N
i
&\\\\\

W

N
11
&

Bergische Universitat
Wuppertal

An MPI Extension for the Use of C-XSC

in Parallel Environments

Markus Grimmer

Preprint 2005/3

Wissenschaftliches Rechnen/
Softwaretechnologie

Wr»
swt

Impressum

Herausgeber: Prof. Dr. W. ldrier, Dr. W. Hofschuster
Wissenschaftliches Rechnen/Softwaretechnologie
Fachbereich 7 (Mathematik)
Bergische Universit'Wuppertal
Gaul3str. 20
D-42097 Wuppertal

Internet-Zugriff

Die Berichte sind in elektronischer Form afthich tiber die World Wide Web Seiten

http://www.math.uni-wuppertal.de/wrswt/literatur.html

Autoren-Kontaktadresse

Markus Grimmer

Bergische Univers#t'Wuppertal
Gaul3str. 20

D-42097 Wuppertal

E-mail: grimmer@math.uni-wuppertal.de

An MPI Extension for the Use of C-XSC in
Parallel Environments

Markus Grimmer

Abstract. MPI is a common interface for communication in parallel environments.
In this document, two strategies to apply MPI to user-defined data types are discussed.
Subsequently, two implementations of an MPI extension for the data types contained in
the C++ class library C-XSC are presented. Parallel environments and the necessary steps
to use C-XSC programs with MPI communication routines in this environment are shortly
described focussing on the parallel supercomputer ALICEnext [1] and its practical access.
Some test results for the new implementations are given. Finally, the development of an
integral equation solver in C-XSC and its parallelization using the new MPI extension are
discussed.

The package of MPI communication routines for C-XSC ist going to be further en-
hanced and more extensive tests are being done. The source code will be available at
http://www.math.uni-wuppertal.de/wrswt/xsc/cxsc _software.html

Keywords: Parallel computer, MPI, C-XSC, Interval Arithmetic, ALICEnext.

1 Introduction

Interval arithmetic is more time consuming then real arithmetic: Computations have to
be done on two bounding values in each step, and in most cases much more demanding
considerations have to be made to efficiently implement an algorithm with result verifi-
cation. Parallelization is a typical approach to solve large problems in reasonable time.
It becomes more and more important as clock frequencies are reaching physical limits
while performance requirements still rise.

MPI is a well-known interface for communication in parallel environments [14] [15].

It contains communication functions for both point-to-point communication and collec-
tive communication as well as facilities for the definition of data types and virtual topolo-
gies.

Writing parallel programs involving user-defined data types is a task that requires extra
program code for the correct communication of data between processes. These parts of
code are often individually written for each problem, since no parallel interface for the
data types in use is available.

We present two versions of an MPI extension for the C-XSC data types comprising
point-to-point communication routines based on the MPI mechanisms of data type defi-
nition and packing.

2 MPI COMMUNICATION ROUTINES FOR C-XSC DATA TYPES 4

2 MPI Communication Routines for C-XSC data types

2.1 MPI Mechanisms to handle user-defined data types

Firstly, MPI facilities to deal with user defined data types shall be discussed.

MPI has a number of built-in data types that correspond to basic data types in C
and Fortran MPI_CHAR MPI_INT , MPI_DOUBLE etc.). (The MPI standard relates
to C andFortran implementations [14]. Accordingly, these program languages’ sets of
basic data types were chosen as a base for MPI data types. (Here, we shall refer to a C
implementation of MPI functions. Also, C/C++ is considered the base language for any
language specific statements in this text.)

Data Type Definition MPI includes a mechanism for defining new data types. Its main
idea is the definition of &pe magdor the new data type.
A type magdl’ is defined as

T := ((typeo, dispo), ..., (typen—_1, dispn_1))

wheretype; represents a basic (or a previously defined) MPI data Wi, repre-
sents a displacement (given either in bytes or as a multiple of the size of a previously
defined type) and < IV fixed. The vector of data typésype;)o<i<r iS then calledype
signature

Given atype map, there is a set of data type definition functions with different degrees
of freedom with respect to the storage arrangement of data in an object of the new data

type.

e MPI_Type_contiguous allows for replication of contigously arranged objects
of one data type.

e MPI_Type_vector andMPI_Type hvector allow for partly contiguously
arranged objects of one data type with regular displacements between contiguous
blocks of objects.

e MPI_Type_indexed allows for non-contiguously arranged blocks of objects of
one data type with varying block sizes.

e MPI_Type_struct finally allows for non-contiguously arranged blocks of ob-
jects of different data types, again with varying block sizes.

These cover a range of possible data type definitions.

Data type definition has two advantages: The benefit for the programmer ist that you
can use the data type in all MPI communication routines just like the basic data types. At
the same time there is no replication of data since all data is virtually mapped using the
type map of the new data type. Memory requirements are thus kept low.

The main drawback of data type definition is that the type map of the data type has
to be given at definition time, including the size and number of blocks involved. This
implies that no types with variable size can be defined. For each object size that one

2 MPI COMMUNICATION ROUTINES FOR C-XSC DATA TYPES 5

might want to communicate a new data type has to be defined. This particularly holds for
C-XSC vectors and matrices of different length as well as for C-XSC multiple precision
type objects.

Moreover, types that include dynamic storage allocation cannot be mapped properly
since there’s no fixed relation between the storage locations of the attributes and the loca-
tion of the object itself - an individual type map for every object would be needed.

Packing and Unpacking The other facility for dealing with unknown data types is data
PackingandUnpacking Packing does not yield new data types and thus it doesn't offer
a way to naturally deal with all communication functions at the same time. On the other
hand, it allows all kinds of data to be prepared for communication in one turn.

Packing and unpacking is done via the MPI functidMi?l_Pack andMPI_Unpack .
MPI_Pack allows the user to incrementally specify data to be packed into one object
buffer. Packed data can be arbitrary (as long as it can be described in terms of existing MPI
data types), i.e. an arbitrary arrangement of objects of previously defined data types can
be packed. Each piece of data involved can be packed by a separateMBIl tBack .
Accordingly, data packed at some stage of the processlepaendon the value of other
data that has been processed earlier. This feature allows to pack data whose size is only
specified within some other part of the data. Unpacking, in turn, allows to extract and
process pieces of data from the received buffer separately. Packing, in contrast to data
type definition, thusloesallow to deal with vectors and matrices of different lengths.

Packed data objects can be communicated using the dat&dypd?acked which
has been provided to handle buffers of packed data in the communication routines. Dur-
ing communication, it signalizes that the concerned part of data shall not be interpreted
in terms of a predefined data type, but as a unit of packed data which has to be unpacked
after communication. (Still, if packed data matches the signature of any previously de-
fined data type, the user is allowed to interpret it in terms of this data type.) Technically,
a packed unit is simply considered to be a storage buffer of a certain size, the latter being
communicated together with the data itself. This implies that the result of separate pack-
ing transactions to a contiguous buffer may be considered a single packing unit, too, and
a single packing unit can be unpacked by more than one unpacking transaction. This is of
special importance with regard to collective communication. On the other hand, this also
includes the main drawback of packing, namely the allocation of additional memory for
the buffer.

A communication function for a particular data type can now be implemented first
packing all data belonging to an object of the desired type into one packed unit and then
calling the communication routine of interest.

Point-to-point communication
Outgoing communication: Incoming communication:

e Pack data e Receive data

e Send data e Unpack data

2 MPI COMMUNICATION ROUTINES FOR C-XSC DATA TYPES 6

The two necessary steps can either be combined in a single or be split up into two
functions. Only the packing and unpacking requires special type dependent code and has
to be implemented separately for each data type to be considered. Communication can
be implemented as template functions that automatically call the appropriate packing and
unpacking functions based on the type information from the template parameter.

Collective communication In collective communication, things are not that easy re-
garding the implementation of template communication functions for new data types. The
general proceeding is given below. Taking in to account that outgoing and incoming data
is handled by the same function, it has to be distinguished between sending and receiving
processes within the function itself.

If process is sender
For all data items that shall be sent
Pack data
Send data
else
Receive data
For all data items that were received
Unpack data

But in contrast to point-to-point communication more individual problems have to be
solved when there is more than one sending or receiving process:

e Some communication functions subdivide data into parts each of which is sent to
or received by a separate process (e.gcaiteroperation sends equally sized parts
of one object to a number of processes (one part each)). Depending on the object’s
structure, these parts cannot be identified automatically by the receiving process.
Take, for example, a matrix storing two lower and upper bound values and a data
array for its elements. Sending the whole matrix in packed format is easily possible,
first packing the bounds into the buffer to be sent, then the data. Sending the buffer
in blocks (without prior modification or addition of data) would send the bounds
of the original matrix to the first receiving process only. All other processes would
receive no information about the matrix size and thus might not interpret the data
correctly.

e An even more sophisticated problem is that subdivision of data is not a straightfor-
ward process, but can follow various strategies that highly depend on the kind of
problem to be solved or the (physical or virtual) topology of processes involved.
In other words, subdivision of data cannot be automated or done by a one-fits-all
subdivision function.

Both tasks involvendividual adaptation.

It is possible to provide implementations for a particular subdivision strategy or for a
particular way to interpret received data as part of an object, but these will not serve the
purpose of a general interface.

2 MPI COMMUNICATION ROUTINES FOR C-XSC DATA TYPES 7

There is one collective communication function in MPI which does not involve data
subdivision and therefore can be implemented as a template without deciding for a data
subdivisioni strategy first, which i8IP1_Bcast that sends a complete data object to all
processes.

All other important functions, especially theeatter, gather, allgatheand alltoall
functions [14] involve data subdivision (or assembly, respectively).

2.2 C-XSC Data Types and MPI

Now, the internal structure of data storage in C-XSC objects will be briefly described. For
a more extensive description of C-XSC elements, see [6] [8] [9] [10].

Scalar Data Types First, there are the scalar data typeal ,interval ,complex

and cinterval . interval and complex objects contain twaeal s each, a
cinterval contains two intervals. These are the only data types that can be imple-
mented as MPI data types without restrictions since they don’t have variable lengths and
no dynamic memory is involved.

Vector and Matrix Data Types For every scalar data type there is an appropriate vector
and matrix data type in C-XSC. These contaih values forlower and upper index
bounds(i.e. one pair of bounds for vectors, two pairs for matrices), an extra element for
thesizein each dimension and a dynomically allocated C array of entries of the associated
base type (i.ereal for anrmatrix , etc.) which is always a one dimensional array.

Multiple Precision Data Types Multiple precision data types in C-XSC are also known
asstaggerediata types. A multiple precision variable is given as a vector of values of the
base type. The value of the variable is determined by the exact sum of its components
[10]. There are corresponding multiple precision typesal to|_imatrix for all

real -valued "short” (i.e. non-multiple precision) types, but ohlgomplex on the
complex side.

Internally, components are stored as a C array of values of the base type. (Again,
the array is dynamically allocated; the same holds for the data types given below.) The
difference to vector types is that there is only one additional value for the length of the
internal array staggered precisionj and no lower and upper bounds.

Dotprecision Data Types Dotprecision types have been designed to store the exact
result of ascalar producti.e. the exact sum of a number of products of scalar values.
There are versions for all of the four base types. The size of a dotprecision object (or
dotprecisioraccumulatoy, is system dependent.

If e,.:, ande,,., contain the minimum and maximum values for the exponent in the
base arithmetid,denotes the mantissa length anah implementation-dependent number
of guard digits, then the length of areal dotprecision accumulator (as described in [10])
is given by

2 MPI COMMUNICATION ROUTINES FOR C-XSC DATA TYPES 8

L =g+ 2emu + 2|emin| + 2.

Internally, the storage of a dotprecision variable is represented by a C array of long
integers, but the relevant value is only the length of the storage buffer itself (in bytes).
This size is internally (but accessibly) computed and stored in the C-XSC variable
BUFFERSIZE, which can be used with regard to MPI communication.

Remark When preparing objects of a data type for communication with MPI, it is im-
portant to understand which technical properties can be relied on.

For a matrix or vector as well as a multiple precision number, memory for the entries
(or components) is allocated dynamically during construction of an object, while storage
for the index bounds is not. Thus, memory occupied by an object is not necessarily
contiguous and one object cannot necessarily be mapped to a buffer the same way as a
second object of the same type and size. Bounds therefore have to be packed separately
from the entries, while all entries (as components of one single dynamic array) can be
packed in one turn.

Moreover, for vectors or matrices of more complex structures (e.g. of staggered val-
ues), it might even be necessary to pack all entries of a vector separately.

Still, packing allows to implement communication functions for a data type regardless
of the size and memory structure of a particular object. Data type definition, though
possibly yielding faster results due to the absence of memory replication, can only be
applied to single objects. It should be considered for individual programming purposes,
but does not serve to create MPI equivalents of most C-XSC data types.

2.3 Two implementations

Finally, the structure and functional range of two implementations shall be presented.

C-XSC Data Types Covered All C-XSC data types are coverédFor the basic types,
new MPI data types have been defined:

| C-XSCclass| New MPI Data Type |

real MPI_CXSC_REAL
interval MPI_CXSC_INTERVAL
complex MPI_CXSC_COMPLEX
cinterval MPI_CXSC_CINTERVAL

(From a technical point of view, MPI data types are values of thePe Datatype .)

To define these new data types, the assumption has been made that attributes of objects
of these C-XSC classes are stooehtiguously

A function

MPI1_Define_CXSC_Types()

lexcept for thént versions of vectors and matrices which can be added

2 MPI COMMUNICATION ROUTINES FOR C-XSC DATA TYPES 9

is included to define andommit[14] the data types. For all other C-XSC types, the
packing mechanism is used, based on the types defined above.

The two available versions differ in the way that has been described in the foregoing
chapter as well as in the number of implemented communication functions.

Implementation 1 The first version implements overloaded communication functions
with integrated packing/unpacking.
The following communication functions are available:

e MPI_Send, MPI_ISend
¢ MPI_Recv

Here is a sample interface:

int MPI_Send (rvector&, int, int, MPl_Comm);
int MPI_Isend(rvector&, int, int, MPI_Comm, MPI_Request®);
int MPI_Recv (rvector&, int, int, MPI_Comm, MPI_Status*);

The corresponding implementationdP|_Send andMPI1_Recv is given below.

int MPI_Send(rvector& rv, int il, int i2, MPI_Comm MC)
{

int pos=0;

char sendbuffer[MPI_CXSC_BUFFERLEN];

int err;

int Ib=Lb(rv);

int ub=Ub(rv);

if (!IMPI_CXSC_TYPES_DEFINED)

if (err=MPI_Define_CXSC_Types()!=MPI_SUCCESS)
return err;

MPI_Pack(&lb,1,MPI_INT,sendbuffer, MPI_CXSC_BUFFERLEN,
&pos,MC);

MPI_Pack(&ub,1,MPI_INT,sendbuffer, MPI_CXSC_BUFFERLEN,
&pos,MC);

MPI_Pack(&rv[lb],ub-lb+1,MPI_CXSC_REAL,sendbuffer,
MPI_CXSC_BUFFERLEN,&pos,MC);

err=MPI_Send(sendbuffer, pos, MPI_PACKED, i1, i2, MC);

return err;

}

int MPI_Recv(rvector& rv, int il, int i2, MPI_Comm MC,
MPI_Status* MS)
{
int pos=0;
char* recbufferfMPl_CXSC_BUFFERLEN];

2 MPI COMMUNICATION ROUTINES FOR C-XSC DATA TYPES 10

int err;
int vlen, lb, ub;

if (IMPI_CXSC_TYPES_DEFINED)
if (err=MPI_Define_CXSC_Types()!=MPI_SUCCESS)
return err;

if (err=MPI_Recv(recbuffer, MPI_CXSC_BUFFERLEN,
MPI_PACKED, i1, i2, MC, MS)!= MPI_SUCCESS)
return err;

MPI_Unpack(recbuffer, MPI_CXSC_BUFFERLEN, &pos, &lb,
1, MPLINT, MC);

MPI_Unpack(recbuffer, MPI_CXSC_BUFFERLEN, &pos, &ub,
1, MPL_INT, MC);

vlen=ub-Ib+1;

Resize(rv,vlen);

SetLb(rv,Ib);

MPI_Unpack(recbuffer, MPI_CXSC_BUFFERLEN, &pos, &rv[lb],
vlen, MPI_CXSC_REAL, MC);

return err;

In cases where the bounds are known by both the sending and receiving processes,
only the data might be sent eliminating the need for buffering. In terms of a general
interface, though, this cannot be assumed. In contrast, assuming matching sizes can result
in deficient memory management and thus in erroneous prografsesike operation
is necessary if sizes differ.

Implementation 2 The same can be implemented as overloaded packing/unpacking and
separate template communication functions. The packing/unpacking looks like in imple-
mentation 1 (without the send and receive, respectively). Sending, for example, only
needs the following template function which is valid for all C-XSC types:

template<class T>

int MPI_Send(T& Tobj, int i1, int i2, MPI_Comm MC)

{
int pos=0;
char sendbufferfMPI_CXSC_BUFFERLEN]; //Example length
int err;

if (err=MPI_Pack(Tobj, sendbuffer, MPI_CXSC_BUFFERLEN,
&pos, MC)!=MPI_SUCCESS)
return err;
err=MPI_Send(sendbuffer, pos, MPI_PACKED, i1, i2, MC);
return err;

2 MPI COMMUNICATION ROUTINES FOR C-XSC DATA TYPES 11

The MPI functions covered by the template versions are:

MPI_Pack andMPI_Unpack

MPI_Send, MPI_Bsend , MPI_Ssend , MPI_Rsend

MPI_Isend , MPI_lbsend ,MPI_Irsend , MPI_Issend
¢ MPI_Recv
e MPI_Bcast (in preparation)

Though not required there are additional specializations for the C-XSC base types to
avoid unnecessary calls kP1_Pack /MPI_Unpack .

For the multiple precision types, the proceeding is more complicated. Apart from
the additional information, data in dnreal variable looks much the same as in an
rvector . A vector or matrix of multiple precision values, in contrast, has entries whose
size can differ from entry to entry. Receiving anvector , for example, does not
guarantee that all entries have the same staggered precision. Moreover, all entries contain
pointers to dynamically allocated memory. The only way to deal with this is to pack and
unpack these elements separately.

Unfortunately, since there is ri®esize operation for multiple precision types in C-
XSC, the only way to take into account varying sizes is to construct new objects for the
received data.

Usage The overloaded communication routines are used rather the same way as the
original MPI routines. The following features are different from the MPI routines:

e The object to be packed or sent (respectively), has to be specified as a reference
parameter and not as a pointer. This corresponds to the fact that C-XSCtHs a
class library. Objects as instances of classes should not be manipultaed via pointers
in order not to violate the integrity of the object. Even if MPI as a C function
interface requires pointers for its communication functions, it is safer to hide the
use of pointers from the user.

¢ In the MPI functions for C-XSC data types, the parameter for the number of objects
to be processed is left out. In the original MPI functions, a parameter valuearf
be used to specify a memory aredimes as large as the memory occupied by the
original object or variable, so that a vector of elements can be sent efficiently in one
operation. However, this only works for contiguously stored objects. Since C-XSC
objects (except for the base types which are also defined as MPI data types, see
above) contain dynamically allocated memory, the described proceeding wouldn’t
succeed for a vector of C-XSC objects. Trying to process multiple objects at once
would thus be rather misleading.

e The MPI data type parameter can be left out since the type of the object can be
determined from the object reference itself.

3 TESTS 12

The above applies to all C-XSC data types except for the base tgpks, interval
complex andcinterval which are implemented as MPI data types. For these, the
user can choose between the original MPI interface and the new C-XSC/MPI interface.

An rvector rv can thus be sent to processtast with message tatag and
communicatocommby

MPI_Send (rv, dest, tag, comm);

while a real r with identical communication envelope can be sent as

MPI_Send (r, dest, tag, comm);
or

MPI_Send (&r, 1, MPI_CXSC_REAL, dest, tag, comm);
(original interface).

3 Tests

The implementations were tested on the parallel computer ALICEnext in Wuppertal [1].
Before giving some test results, this parallel environment will be introduced, including
a short presentation of techniques and remarks towards practically running programs in
such environments.

3.1 ALICEnext - Parallel environment

ALiICEnext (Advanced Linux Cluster Engine, next generatiap installed at the Uni-
versity of Wuppertal in June 2004. It consists of 1024 1.8 GHz AMD Opteron processors
(64 Bit architecture) on 512 nodes connected by Gigabit Ethernet connections [1]. At the
time of installation, it held rank 74 in the world wide Top500 supercomputer list. In the
LINPACK benchmark, it reached a maximum performance of 2083 GFlops [17].

ALICEnext processors are run with Linux as operating system and MPI as communi-
cation interface for parallel communication (see above).

There’s a C-XSC version available that works with the architecture of ALICEnext
processors [4].

Batch System Many parallel computers cannot be run interactively. There’s a client
machine that hosts the user’'s home directory and that acts as the entry point for the ma-
chine. Parallel jobs are started usindaich systenthat manages the distribution of
system resources to the user’s jobs. On ALICEnext, as at July 2005, the batch system
Torque(Tera-scale Open-source Resource and Queue manafez)Op4 (a version of
the Portable Batch System (PB$3 used [1] [18].

A script has to be written to correctly submit jobs through the batch system. Here’s
an example of how this has to be done:

3 TESTS 13

#!/bin/bash

T
PBS options:

The name of the queue to submit this job to

#PBS -q short

Set name of file to which stderr will be redirected

#PBS -e cxsc_stagtst_r.err

Set name of file to which stdout will be redirected
#PBS -0 cxsc_stagtst_r.out

Set the number of nodes that will be used.

#PBS -l nodes=10

PBS will automatically create a file that lists all nodes

allocated for running your job. The name and location of

this file is stored in the $PBS_NODEFILE environmental variable.

Count the number of processors PBS has allocated for our job
NPROCS=‘wc -I < $PBS_NODEFILE

HHAH AR
program

TARGETDIR=/home/user/progs
TARGETPROGRAM=mpiprogram

cd $TARGETDIR
J$TARGETPROGRAM -np $NPROCS

ThePBSoptions given manage whigbb queuehe job is sent to, where to direct the
output and, most important, how many processors will be requested. The target program
is then run using the actual number of processors provided by the batch system.

An I/O issue ALICEnext, as many parallel computers, also has separate hard disks
provided for each node. The user's home directory, though, is located on the client or
entry machine. It is considered important (and will effect the efficiency of the program
as well) that output generated by a parallel program is written to a local file system and
only copied to a central location (i.e. the home directory) at the end of program execution,
so that the network load is not unnecessarily increased. One way to do this is to handle

3 TESTS 14

file output inside the program you are running, since instances of the program are run on
every processor involved.

Process Topologies There are several parameters that influence the effectiveness of a
program in a parallel environment. One influencing factor that shall be mentioned here is
the process topology. Depending on the location of processors in the physical topology
of the machine, communication times can differ. In general, allocation of processors is
done by the batch system and cannot be influenced directly - the user is not to interfere
with the batch system’s process distribution. Therefore, one has to take into account that
the distribution of processes in different jobs can result in differing execution times.

MPI also implements a concept for defining topologies. These topologies, however,
are virtual topologies that can be used to arrange the processes in a way that fits the needs
of the application to be implemented. MPI topologies are machine independent and are
not connected to the hardware topology.

3.2 Test programs and results

We now want to give the results of some tests that have been done.

Test 1 The test setting for this test is a communication of C-XSC objects around a ring
of n processes, carried okttimes. The following tests were done:

e Comparison for varying data types

e Comparison for varying numbers of processors

e Comparison for varying staggered precision values for multiple precision objects
e Comparison of template vs. non-template versions of communication routines

The tests have been done in order to take communication times where no time is
consumed by the application. (A test application is given in the following section.)

Varying data types and numbers of processors

Processors real interval rvector ivector rmatrix imatrix
10 5030 5070 5240 5290 5650 6130
20 9330 9440 9680 9840 10450 11340
30 12060 14620 13520 15200 11440 12230
40 16060 17030 14890 16430 16140 13980

(Time in msec., 10000 passes, vector length 4, matrix dimenisiod)

Most parts of the data show the expected growth of times with growing number of
processors and growing size of data. There are some values, however, that were seemingly
influenced by other factors. More extensive tests are done to analyze these influences.

4 AN APPLICATION 15

Varying staggered precision values for multiple precision objects

Staggered
precision | real | interval rvector ivector rmatrix imatrix
4 5320 6070 5900 7350 8040 10960
6 5300 6090 5990 7630 8280 11830
8 5310 6170 6110 7940 8550 12850
10 5310 6230 6140 8190 8830 14630
(Time in msec., 10000 passes, vector length 4, matrix dimerisiod)

Template vs. non-template versions of communication routines

Version real interval rvector ivector rmatrix imatrix
Overloaded 5030 5070 5240 5290 5650 6130
Template | 5139 5170 5320 5370 5720 6250

(10 processsors, time in msec., 10000 passes, vector length 4, matrix dimensin

The template versions cause a rather negligible constant overhead here.

4 An Application

We now introduce an application that is being developed making use of the new interface.

4.1 A verified Integral Equation Solver in C-XSC

Let /IR be the set of real intervals where a real interval is a non-empty, closed and bounded
subset oflR. The equation

y@—A/k@wmwﬁ:g@> 1)

whereD := [a,b] € IR, k: DxD — IIR € C(DxD),g: D — IR € C(D), is called
Fredholm integral equation of the second kindh kernelk and right hand side.
If £ has a representation

N

k(s,t) = a;(s)bi(t)

=1
with linearly independent functions;, b; in the Banach spac€' (D), thenk is called
degenerate kernel of order. Nhe integral equation (1) can then be written as

W)= ADoals) [bloyle)dt = o(s) @

The kernelk can be written as

4 AN APPLICATION 16

k=Fkp+ kg

wherekp is degeneratek, kp andks have corresponding integral operatéfs K, and
K¢ and K satisfieg\| || Ks|| < 1 (with A as in (1)) (which guarantees the existence of
a unique solution of the equation; see [11] [12]).

In [11] [12], Klein proposes the following solver for Fredholm integral equations of
the second kind.

Letk = kp+ kg as described above with corresponding integral operafors , and
Kg andkp(s,t) = ZiNzl a;(s)b;(t) with enclosuresd;, B; of the functionsa;, b; of the
degenerate kern¢l = 1..V) and an enclosuré& of the right hand side of the Fredholm
integral equation as givenin (1).

Execute the following iteration (untff’ := F**! C F' (or abort)):
FO:=@G; F*l =G+ KgFi, i=0,1,...
Form :=1..N
Execute the following iteration (untit,, := o’ C ! (or abort)):
al = A, atfti=A, + Kga!, i=0,1,...

Solve the following interval linear system:
Xon = AN [P B (t)an(t) dt Xn = [V Bu(t)F(t) dt, m = 1..N
Compute solution intervadl” := F + \ Zﬁzl O X

A C-XSC implementation of this solver is now available. The following components
that are integrated in the implementation shall be mentioned.

Taylor Arithmetic with C-XSC To be able to calculate with elements of a function
space like above, an appropriate representation and arithmetic are necessary. One way to
do so for functions of one or two real variables (as the kernel and right hand side of the
integral equation) is to use the Taylor expansions

g//(l,o)

2!

g(p) ($0)
p!

g(x) = g(xo) + ¢'(20)(x — m0) + (x —20)® + .. + (= 20)" + Ry()

and

p_pk HF1tke N
flay) =), kll FT0,90) (1 iy — o) + R,)

1o k1 g k2
Pt kol OxM 0y

of functionsg : x — g(z) € C(D) andf : (z,y) — f(z,y) € C(D x D), respectively,
whereR,, R, are the remainders in terms of Taylor arithmetic.

The implementation of a verified Taylor expansion needs efficient computation of
exact higher order derivative values of the considered funcAotomatic differentiation
methods serve this purpose (e.g. [5]). In [2] it is shown how to implement a Taylor

REFERENCES 17

arithmetic including the exact and efficient computation of the necessary higher order
derivatives.

M.C. Brauer has provided a Taylor arithmetic in C-XSC in [3], comprising versions
for one-dimensional, two-dimensional and multi-dimensional Taylor arithmetic. This im-
plementation has been further developed as described in [2] and is available for current
C++ compilers and the current C-XSC version. The versions for one-dimensional and
two-dimensional real Taylor arithmetic have been provided with some additional func-
tions so that they can be used in the integral equation solver as given above.

For parallelization, the MPI extension for C-XSC has been individually adapted to
also include the Taylor expansion classes that are provided by the one-dimensional and
two-dimensional C-XSC Taylor arithmetic.

Verified Linear System Solving with C-XSC Many interval linear system solvers
available are based on a result by S.M. Rump. In [16] he shows for the Newton-like
iteration

z*) = Rb4+ (I — RA) 2™ k=0,1, ...
to find a zero off(z) = Ax — b with arbitrary starting value® and an approximate

[}

inverseR ~ A~! of A, that if there exists an indek with [z]*+1) C [2]®) ([z]*+)
included in the interior ofz]*)) , then the matriceg and A are regular, and there is a
unique solution: of the systemdz = b with = € [2]**1) (also see [6]).

In [7], C. H6lbig and W. Kémer give an implementation in C-XSC based on an exten-
sion of this idea as described in [13]. This implementation was integrated into the integral
equation solver mentioned above.

Parallelization The solver is currently being prepared for parallelization. There are
three main parts to be parallelized:

1. The fixed point iterations in Klein’s algorithm can be solved in parallel.

2. A system version of the integral equation solver that solves systems of integral
equations (based on the same ideas) can make use of parallelization.

3. A parallellized linear system solver can be used to solve the interval linear system.

The now available MPI extension for C-XSC is used in and (as for Taylor arithmetic)
was adapted to being used in the implementation of the above tasks.

References

[1] ALiCEnext information: http://www.alicenext.uni-wuppertal.de.

[2] Blomquist, F.; Hofschuster, W.; karher, W.: Real and Complex Taylor Arithmetic
in C-XSC. Preprint BUW-WRSWT 2005/4, Wissenschaftliches Rechnen / Soft-
waretechnologie, University of Wuppertal, 2005

REFERENCES 18

[3] Brauer, M.C.: Berechnungsmethodair &bleitungen und Steigungen und deren
Realisierung in C-XSC. Diploma Thesis, University of Karlsruhe, 1999.

[4] C-XSC Versions and Download:
http://www.math.uni-wuppertal.de/wrswt/xsc/cxsew.html

[5] Griewank, A.; Corliss, G.: Automatic Differentiation of Algorithms, Theory, Imple-
mentation and Applications. Proceedings of Workshop on Automatic Differentiation
at Breckenridge, SIAM, Philadelphia 1991.

[6] Hammer, R.; Hocks, M.; Kulisch, U.; Ratz, D., C++ Toolbox for Verified Comput-
ing: Basic Numerical Problems. Springer-Verlag, Berlin / Heidelberg / New York,
1995.

[7] Holbig, C.; Krdmer, W.. Selfverifying Solvers for Dense Systems of Lin-
ear Equations Realized in C-XSC. Preprint BUW-WRSWT 2003/1, Wis-
senschaftliches Rechnen / Softwaretechnologie, University of Wuppertal, 2003.
http://www.math.uni-wuppertal.de/wrswt/literaturfitep.htmil.

[8] Hofschuster, W.; Kamer, W.; Wedner, S.; Wiethoff, A., C-XSC 2.0 — A C++ Class
Library for Extended Scientific Computing. Preprint BUW-WRSWT 2001/1, Wis-
senschaftliches Rechnen / Softwaretechnologie, University of Wuppertal, 2001.
http://www.math.uni-wuppertal.de/wrswt/preprints/préf_1.pdf

[9] Hofschuster, W.; Kamer, W., C-XSC 2.0 — A C++ Class Library for Extended
Scientific Computing. In.;Numerical Software with Result VerificatioR. Alt, A.
Frommer, B. Kearfott, W. Luther (eds), Springer Lecture Notes in Computer Sci-
ence 2991, 2004, pp. 15-35.

[10] Klatte, R.; Kulisch, U.; Lawo, C.; Rauch, M.; Wiethoff, A.. C-XSC, A C++ Class
Library for Extended Scientific Computing. Springer - Verlag, Berlin / Heidelberg /
New York, 1993.

[11] Klein, W.: Zur EinschlieBung von linearen und nichtlinearen Fredholmschen Inte-
gralgleichungssystemen zweiter Art. Dissertation, University of Karlsruhe, 1990.

[12] Klein, W.: Enclosure Methods for Linear and Nonlinear Systems of Fredholm Inte-
gral Equations of the Second Kind. In: Adams, E., Kulisch, U.: Scientific computing
with automatic result verification, Academic Press, Boston 1993.

[13] Kramer, W., Kulisch, U., Lohner, R.: Numerical Toolbox for Verified Computing II.
University of Karlsruhe, 1994 (Draft version).
http://lwww.math.uni-wuppertal.de/wrswt/literatur/pxgocu.html

[14] Message Passing Interface Forum: MPI: A Message Passing Interface Standard.
University of Tennessee, Knoxville, Tennessee, 1993-1995.

[15] Message Passing Interface Forum: MPI-2: Extensions to the Message Passing In-
terface. University of Tennessee, Knoxville, Tennessee, 1995-1997.

REFERENCES 19

[16] S.M. Rump: Kleine Fehlerschranken bei Matrixproblemen. Dissertation, University
of Karlsruhe, 1980.

[17] Top500 list June2004: http://www.top500.0rg/lists/2004/06/

[18] Torque (Tera-scale Open-source Resource and Queue manager):
http://www.clusterresources.com/products/torque/

