000000000018E+000]
i 2 component: [-1.7529495936443918E-015,+1.8291647933680609E-015]
i 3 component: [-1.8482185932989782E-015,+1.8101109934371439E-015]
i 4 component: [-1.9720682928499407E-015,+1.9863586427981288E-015]

Taylor coefficients of h(x) are included by:
Output itaylor of order 4
i 0 component: [+7.0600000000000000E+002,+7.0600000000000012E+002]
i 1 component: [+9.9999999999999988E-001,+1.0000000000000000E+000]
i 2 component: [+1.2219847347035370E-307,+1.2219847347035399E-307]
i 3 component: [-4.0732824490117996E-308,-4.0732824490117906E-308]
i 4 component: [+1.0183206122529469E-308,+1.0183206122529499E-308]

Taylor coefficients of f1(x) are included by:
Output itaylor of order 4
i 0 component: [+7.0600000000000000E+002,+7.0600000000000012E+002]
i 1 component: [+9.9999999999999988E-001,+1.0000000000000000E+000]
i 2 component: [+1.2219847347035370E-307,+1.2219847347035399E-307]
i 3 component: [-4.0732824490117996E-308,-4.0732824490117906E-308]
i 4 component: [+1.0183206122529469E-308,+1.0183206122529499E-308]

The above results shew that g(x) delivers only tight inclusions, if x < 0 and all the same
h(x), if x > 0. So we defined a third equivalent function f1(x) ≡ ln(1 + ex) in such a
way that the calculated inclusions of the Taylor coefficients are now sufficiently tight in
all cases.
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To get sufficiently tight inclusions of the Taylor coefficients of a
given function f , it can be necessary to choose different expres-
sions in different regions of the domain of f .

Remarks:

• In general the inclusions of the Taylor coefficients become more wide the higher the
order of the expansion is chosen.

• Suppose, the Taylor coefficient (f)k vanishes for x = x0, then in general the in-
clusion of the coefficient (f)k calculated for a point of expansion near x0 can not
be sufficiently tight. For example, calculate the inclusion of the first derivative of
f(x) := x/(1 + x2) for x = succ(1); f ′(1) = 0.

• The expansion order p can be changed by the user and keeps valid until the next
change is done. However, an itaylor object, declared with the previous order, will
keep this order until an assignment operator delivers with his right-hand operand a
new itaylor object constructed with another order.

• There is no possibility to modify the components, i.e. the values of the Taylor
coefficients of an itaylor object outside the itaylor class. So further functions of
type itaylor can only be implemented inside the class itaylor.

• However, with the elementary functions listed in the table of page 21, together with
the four arithmetic operators, it is now possible to define a wide field of available
expressions of type itaylor.

• Consider the four arithmetic operators and consider the case that only one operand
is of type itaylor, then the type of the other operand must be an element of the
set

{ int, real, interval }.

Be aware that in this case these three possible operands will always be interpreted
as a constant value and not as an independent variable.

The result of the arithmetic operators is always of type itaylor, if at least one of
the operands is of type itaylor.

2.4 Implementation, Staggered Format

In some applications it is necessary to calculate the inclusions of the Taylor coefficients
with higher precision to get sufficiently tight inclusion intervals. For this purpose in C-
XSC a staggered Taylor arithmetic is implemented in the modules litaylor.hpp and
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litaylor.cpp. With the C++ class l itaylor the necessary tools are available for the
user.

The class l itaylor provides the following constructors:'

&

$

%

Constructors of the class l itaylor:

1. l itaylor(); // default constructor;

2. l itaylor(const l itaylor& ); // copy constructor;

3. l itaylor(int order, const real& r); // (r, 1, 0, ..., 0);

4. l itaylor(int order, const l real& l); // (l, 1, 0, ..., 0);

5. l itaylor(int order, const interval& z); // (z, 1, 0, ..., 0);

6. l itaylor(int order, const l interval& z); // (z, 1, 0, ..., 0);

To avoid possible conversion errors by using the constructors 3. and 4. see the appropriate
comments on page 17 and 53.'

&

$

%

Initialization functions for independent variables of the class l itaylor:

1. l itaylor var l itaylor(int order, const real& r);

2. l itaylor var l itaylor(int order, const l real& l);

3. l itaylor var l itaylor(int order, const interval& z);

4. l itaylor var l itaylor(int order, const l interval& z);

With the assignments

l itaylor x; x = var l itaylor(6,0.25);

we get the interval vector ([0.25], [1], [0], [0], [0], [0], [0]) with 6+1 = 7 components of type
l interval. This interval vector is an attribute of the object x, which can be used as an
independent variable in the Taylor arithmetic.
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%

Initialization functions for constants of the class l itaylor:

1. l itaylor const l itaylor(int order, const real& r);

2. l itaylor const l itaylor(int order, const l real& l);

3. l itaylor const l itaylor(int order, const interval& z);

4. l itaylor const l itaylor(int order, const l interval& z);

With the assignments

l itaylor c; c = const l itaylor(6,0.25);

we get the interval vector ([0.25], [0], [0], [0], [0], [0], [0]) with 6+1 = 7 components of type
l interval. c is a now a constant value in the Taylor arithmetic.'

&

$

%

Assignment operators of the class l itaylor:

1. l itaylor operator = ( const l itaylor& t );

2. l itaylor operator = ( int );

3. l itaylor operator = ( const real& r );

4. l itaylor operator = ( const l real& r );

5. l itaylor operator = ( const interval& z );

6. l itaylor operator = ( const l interval& z );

With the assignments

int p=6; real r1, r2(3.5); l itaylor t(p,r1); t = r2;

we get an interval vector ([3.5], [0], [0], [0], [0], [0], [0]) with 6 + 1 = 7 components of type
l interval. This interval vector is an attribute of the class object t. If the real value r2

is not presentable in the IEEE system, again be aware of the described conversion errors.

Be aware that the assignment operators No. 2-6 always deliver
a constant l itaylor object and not an independent variable!
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Access to the Taylor coefficients and derivatives; output procedure

1. int get order( const l itaylor& t );

2. l ivector get all coef( const l itaylor& t );

3. l interval get j coef( const l itaylor& t, int j );

4. l interval get j derive( const l itaylor& t, int j );

5. void print l itaylor( const l itaylor& t );

Again, the easiest way to explain the above functions is a small sample program.

/*---------------------------------------------------------------

Sample program litayl_ex1.cpp for staggered Taylor arithmetic.

Calculating guaranteed inclusions of the derivatives of the

function f = x / (1+x^2) in interval staggered arithmetic.

---------------------------------------------------------------*/

#include "litaylor.hpp" // Header file for class l_itaylor

#include <l_interval.hpp> // Interval staggered arithmetic

#include <iostream> // Input, output

using namespace std;

using namespace taylor;

using namespace cxsc;

main()

{

stagprec = 3; // Provides a precision of about 3*16

// decimal digits.

int p = 80; // Taylor expansion of order p

l_itaylor x(p,succ(1.0)); // Constructor call

// Point of expansion: succ(1.0)

l_itaylor f;

f = x / (1+sqr(x));

cout << SetDotPrecision(16*stagprec,16*stagprec) << Scientific;

cout << "1. derivative: " << get_j_derive(f,1) << endl;

cout << "80. derivative: " << get_j_derive(f,80) << endl;

}
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The program litayl ex1 produces the following output:

1. Derivative:

[-1.110223024625156170645082345741591263973497711864E-0016,

-1.110223024625156170645082345741591263973497711851E-0016]

80. Derivative:

[3.254602099617104717927374336674220757002038705867E+0106,

3.254602099617104717927374336674220757012005724143E+0106]

Remarks:

1. Write a short program using the class itaylor to calculate the first derivative of
the function

f(x) =
x

1 + x2
, f ′(x) =

1 − x2

(1 + x2)2
, f ′(1) = 0.

For the argument x = succ(1) = 1 + 2−52 near the zero x0 = 1 of f ′(x) you will get
the rather useless inclusion

f ′(succ(1)) ∈ [-1.1102230246251565E-016,+5.5511151231257821E-017].

However, using the above sample program, already with stagprec = 3 we get a
rather tight inclusion of f ′(succ(1)) with 46 correct decimal digits.

2. In general higher orders of the expansion result in lower accuracy of the calculated
inclusions. However in the sample program with p = 80 we still get 38 correct
decimal digits.

In the next sample program the derivatives up to order p = 2 are to be calculated in a
wide region of the domain of

f(x) = arctan
x2

1 + x2
, x ∈ R.

Therefore f(x) is implemented as follows:

f1(x) :=




arctan
x2

1 + x2
, if |x| < 1,

arctan
1

1 + (1/x)2
, otherwise.

In the following sample program litayl ex2.cpp the inclusions of f1(x) are compared
with the inclusions calculated with the functions g(x) := arctan(x2/(1+x2)) and h(x) :=
arctan(1/(1 + (1/x)2)).

/*-----------------------------------------------------------------

Sample program litayl_ex2.cpp for staggered Taylor arithmetic.

Calculating guaranteed inclusions of the derivatives of the

function f = atan(x^2/(1+x^2)) in interval staggered arithmetic.
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------------------------------------------------------------------*/

#include "litaylor.hpp" // Header file for class l_itaylor

#include <l_interval.hpp> // Interval staggered arithmetic

#include <iostream> // Input, output

using namespace std;

using namespace taylor;

using namespace cxsc;

l_itaylor f1(const l_itaylor& x)

{

l_itaylor w;

l_real S( abs( Sup(get_j_derive(x,0)) ) );

if (S<1) {

w = sqr(x);

w = atan( w/(1+w) );

}

else

w = atan(1/(1+sqr(1/x))); // to avoid overflow

return w;

}

main()

{

stagprec = 3; // Provides a precision of about 3*16=48

// decimal digits.

int p = 2; // Taylor expansion of order p

l_itaylor x(p,comp(0.5,-499)); // Constructor call for

// independentvariable x of order p=2;

l_itaylor f,g,h; // Default constructor call

f = f1(x); // After assignment: f is Taylor object of order p.

cout << SetDotPrecision(16*stagprec,16*stagprec) << Scientific

<< "Derivatives of function f1(x):" << endl;

cout << "1. derivative: " << get_j_derive(f,1) << endl;

cout << "2. derivative: " << get_j_derive(f,2) << endl;

cout << "Derivatives of function g(x):" << endl;

g = sqr(x); g = atan(g/(1+g)); // suitable for |(x)_0| < 1;

cout << "1. derivative: " << get_j_derive(g,1) << endl;

cout << "2. derivative: " << get_j_derive(g,2) << endl;
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cout << "Derivatives of function h(x):" << endl;

h = atan(1/(1+sqr(1/x))); // suitable for |(x)_0| >= 1;

cout << "1. derivative: " << get_j_derive(h,1) << endl;

cout << "2. derivative: " << get_j_derive(h,2) << endl;

}

The above program produces with the constructor call

l itaylor x(p,comp(0.5,-499))

the following output:

Derivatives of function f1(x):

1. derivative:

[6.109872726999209364103958786427235399578805481144E-0151,

6.109872726999209364103958786427235399578805481145E-0151]

2. derivative:

[1.999999999999999999999999999999999999999999999934E+0000,

2.000000000000000000000000000000000000000000000000E+0000]

Derivatives of function g(x):

1. derivative:

[6.109872726999209364103958786427235399578805481144E-0151,

6.109872726999209364103958786427235399578805481145E-0151]

2. derivative:

[1.999999999999999999999999999999999999999999999934E+0000,

2.000000000000000000000000000000000000000000000000E+0000]

Derivatives of function h(x):

Segmentation fault

The above program produces with the constructor call

l itaylor x(p,comp(0.5,514))

the following output:

Derivatives of function f1(x):

1. derivative:

[0.000000000000000000000000000000000000000000000000E+0000,

9.881312916824930883531375857364427447301196052287E-0324]

2. derivative:

[-2.964393875047479265059412757209328234190358815686E-0323,

+9.881312916824930883531375857364427447301196052287E-0324]

Derivatives of function g(x):

Segmentation fault

The above program produces with the constructor call

l itaylor x(p,comp(0.5,134))
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the following output:

Derivatives of function f1(x):

1. derivative:

[7.745183829698636545636061266572703695140438383927E-0121,

7.745183829698636545636061266572703695140438384162E-0121]

2. derivative:

[-2.133848399505674384105004877699737693036023579024E-0160,

-2.133848399505674384105004877699737693036023578944E-0160]

Derivatives of function g(x):

1. derivative:

[0.000000000000000000000000000000000000000000000000E+0000,

7.540367562697309101753730021955581707711052419134E-0088]

2. derivative:

[-2.769893585335721554280915015747188677712688235918E-0127,

+6.924733963339302860635742805620298386334090439919E-0128]

Derivatives of function h(x):

1. derivative:

[7.745183829698636545636061266572703695140438383927E-0121,

7.745183829698636545636061266572703695140438384162E-0121]

2. derivative:

[-2.133848399505674384105004877699737693036023579024E-0160,

-2.133848399505674384105004877699737693036023578944E-0160]

Remarks:

1. The last constructor call l itaylor x(p,comp(0.5,134)) delivers an independent
variable x of order p = 2 with (x)0 = [2+133], which is a point interval. In contrast
to g(x) the functions f1(x) and h(x) deliver tight inclusions of the derivatives.

2. The constructor call l itaylor x(p,comp(0.5,-499)) delivers an independent vari-
able x of order p = 2 with (x)0 = [2−500], which again is a point interval. f1(x)
and g(x) deliver tight inclusions of the derivatives, whereas h(x) produces an error
message.

3. The constructor call l itaylor x(p,comp(0.5,514)) delivers an independent vari-
able x of order p = 2 with (x)0 = [2513], which again is a point interval. Only the
expression arctan[1/(1+(1/x)2)] avoids an overflow and delivers an useless inclusion
of the first derivative. However, the first and second derivatives are too small to be
representable with several correct decimal digits in the IEEE system. Realize this
by choosing stagprec=12.

In the last sample programs we used some of the arithmetic operators {+,−, ∗ , / }. If at
least one of the operands is an object of the class l itaylor, then for the result this holds
as well. If only one operand is of type l itaylor, then the type of the other operand
must be an element of the set
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{ int, real, l real, interval, l interval }.
Be aware that in this case each of the five possible operands will always be interpreted as
a constant value and not as an independent variable.

The elementary functions of type l itaylor, implemented in C-XSC with the recur-
sion formulas of page 10, see part 1-4, are listed in the following table.

Elementary Functions of the Class l itaylor
l itaylor u=u(x); l interval a; int n;

Function C-XSC Name Function C-XSC Name

u2 sqr(u) arcsin(u) asin(u)
√

u sqrt(u) arccos(u) acos(u)

n
√

u sqrt(u,n) arctan(u) atan(u)
√

1 + u2 sqrt1px2(u) arccot(u) acot(u)
√

1 − u2 sqrt1mx2(u) sinh(u) sinh(u)
√

u2 − 1 sqrtx2m1(u) cosh(u) cosh(u)
√

1 + u − 1 sqrtp1m1(u) tanh(u) tanh(u)

eu exp(u) coth(u) coth(u)

eu − 1 expm1(u) arsinh(u) asinh(u)

ua pow(u,a) arcosh(u) acosh(u)

ln(u) ln(u) artanh(u) atanh(u)

ln(1 + u) lnp1(u) arcoth(u) acoth(u)

sin(u) sin(u)

cos(u) cos(u)

tan(u) tan(u)

cot(u) cot(u)

The n-th root n
√

u is defined for (u)0 ≥ 0 and n ≥ 1; 1
√

u ≡ u. Combining the above ele-
mentary functions with the arithmetic operators, we get expressions f of type l itaylor,
i.e. (p + 1)-tuples with enclosures of the Taylor coefficients of f .
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3 Functions in Two Real Variables

3.1 Introduction

Let us consider a function f : Df ⊆ R
2 → R of two independent variables x, y ∈ R

with continuous partial derivatives up to order p in a compact region Df ⊆ R
2. Under

this assumption the partial derivatives are independent of the sequence of the single
differentiations, and with the usual notations

∂2f(x, y)

∂x ∂y
= fxy,

∂2f(x, y)

∂y ∂x
= fyx

and with p = 3 it holds

(1) fxy = fyx, fxxy = fxyx = fyxx, fyyx = fyxy = fxyy.

The Taylor expansion can be written in the form

f(x0 + h, y0 + k) = f(x0, y0) +

(
h

∂

∂x
+ k

∂

∂y

)
f(x0, y0) +

+
1

2!

(
h

∂

∂x
+ k

∂

∂y

)2

f(x0, y0) + . . . +

+
1

p!

(
h

∂

∂x
+ k

∂

∂y

)p

f(x0, y0) +

+
1

(p + 1)!

(
h

∂

∂x
+ k

∂

∂y

)p+1

f(x0 + δh, y0 + δk), 0 < δ < 1.

For example, in the above expansion it holds

1

3!

(
h

∂

∂x
+ k

∂

∂y

)3

f(x0, y0) = h3k0 fxxx

3!0!
+ h2k1fxxy

2!1!
+ h1k2fxyy

1!2!
+ h0k3fyyy

0!3!
,

and the fractions on the right-hand side are the Taylor coefficients which will be used in
the following notation:

f [3][0] :=
fxxx

3!0!
, f [2][1] :=

fxxy

2!1!
, f [1][2] :=

fxyy

1!2!
, f [0][3] :=

fyyy

0!3!
.

The partial derivatives in the above numerators are to be evaluated for the arguments
x = x0 and y = y0, and f [0][0] is defined by f [0][0] := f(x0, y0).

An arbitrary summand in the Taylor expansion can now be written in the form:

(2)
1

n!

(
h

∂

∂x
+ k

∂

∂y

)n

f(x0, y0) =
n∑

i=0

hn−iki · f [n − i][i], n = 0, 1, . . . , p.

The task is now to calculate guaranteed inclusions of the Taylor coefficients f [n − i][i]
with i = 0, 1, . . . , n and n = 0, 1, . . . , p.
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3.2 Implementation, IEEE Format

Let us consider the given function

f(x, y) = x2 − 2xy3.

To calculate guaranteed enclosures of the Taylor coefficients f [n − i][i] up to order n = p
at the point (x0, y0) = (2,−3) we use the following sample program

/***********************************************************

* Sample program dim2tayl_ex1.cpp to calculate enclosures *

* of the Taylor coefficients of f(x,y)=x^2-2xy^3 at *

* (x,y)=(2,-3) up to the desired Taylor order p=3. *

***********************************************************/

#include <iostream>

#include "dim2taylor.hpp"

using namespace std;

using namespace cxsc;

using namespace taylor;

dim2taylor f(dim2taylor_vector& x)

{ // f = x^2 - 2*x*y^3;

dim2taylor erg; // Default constructor call

erg = sqr(x[1]) - 2*x[1]*x[2]*sqr(x[2]); // f(x,y)

return erg;

}

int main()

{

int p = 3; // Desired maximal order of Taylor expansion

ivector iv(2); // 2 interval components with Lb=1 and Ub=2;

iv[1] = interval(2); // x-value

iv[2] = interval(-3); // y-value

dim2taylor_vector tv; // Default constructor call

tv = init_var(p,iv); // Initialization with vector iv

dim2taylor t; // Default constructor call

t = f(tv); // function call

cout << "t[1][2] = " << t[1][2] << endl;

}

The Sample program produces the following output:
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t[1][2] = [ 18.000000, 18.000000].

Remarks:

1. The above point interval is a guaranteed inclusion of the Taylor coefficient f [1][2] =
fxyy/(1! · 2!) = 18.

2. For calculating such inclusions the classes dim2taylor and dim2taylor vector are
declared and implemented in the two C++ files

dim2taylor.hpp, dim2taylor.cpp.

3. An object t of the class dim2taylor contains an attribute p for the maximal order of
the Taylor expansion. The assignment t.get p() delivers the order p of the object
t. int get p() is a member function of the class dim2taylor.

The second attribute is a pointer to a dynamic block (array) of p + 1 elements of
type ivector (interval vector) including the calculated Taylor coefficients. Because
of the relations in (1) the storage scheme of the coefficients is a triangle matrix. In
our example, with p = 3, we have




f [0][0] = +112 f [0][1] = −108 f [0][2] = 36 f [0][3] = −4
f [1][0] = +58 f [1][1] = −54 f [1][2] = 18
f [2][0] = +1 f [2][1] = 0
f [3][0] = 0




With the assignment t[1][2] we get an inclusion of the Taylor coefficient f [1][2] =
fxyy/(1! · 2!) = 18 ∈ t[1][2].

4. The following constructors are implemented in the class dim2taylor

• dim2taylor(); Default constructor with p=0.

• dim2taylor(int); The int parameter determines the order p.

• dim2taylor(const dim2taylor&); Copy constructor.

5. The assignment t.print dim2taylor() produces a screen output of the inclusions
of the Taylor coefficients f [n − i][i] with i = 0, 1, . . . , n and n = 0, 1, . . . , p. void

print dim2taylor() is a member function of the class dim2taylor.

6. For an object t of the class dim2taylor an operator [ ] is defined in such a way that
t[i] delivers the i-th. interval vector, i = 0, 1, . . . , p. In our example t[1] is an
interval vector of type ivector

t[1] =
(

[+58] [−54] [+18] [0]
)
,

with t[1][2] = [+18] := [18.000000,18.000000].
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Be aware that t[1][3] = [0] is not an inclusion of the Taylor coefficient f [1][3] = −2,
because the chosen order of the Taylor expansion is p = 3 and so f [1][3] = −2 can
not be calculated. The index sum 1 + 3 = 4 must not be greater than p = 3.

7. To get an object of type dim2taylor for the independent variables x or y the
following friend function is implemented:

friend dim2taylor init var(int, int, const interval& );

The first parameter determines the order p of the Taylor expansion. The second
parameter determines with the values 1 or 2 the independent variables x or y re-
spectively, other values are not allowed. The last parameter ot type interval

delivers the enclosure of the corresponding coordinate x0 or y0. (x0, y0) is the
point of expansion. With tx = init var(3,1,interval(2)); we get an ob-
ject tx of type dim2taylor for the independent variable x, and the assignment
tx.print dim2taylor() delivers the following scheme of point intervals:




[2] [0] [0] [0]
[1] [0] [0]
[0] [0]
[0]


 , ∂x

∂x
= 1 ∈ tx[1][0] = [1] := [1, 1].

With ty = init var(3,2,interval(-3)); we get an object ty of type dim2taylor
for the variable y, and the assignment ty.print dim2taylor() delivers the fol-
lowing scheme of point intervals:




[−3] [1] [0] [0]
[0] [0] [0]
[0] [0]
[0]


 , ∂y

∂y
= 1 ∈ tx[0][1] = [1] := [1, 1].

8. To get an object of type dim2taylor for the constant value c = 0.1 the following
friend function is implemented:

friend dim2taylor init const(int, const interval& );

The first parameter determines the order p of the Taylor expansion, and the last
parameter of type interval delivers an enclosure of c. If we realize the interval z as
in the program on page 51, then with tc = init var(3,z); we get an object
tc of type dim2taylor for c = 0.1, and the assignment tc.print dim2taylor()

delivers the following scheme of intervals:




[0.099999, 0.100001] [0] [0] [0]
[0] [0] [0]
[0] [0]
[0]


 , ∂c

∂x
= ∂c

∂y
= ∂2c

∂x ∂y
= . . . = 0.
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9. The arithmetic operators {+,−, ∗ , / } are overloaded in the class dim2taylor. If
at least one of the operands is an object of this class, then for the operator result
this holds as well. If only one operand is of type dim2taylor, then the type of the
other operand must be an element of the set

{ int, real, interval }.

Be aware that in this case each of the three possible operands will always be inter-
preted as a constant value and not as an independent variable.

10. The elementary functions of type dim2taylor implemented in C-XSC are listed in
the following table.

Elementary Functions of the Class dim2taylor
dim2taylor u; interval a; int n;

Function C-XSC Name Function C-XSC Name

u2 sqr(u) cot(u) cot(u)
√

u sqrt(u) arcsin(u) asin(u)
√

1 + u2 sqrt1px2(u) arccos(u) acos(u)
√

u2 − 1 sqrtx2m1(u) arctan(u) atan(u)
√

1 + u − 1 sqrtp1m1(u) arccot(u) acot(u)

eu exp(u) sinh(u) sinh(u)

ua pow(u,a) cosh(u) cosh(u)

un power(u,n) tanh(u) tanh(u)

ln(u) ln(u) coth(u) coth(u)

ln(1 + u) lnp1(u) arsinh(u) asinh(u)

sin(u) sin(u) arcosh(u) acosh(u)

cos(u) cos(u) artanh(u) atanh(u)

tan(u) tan(u) arcoth(u) acoth(u)

11. To calculate guaranteed inclusions of the Taylor coefficients of our example function
f(x, y) = x2 − 2xy3 two objects of type dim2taylor must be available for the
independent variables x and y and their values 2 and −3 respectively. For this
purpose the class dim2taylor vector is implemented. An object tv of this class
has an attribute which is a pointer to a dynamic block (an array) of dim elements
of type dim2taylor. The object tv contains the following attributes of type int:

• dim is the number of elements of type dim2taylor.
tv.get dim() returns the value dim of type int.
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• lb is the smallest index of the dynamic array with elements of type dim2taylor.
tv.get lb() returns the value lb of type int.

• ub is the greatest index of the dynamic array with elements of type dim2taylor.
tv.get ub() returns the value ub of type int. With this definitions it holds:
dim = ub− lb + 1.

• p el is the order of the Taylor expansion of the dim array objects of type
dim2taylor.
tv.get p el() returns the value p el of type int.

12. With the default constructor call dim2taylor vector tv; the following at-
tribute values are realized: dim = 2, lb = 1, ub = 2, p el = 1.

13. With the constructor call dim2taylor vector tv(11,4,8); the following at-
tribute values are realized: dim = 5, lb = 4, ub = 8, p el = 11.
So the first parameter 11 determines the order p el of the Taylor expansion and the
following parameters realize the values for lb and ub, which for their part determine
the attribute dim by dim = 8 − 4 + 1 = 5.
With the next copy constructor call dim2taylor vector tvc(tv); a
second object tvc is declared, which is identical with the object tv, however both
objects allocate different storage areas.

14. For an object tv of the class dim2taylor vector an operator [ ] is defined in
such a way that tv[i] delivers the i-th. object in the array with elements of type
dim2taylor, i = lb, . . . , ub. As we consider a two-dimensional Taylor arithmetic,
it holds dim = 2, and in general we have lb = 1 and ub = 2. Hence, tv[1] and
tv[2] are allowed operator calls, which return objects of the class dim2taylor.

15. To initialize an object tv of the class dim2taylor vector with respect to the two
independent variables x and y with the values 2 and −3 respectively, the following
friend function

friend dim2taylor vector init var(int order, ivector& value);

is implemented. The first parameter order determines the order of the Taylor
expansion, and the second parameter value delivers the two interval components
interval(2) and interval(-3) realizing an inclusion of the point of expansion
(x0, y0) = (2,−3), see the sample program on page 34, where iv is the interval
vector of type ivector. If for example the coordinate x0 = 0.1 is not presentable
in the IEEE system, then, instead of interval(0.1) or interval(0.1,0.1), an
interval z including 0.1 must be realized as it is shown in the program on page 51.

In the next example we calulate for the given function

f(x, y) =
√

1 + (x + y)2

a guaranteed enclosure of the Taylor coefficient f [2][1] at the not presentable point of
expansion (x0, y0) = (108, 2.1 · 108). The following program
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/************************************************************

* Sample program dim2tayl_ex2.cpp to calculate enclosures *

* of the Taylor coefficient f[2][1] of the function *

* f(x,y) = sqrt(1+(x+y)^2) at (x,y) = (10^8, 2.1*10^8) *

************************************************************/

#include <iostream>

#include "dim2taylor.hpp"

using namespace std;

using namespace cxsc;

using namespace taylor;

dim2taylor f(dim2taylor_vector& x)

{

// f(x,y) = sqrt( 1+sqr(x+y) );

dim2taylor erg; // Default constructor call

erg = sqrt( 1 + sqr(x[1]+x[2]) ); // f(x,y)

return erg;

}

dim2taylor g(dim2taylor_vector& x)

{

// g(x,y) = sqrt( 1+sqr(x+y) );

dim2taylor erg; // Default constructor call

erg = sqrt1px2(x[1]+x[2]); // g(x,y)

return erg;

}

int main()

{

int p = 3; // Desired maximal order of Taylor expansion

char* string1 = "[1e8,1e8]";

char* string2 = "[2.1e8,2.1e8]";

interval z1,z2;

string1 >> z1; string2 >> z2;

ivector iv(2); // 2 interval components with Lb=1 and Ub=2;

iv[1] = z1; // inclusion of x-coordinate

iv[2] = z2; // inclusion of y-coordinate

dim2taylor_vector tv;

tv = init_var(p,iv); // Initialization with vector iv

dim2taylor t; // Default constructor call
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cout << SetPrecision(16,15) << Scientific;

t = g(tv); // function call

cout << "Taylor coefficient t[2][1] with g(x,y):" << endl;

cout << t[2][1] << endl;

t = f(tv); // function call

cout << "Taylor coefficient t[2][1] with f(x,y):" << endl;

cout << t[2][1] << endl;

}

produces the output

Taylor coefficient t[2][1] with g(x,y):

[-1.624218615494407E-034,-1.624218615494386E-034]

Taylor coefficient t[2][1] with f(x,y):

[-6.931673410771015E-033,1.039751011615653E-032]

In the above program we implemented the two functions f(x, y) and g(x, y) with equivalent
expressions. With f(x, y) we evaluate the expression in a naive manner, which leads to
a rather rough enclosure. However using the implemented function sqrtp1x2(...) in
g(dim2taylor vector& x) we get a tight inclusion of the Taylor coefficient

f [2][1] :=
fxxy(x0, y0)

2! · 1!
= −1.624 . . . · 10−34.

But don’t be anxious, if you fail by searching for the optimal expression you will get
sufficiently tight enclosures by using a higher precision with the implemented staggered
Taylor arithmetic, see the following section.

3.3 Implementation, Staggered Format

In the last section we pointed out that in some cases a higher precision might be necessary
to get sufficiently tight enclosures of the Taylor coefficients. In C-XSC a staggered Taylor
arithmetic is implemented in the modules ldim2taylor.hpp and ldim2taylor.cpp. With
the C++ classes ldim2taylor and ldim2taylor vector all necessary tools are available
for the user.

An object t of the class ldim2taylor contains an attribute p for the maximal order
of the Taylor expansion. The assignment t.get p() delivers the order p of the object t.
int get p() is a member function of the class ldim2taylor.

The second attribute is a pointer to a dynamic block (array) of p + 1 elements of
type l ivector (interval vector of the staggered format) including the calculated Taylor
coefficients. Because of the relations in (1) on page 33 the storage scheme of the coefficients
is a triangle matrix, see page 35.

The elementary functions of type ldim2taylor implemented in C-XSC are listed in
the following table.
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Elementary Functions of the Class ldim2taylor
ldim2taylor u; l interval a; int n;

Function C-XSC Name Function C-XSC Name

u2 sqr(u) cot(u) cot(u)
√

u sqrt(u) arcsin(u) asin(u)
√

1 + u2 sqrt1px2(u) arccos(u) acos(u)
√

u2 − 1 sqrtx2m1(u) arctan(u) atan(u)
√

1 + u − 1 sqrtp1m1(u) arccot(u) acot(u)

eu exp(u) sinh(u) sinh(u)

ua pow(u,a) cosh(u) cosh(u)

un power(u,n) tanh(u) tanh(u)

ln(u) ln(u) coth(u) coth(u)

ln(1 + u) lnp1(u) arsinh(u) asinh(u)

sin(u) sin(u) arcosh(u) acosh(u)

cos(u) cos(u) artanh(u) atanh(u)

tan(u) tan(u) arcoth(u) acoth(u)

The structure of the classes ldim2taylor and ldim2taylor vector is almost identical
with the structure of the classes dim2taylor and dim2taylor vector

already described on page 35−38. Only the types ivector and interval are to be
replaced by the types l ivector and l interval respectively.

The arithmetic operators {+,−, ∗ , / } are overloaded in the class ldim2taylor. If at
least one of the operands is an object of this class, then for the operator result this holds
as well. If only one operand is of type ldim2taylor, then the type of the other operand
must be an element of the set

{ int, real, l real, interval, l interval }.
Be aware that in this case each of the five possible operands will always be interpreted as
a constant value and not as an independent variable. If one of the operands is of type
interval, then this interval should always be a point interval, because a multiplication
with a thick interval of type interval will reduce the accuracy to at most 16 decimal
digits in contrast to the desired accuracy of stagprec · 16 digits.

For the given function

f(x, y) :=

√
1 +

x2

y
, with point of expansion: (x0, y0) = (4, 2),
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the following program ldim2tayl ex1.cpp calculates a guaranteed enclosure of the Taylor
coefficient

f [2][1] :=
fxxy(x0, y0)

2! · 1!
= 1.543209 . . . · 10−3.

With stagprec = 3 we choose a precision of about 3 · 16 = 48 decimal digits.

/***************************************************************

* Sample program ldim2tayl_ex1.cpp to calculate an enclosure *

* of the Taylor coefficient f[2][1] of the function *

* f(x,y) = sqrt( 1+x^2/y) at (x,y)=(4,2) (Staggered Arithm.) *

***************************************************************/

#include <iostream>

#include "ldim2taylor.hpp"

using namespace std;

using namespace cxsc;

using namespace taylor;

ldim2taylor f(ldim2taylor_vector& x)

{ // f = sqrt( 1+x^2/y);

ldim2taylor erg;

erg = sqrt(l_real(1.0) + sqr(x[1])/x[2] ); // f(x,y)

return erg;

}

int main()

{

int p = 3; // Maximal order of Taylor expansion

stagprec = 3; // Desired precision of 3*16=48 digits

l_ivector iv(2); // 2 components with Lb=1 and Ub=2;

iv[1] = l_interval(4); // x-value, x_0 = 4;

iv[2] = l_interval(2); // y-value, y_0 = 2;

ldim2taylor_vector tv; // Default constructor call

tv = init_var(p,iv); // Initialization with vector iv

ldim2taylor t; // Default constructor call

t = f(tv); // function call

cout << SetDotPrecision(16*stagprec,16*stagprec-3)

<< Scientific;

cout << "t[2][1] = " << t[2][1] << endl;

}

The above program produces the following output
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t[2][1] = [1.543209876543209876543209876543209876543209876E-0003,

1.543209876543209876543209876543209876543209877E-0003]

which is a guaranteed enclosure of the Taylor coefficient t[2][1] = f [2][1] with 45 correct
decimal digits.

Remarks:

1. If a point of expansion is not presentable in the binary data format, see the appro-
priate hints on page 53.

2. Write a program to compute an enclosure of the Taylor coefficient f [2][1] for the
function

f(x, y) :=
√

1 + (x + y)2

with the not presentable point of expansion (x0, y0) = (108, 2.1 · 108). Use the two
possible notations of f(x, y) as described in the program on page 38 and compare
the quality of the enclosures. A solution is given with the program on the following
page.

/***************************************************************

* Sample program ldim2tayl_ex2.cpp to calculate an enclosure *

* of the Taylor coefficient f[2][1] of the function *

* f(x,y) = sqrt( 1+(x+y)^2) at (x,y) = (10^8,2.1*10^8) *

***************************************************************/

#include <iostream>

#include "ldim2taylor.hpp"

using namespace std;

using namespace cxsc;

using namespace taylor;

ldim2taylor f(ldim2taylor_vector& x)

{ // f = sqrt( 1+(x+y)^2 );

ldim2taylor erg;

erg = sqrt( 1+sqr(x[1]+x[2]) );

return erg;

}

ldim2taylor g(ldim2taylor_vector& x)

{ // g = sqrt( 1+(x+y)^2 );

ldim2taylor erg;

erg = sqrt1px2( x[1]+x[2] );

return erg;

}
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int main()

{

int p = 3; // Maximal order of Taylor expansion

stagprec = 3; // Desired precision of 3*16=48 digits

char* string1 = "[1e8,1e8]";

char* string2 = "[2.1e8,2.1e8]";

l_interval z1,z2;

string1 >> z1; string2 >> z2;

l_ivector iv(2); // 2 components with Lb=1 and Ub=2;

iv[1] = z1; // x-value, x_0 = 4;

iv[2] = z2; // y-value, y_0 = 2;

ldim2taylor_vector tv; // Default constructor call

tv = init_var(p,iv); // Initialization with vector iv

ldim2taylor t; // Default constructor call

t = f(tv); // function call

cout << SetDotPrecision(16*stagprec,16*stagprec-3)

<< Scientific;

cout << "Function f(x,y): t[2][1] = " << t[2][1] << endl;

t = g(tv);

cout << "Function g(x,y): t[2][1] = " << t[2][1] << endl;

}

The above program produces the following output

Function f(x,y):

t[2][1] = [-1.624218615494395862116993292786934325760572663E-0034,

-1.624218615494395862116993292785604946276166290E-0034]

Function g(x,y):

t[2][1] = [-1.624218615494395862116993292786129506636281943E-0034,

-1.624218615494395862116993292786129506636281942E-0034]

Again using the function sqrtp1x2(...) in the notation of the implemented function

ldim2taylor g(ldim2taylor vector& x);

we get a rather tight inclusion of the Taylor coefficient t[2][1] with 45 correct decimal
digits. Compare the above results with the inclusions on page 40 calculated with the
simple IEEE format.
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4 Functions in One Complex Variable

4.1 Introduction

Due to the fact that the derivation rules for real and complex expressions are totally
identical we can adopt the recursion formulas of the table on page 10 for calculating the
Taylor coefficients of complex functions. So the implementation of the class citaylor

can easily be done by using the class itaylor, where only simple changes of names are
necessary. Now, of course the complete set of elementary complex functions implemented
in the class cimath can be integrated in citaylor.

4.2 Implementation, IEEE Format

In C-XSC the citaylor arithmetic is declared in the module citaylor.hpp and imple-
mented in citaylor.cpp. The C++ class citaylor provides the following constructors:'

&

$

%

Constructors of the class citaylor:

1. citaylor(); // default constructor;

2. citaylor(const citaylor& ); // copy constructor;

3. citaylor(int order, const real& r); // (r, 1, 0, ..., 0);

4. citaylor(int order, const complex& c); // (c, 1, 0, ..., 0);

5. citaylor(int order, const interval& z); // (z, 1, 0, ..., 0);

6. citaylor(int order, const cinterval& z); // (z, 1, 0, ..., 0);

To avoid conversion errors by using the constructors 3. and 4. see the hints on page 52.
The following initialization functions for constants are implemented:'

&

$

%

Initialization functions for constants of the class citaylor:

1. citaylor const citaylor(int order, const real& r);

2. citaylor const citaylor(int order, const complex& c);

3. citaylor const citaylor(int order, const interval& z);

4. citaylor const citaylor(int order, const cinterval& z);

The following initialization functions for independent variables are implemented:
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'

&

$

%

Initialization functions for constant values of the class citaylor:

1. citaylor var citaylor(int order, const real& r);

2. citaylor var citaylor(int order, const complex& c);

3. citaylor var citaylor(int order, const interval& z);

4. citaylor var citaylor(int order, const cinterval& z);

With the assignments

citaylor z; z = var itaylor(6,complex(-2,3));

we get the complex interval vector

(([−2], [3]), ([1], [0]), ([0], [0]), ([0], [0]), ([0], [0]), ([0], [0]), ([0], [0]))

with 6+1 = 7 complex interval components. ([−2], [3]) denotes a point interval including
the complex number c = −2 + 3 · i. z is now an independent variable in the Taylor
arithmetic. The above complex interval vector is an attribute of the class object z.

To generate an independent variable z of order 6 including the not presentable complex
number c = 0.1+3.7·i we first have to generate an inclusion interval ci of type cinterval
as described on page 52. After that the following assignments are necessary:

citaylor z; z = var itaylor(6,ci);

'

&

$

%

Assignment operators of the class citaylor:

1. citaylor operator = ( const citaylor& t );

2. citaylor operator = ( int );

3. citaylor operator = ( const real& r );

4. citaylor operator = ( const complex& c );

5. citaylor operator = ( const interval& z );

6. citaylor operator = ( const cinterval& z );

With the assignments

int p=3; complex c(-2,3),c1; citaylor t(p,c1); t = c;
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we get an interval vector (([−2], [3]), ([0], [0]), ([0], [0]), ([0], [0])) with 3 + 1 = 4 complex
interval components, which is an attribute of the class object t. If the complex number
c = 0.1 + 3.7 · i is not presentable in the IEEE system, again keep in mind the described
conversion errors and first realize the inclusion interval ci 3 c as described on page 52.
After that use the following assignments:

int p=3; complex c; citaylor t(p,c); cinterval z(ci); t = z;

Now t is a constant citaylor object, where the Taylor coefficient (t)0 of order 0 is a thick
complex interval z beeing an optimal inclusion of the not presentable complex number
0.1 + 3.7 · i ∈ z.

Be aware that the assignment operators No. 2-6 always deliver
a constant citaylor object and not an independent variable!

'

&

$

%

Access to the Taylor coefficients and derivatives; output procedure

1. int get order( const citaylor& t );

2. civector get all coef( const citaylor& t );

3. cinterval get j coef( const citaylor& t, int j );

4. cinterval get j derive( const citaylor& t, int j );

5. void print citaylor( const citaylor& t );

The easiest way to explain the above functions is a small sample program.

/*---------------------------------------------------------

Sample program citayl_ex1.cpp.

Calculating Taylor coefficients and derivatives up to

order p=10. Expansion point x.

---------------------------------------------------------*/

#include "citaylor.hpp" // Header file of class citaylor

#include <cinterval.hpp> // Complex interval arithmetic

#include <iostream> // Input

using namespace cxsc;

using namespace std;

using namespace taylor;
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main()

{

int p=10; // order of expansion

citaylor f; // Default constructor for f(x) = e^(-x^2).

cinterval c; // To include the point of expansion.

cout << "Including the point of expansion z = x + i*y" << endl;

cout << "c = ([x,x],[y,y]) = ? "; cin >> c;

citaylor x(p,c); // Constructor call

f = exp(-sqr(x)); // function f(x)

cout << SetPrecision(15,15) << Scientific << endl;

print_citaylor(f); // Output of Taylor coefficients

civector derivative(0,p); // 11 components, indices: 0,1,...,10;

for(int i=0;i<=p; i++) derivative[i] = get_j_derive(f,i);

cout << "f(x): Derivatives up to order 10 " << endl;

for(int i=0; i<=p; i++) // Output derivatives

cout << i <<"-th. derivative: " << derivative[i] << endl;

} // main

With the input

Including the point of expansion c = x + i*y

c = ([x,x],[y,y]) = ? ([0,0],[-0.1,-0.1])

the sample program citayl ex1 produces the following output:

Output citaylor of order 10

i 0 component:

([1.010050167084165E+000,1.010050167084170E+000],

[0.000000000000000E+000,-0.000000000000000E+000])

i 1 component:

([-0.000000000000000E+000,0.000000000000000E+000],

[2.020100334168331E-001,2.020100334168339E-001])

i 2 component:

([-1.030251170425853E+000,-1.030251170425849E+000],

[-0.000000000000000E+000,0.000000000000000E+000])

i 3 component:

([-0.000000000000000E+000,0.000000000000000E+000],

[-2.033567669729462E-001,-2.033567669729453E-001])

i 4 component:

([5.252934235615717E-001,5.252934235615737E-001],

[-0.000000000000000E+000,0.000000000000000E+000])

i 5 component:

([-0.000000000000000E+000,0.000000000000000E+000],
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[1.023544437316409E-001,1.023544437316415E-001])

i 6 component:

([-1.785096226449127E-001,-1.785096226449119E-001],

[-0.000000000000000E+000,0.000000000000000E+000])

i 7 component:

([-0.000000000000000E+000,0.000000000000000E+000],

[-3.434440171318077E-002,-3.434440171318060E-002])

i 8 component:

([4.548601570405749E-002,4.548601570405768E-002],

[-0.000000000000000E+000,0.000000000000000E+000])

i 9 component:

([-0.000000000000000E+000,0.000000000000000E+000],

[8.642889618574744E-003,8.642889618574788E-003])

i 10 component:

([-9.270060933183031E-003,-9.270060933182992E-003],

[-0.000000000000000E+000,0.000000000000000E+000])

f(x): Derivatives up to order 10

0-th. derivative:

([1.010050167084165E+000,1.010050167084170E+000],

[0.000000000000000E+000,-0.000000000000000E+000])

1-th. derivative:

([-0.000000000000000E+000,0.000000000000000E+000],

[2.020100334168331E-001,2.020100334168339E-001])

2-th. derivative:

([-2.060502340851706E+000,-2.060502340851698E+000],

[-0.000000000000000E+000,0.000000000000000E+000])

3-th. derivative:

([-0.000000000000000E+000,0.000000000000000E+000],

[-1.220140601837677E+000,-1.220140601837671E+000])

4-th. derivative:

([1.260704216547772E+001,1.260704216547777E+001],

[-0.000000000000000E+000,0.000000000000000E+000])

5-th. derivative:

([-0.000000000000000E+000,0.000000000000000E+000],

[1.228253324779691E+001,1.228253324779697E+001])

6-th. derivative:

([-1.285269283043371E+002,-1.285269283043365E+002],

[-0.000000000000000E+000,0.000000000000000E+000])

7-th. derivative:

([-0.000000000000000E+000,0.000000000000000E+000],

[-1.730957846344311E+002,-1.730957846344302E+002])

8-th. derivative:

([1.833996153187597E+003,1.833996153187606E+003],
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[-0.000000000000000E+000,0.000000000000000E+000])

9-th. derivative:

([-0.000000000000000E+000,0.000000000000000E+000],

[3.136331784788403E+003,3.136331784788420E+003])

10-th. derivative:

([-3.363919711433459E+004,-3.363919711433444E+004],

[-0.000000000000000E+000,0.000000000000000E+000])

Remarks:

1. The input ([0,0],[-0.1,-0.1]) delivers a complex interval c including the not
presentable complex number z = 0− 0.1 · i. So c is not a point interval but a thick
interval being the optimal inclusion of z.

2. The above complex intervals of the program output are inclusions of the Taylor
coefficients and derivatives for all the points of expansion z ∈ c. For example it
holds z1 = 0 − (0.1 + 10−20) · i ∈ c, and so the intervals of the program output are
also inclusions of the Taylor coefficients and derivatives with respect to the point of
expansion z1.

3. If the chosen complex interval c is too thick then of course the calculated inclusion
intervals for the Taylor coefficients become useless.

4. It should be noted again that the complex output intervals are guaranteed enclo-
sures of the exact Taylor coefficients of the function f in the program.

The four arithmetic operators {+,−, ∗ , / } are implemented in the class citaylor. If at
least one of the operands is an object of this class, then for the operator result this holds
as well. If only one operand is of type citaylor, then the type of the other operand must
be an element of the set

{ int, real, complex, interval, cinterval }.
Be aware that in this case each of the five possible operands will always be interpreted as
a constant value and not as an independent variable.

The elementary functions of type citaylor, implemented in C-XSC with the recursion
formulas of page 10, see part 1-4, are listed in the following table. The n-th root n

√
u is

defined for (u)0 ≥ 0 and n ≥ 1; 1
√

u ≡ u. Combining the elementary functions with the
arithmetic operators {+,−, ∗ , / }, we get expressions f of type citaylor. Such a class
object f possesses among others an attribute, which is a (p + 1)-tuple with enclosures of
the Taylor coefficients of f up to order p.
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Elementary Functions of the Class citaylor
citaylor u=u(z); interval a; cinterval b; int n;

Function C-XSC Name Function C-XSC Name

u2 sqr(u) arcsin(u) asin(u)
√

u sqrt(u) arccos(u) acos(u)

n
√

u sqrt(u,n) arctan(u) atan(u)
√

1 + u2 sqrt1px2(u) arccot(u) acot(u)
√

1 − u2 sqrt1mx2(u) sinh(u) sinh(u)
√

u2 − 1 sqrtx2m1(u) cosh(u) cosh(u)

eu exp(u) tanh(u) tanh(u)

eu − 1 expm1(u) coth(u) coth(u)

ua pow(u,a) arsinh(u) asinh(u)

ub pow(u,b) arcosh(u) acosh(u)

un power(u,n) artanh(u) atanh(u)

ln(u) ln(u) arcoth(u) acoth(u)

sin(u) sin(u)

cos(u) cos(u)

tan(u) tan(u)

cot(u) cot(u)

The function power(u,n) is defined for n = 0,±1,±2, . . .. If n < 0 the requirement
0 6∈ c must be fulfilled, whereby c is the given complex interval including the points of
expansion.

A Avoidance of Conversion Errors

A.1 Including Arbitrary Real Numbers, IEEE Format

Unfortunately most of the decimal numbers like 0.1 or 0.73 are not presentable in the
IEEE System. To realize an interval z including the value 0.1 see the following sample
program

/***********************************************************

* Sample program Taylor_apd1.cpp to realize an optimal *

* inclusion z of the not presentable decimal value 0.1; *
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* z is an interval with a minimal diameter > 0. *

***********************************************************/

#include <iostream> // Input, Output

#include <interval.hpp> // Interval arithmetic

using namespace std;

using namespace cxsc;

int main()

{

interval z;

char* string = "[0.1,0.1]";

string >> z; // z: optimal inclusion of 0.1;

if ( diam(z) == 0 )

{ cout << "diam(z) == 0" << endl; }

else { cout << "diam(z) > 0" << endl; }

cout << "z = " << z << endl;

interval z1, z2;

z1 = interval(0.1); z2 = interval(0.1,0.1);

// z1 = z2 are point intervals not including 0.1 !

}

The above program produces the following output

diam(z) > 0

z = [ 0.099999, 0.100001 ]

Please notice that z is an optimal inclusion of the decimal value 0.1 and be aware that
the two constructor calls

z1 = interval(0.1); z2 = interval(0.1,0.1);

deliver the same point intervals z1 = z2, which indeed are no inclusions of the decimal
value 1/10.

A.2 Including Arbitrary Complex Numbers, IEEE Format

To realize a complex interval ci including the not presentable complex number c =
0.1 + 3.7 · i consider the following sample program

/***********************************************************

* Sample program Taylor_apd2.cpp to realize an optimal *

* inclusion ci of the not presentable complex number *

* c = 0.1 + 3.7*i; ci is not a complex point interval! *
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***********************************************************/

#include <iostream> // Input, Output

#include <cinterval.hpp> // Complex interval arithmetic

using namespace std;

using namespace cxsc;

int main()

{

cinterval ci;

char* string = "([0.1,0.1],[3.7,3.7])";

string >> ci; // ci: optimal inclusion of 0.1+3.7*i;

if ( diam(Re(ci)) == 0 )

cout << "diam(Re(ci)) == 0" << endl;

else cout << "diam(Re(ci)) > 0" << endl;

cout << "ci = " << ci << endl;

cinterval ci1, ci2;

ci1 = cinterval( interval(0.1),interval(3.7) );

ci2 = cinterval( interval(0.1,0.1),interval(3.7,3.7) );

// ci1=ci2 are point intervals not including 0.1+3.7*i!

}

The above program produces the following output

diam(Re(ci)) > 0

ci = ([ 0.099999, 0.100001],[ 3.699999, 3.700001])

Please notice that ci is an optimal inclusion of the complex value c = 0.1 + 3.7 · i and be
aware that the two constructor calls

ci1 = cinterval( interval(0.1),interval(3.7) );

ci2 = cinterval( interval(0.1,0.1),interval(3.7,3.7) );

deliver the same point intervals ci1 = ci2, which indeed are no inclusions of the complex
value c.

A.3 Including Arbitrary Real Numbers, Staggered Format

To realize an interval li including the value 0.1 in the staggered correction format see
the following sample program

/************************************************************

* Sample program Taylor_apd3.cpp to realize an optimal *
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* inclusion li in staggered format of the not presentable *

* real number r = 0.1; s is not a point interval! *

************************************************************/

#include <iostream> // Input, Output

#include <l_interval.hpp> // Staggered interval arithmetic

using namespace std;

using namespace cxsc;

int main()

{

stagprec = 3; // Precision of about 3*16=48 decim. digits

l_interval li;

char* string = "[0.1,0.1]";

string >> li; // li: Inclusion of 0.1 in high precision

cout << SetDotPrecision(16*stagprec,16*stagprec-3)

<< Scientific << "li = " << li <<endl;

if (diam(li) > 0) cout << "diam(li) > 0" << endl;

else cout << "diam(li) == 0" << endl;

}

With stagprec = 3; we choose a precision of about 3 ·16 = 48 decimal digits. The above
program produces the following output

li = [9.999999999999999999999999999999999999999999999E-0002,

1.000000000000000000000000000000000000000000001E-0001]

diam(li) > 0

Another possibility to realize the same inclusion interval is to perform an interval division
by li = l interval(1)/10. Be aware that the decimal number 0.1 can not exactly be
stored in a binary data format of any desired precision. So an interval including 0.1 will
always have a positive diameter.
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[22] Hofschuster W., Krämer W. A Computer Oriented Approach to Get Sharp Reliable
Error Bounds, Reliable Computing 3, pp. 239-248, 1997.
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