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Abstract. In this note the main features and newer developments of
the C++ class library for extended scientific computing C-XSC 2.0 will
be discussed.
The original version of the C-XSC library is about ten years old. But
in the last decade the underlying programming language C++ has been
developed significantly. Since November 1998 the C++ standard is avail-
able and more and more compilers support (most of) the features of this
standard. The new version C-XSC 2.0 conforms to this standard. Appli-
cation programs written for older C-XSC versions have to be modified
to run with C-XSC 2.0. Several examples will help the user to see which
changes have to be done. Note, that all sample codes given in [6] have
to be modified to work properly with C-XSC 2.0.
All sample codes listed in this note will be made available on the web
page http://www.math.uni-wuppertal.de/~xsc/cxsc/examples.

1 Introduction

For those who are not so familiar with C-XSC let us first motivate the library by
quoting essential parts (with slight modifications) from the preface of the book
[6]:

The programming environment C-XSC (C++ for eX
¯
tended S

¯
cientific C

¯
om-

puting) is a powerful and easy to use programming tool, especially for scientific
and engineering applications. C-XSC is particularly suited for the development
of numerical algorithms that deliver highly accurate and automatically veri-
fied results. It provides a large number of predefined numerical data types and
operators of maximum accuracy. The most important features of C-XSC are
real, complex, interval, and complex interval arithmetic with mathematically
defined properties; dynamic vectors and matrices; dotprecision data types (ac-
curate dot products); predefined arithmetic operators with highest accuracy;
standard functions of high accuracy; dynamic multiple-precision arithmetic and
rounding control for the input and output of data.

Accumulation of numbers is the most sensitive operation in floating-point
arithmetic. By that operation scalar products of floating-point vectors, matrix
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products etc. can be computed without any error in infinite precision arithmetic,
making an error analysis for those operations superfluous. Many algorithms ap-
plying that operation systematically have been developed. For others the limits
of applicability are extended by using this additional operation. Furthermore,
the optimal dot product speeds up the convergence of iterative methods (cited
from [10, 11]). C-XSC provides accurate dot products via software simulation
(hardware support should increase the computation speed by 2 orders of mag-
nitude, again, see [11]). Computing x∗y for floating point vectors x, and y in
C-XSC results in the best possible floating point result (exact mathematical re-
sult rounded to the nearest floating point number). Using the new C-XSC data
type dotprecision the user can even store the result of dot products of float-
ing point vectors with even millions of components without any error. The so
called staggered format allows multiple-precision computations. The realization
of arithmetic operations for variables of this data type use extensively the accu-
rate dot product. With approriate hardware support for dot product operations
the staggered arithmetic would be very fast.

C-XSC consists of a run time system written in ANSI C and C++ including
an optimal dot product and many predefined data types for elements of the most
commonly used vector spaces such as real and complex numbers, vectors, and
matrices. Operators for elements of these types are predefined and can be called
by their usual operator symbols. Thus, arithmetic expressions and numerical al-
gorithms are expressed in a notation that is very close to the usual mathematical
notation.

Additionally, many problem-solving routines with automatic result verifica-
tion (e.g. C++ Toolbox for Verified Computing with one- and multi-dimensional
solvers for systems of linear equations, linear optimization, automatic differenti-
ation, nonlinear systems of equations, global optimization and further packages
like slope and taylor arithmetic or quadrature and cubature of singular integrals)
have been developed in C-XSC for several standard problems of numerical anal-
ysis. All software is freely available.

2 Overview on the new version C-XSC 2.0

Due to the following observations older C-XSC programs have to be modified
slightly to run with C-XSC 2.0 (for details please refer to paragraph 4):

– All C-XSC routines are now in the namespace cxsc. So you have to fully
qualify names of C-XSC routines (e. g. cxsc::sin(cxsc::intval(3.0)) ) or you
have to include the line using namespace cxsc; in your source code.

– Now typecast constructors are available
– Constant values formerly passed by reference are now passed by const ref-

erences
– Modifications in the field of subvectors and submatrices have been done
– The error handling is now done using the C++ exception handling mecha-

nism (using try, catch, and appropriate exception classes)
– The new version of the library uses templates extensively
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The source code of C-XSC 2.0 is freely available from
http://www.math.uni-wuppertal.de/~xsc/xsc/download.html and the source
code of a new version of the C++ Toolbox for Verified Computing [1] which
works with C-XSC 2.0 is also freely available from the same web site.

3 Freely available software based on C-XSC 2.0

Here we list (additional) software based on C-XSC 2.0 which is freely available
from our web-site:

a) (Modified) Toolbox for Verified Computing (see [1]). This toolbox com-
prises a couple of verification algorithms for one- and multi-dimensional numer-
ical problems:

a1) The available one-dimensional problem solving routines are:

– Accurate polynomial evaluation
– Automatic differentiation
– Nonlinear equations in one variable
– Selfverifying global optimization
– Accurate arithmetical expressions
– Zeros of complex polynomials

a2) The available multi-dimensional problem solving routines are:

– Systems of linear equations
– Linear optimization
– Automatic differentiation (gradient, Jacobi-, Hesse matrix)
– Nonlinear systems of equations
– Global optimization

b) Further available software packages are:

– Interval slope arithmetic (Breuer)
– Interval Taylor arithmetic (Breuer)
– Mathematical functions for complex rectangular intervals (Westphal)
– Verified quadrature and cubature of nonsingular and singular integrals

(Wedner, see [8, 20])
– Verified estimates for Taylor coefficients of analytic functions (Neher [16])
– Routines to compute rigorous worst case a priori bounds for absolute and/or

relative errors of floating point algorithms (Bantle [7])
– Solvers for under- and overdetermined systems of linear equations

(Hölbig [3])
– Verified solutions of ordinary differential equations (Lohner [13])

You can download the source code of all software packages from
http://www.math.uni-wuppertal.de/~xsc.
There, you also find more specific information on the packages as well as some
preprints.
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4 Which modifications in source codes are required?

In this section we try to answer the most frequently asked questions of C-XSC
users concerning the migration of older C-XSC application programs to the new
C-XSC 2.0 version. For those who are familiar with the C++ standard [5] the
source code modifications should be rather obvious (see e.g. Stroustrup [19],
Meyers [14, 15]).

To make available the advanced input and output facilities (stream con-
cept) of C++ you must include the headerfile iostream using the source line
#include <iostream>. Note, the name of the header is not iostream.h. In
general, the names of system header files coming with C++ do not have an
extension.

To perform conversions of interval constants given as strings C-XSC uses the
header file #include <string>. This header introduces (dynamic) C++ strings
with predefined operators.

C-XSC delivers several header files. The extension of these files is .hpp. The
header files correspond to the additional numerical data types available in C-
XSC (like interval, imatrix, cmatrix, . . .). The name of the header files are

cdot.hpp dot.hpp l_complex.hpp lrvector.hpp
cidot.hpp idot.hpp l_imath.hpp real.hpp
cimatrix.hpp imath.hpp l_interv.hpp rmath.hpp
cinterval.hpp imatrix.hpp l_real.hpp rmatrix.hpp
civector.hpp interval.hpp l_rmath.hpp rvector.hpp
cmatrix.hpp intmatrix.hpp limatrix.hpp
complex.hpp intvector.hpp livector.hpp
cvector.hpp ivector.hpp lrmatrix.hpp

The leading l in the name of a header file indicates a long precision (staggered)
data type, dot indicates dotprecision data types able to store dot products with-
out errors (long accumulators). In contrast to system header files which are in-
cluded in the form #include <header> C-XSC header files are included using
double quotes #include "cxscheader.hpp".

The result type of the routine main() should be int.
Newer C++ compiler implement the namespace concept more strictly. The

standard namespace of C++ is called std. All C-XSC routines are defined in the
namespace cxsc. If you don’t want to fully qualify the names of such routines
(e. g. std::cout, or cxsc::interval) you should include the two source lines

using namespace std; //make available names like cout, endl, ...
using namespace cxsc; //make available names of C-XSC routines

in your application code.
The following simple example program demonstrates most of the points from

above. It checks whether the number 0.1 is representable as a point interval in C-
XSC. If this is not the case, the decimal number 0.1 is not exactly representable
as a double number.
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#include <iostream> //C++ stream concept for input and output

#include <string> //ANSI C strings

#include "interval.hpp" //C-XSC header file for data type interval

using namespace std; //make available names like cout, endl, ...

using namespace cxsc; //make available names of C-XSC routines

int main()

{

interval x; //x is an interval variable

string("[0.1,0.1]") >> x; //convert the interval constant to its

//internal binary representation

//(using directed roundings)

if (Inf(x) != Sup(x))

cout << "Number x has no exact binary representation!";

else

cout << "Number x has an exact binary representation!";

cout << endl << "x = " << x << endl; //decimal output using

//C++ streams

cout << Hex << "x = " << x << endl; //hexadecimal output

return 0;

}

/* ----------------------- Output --------------------------

Number x has no exact binary representation!

x = [ 0.099999, 0.100001]

x = [+19999999999999e3FB,+1999999999999Ae3FB]

--------------------------------------------------------- */

If your (older) application code contains calls to conversion functions like
_interval(...) you should now use constructor calls like interval(...) in-
stead. The C-XSC conversion functions (starting with an underscore) are obso-
lete.

Several function signatures of C-XSC routines have been changed from ref-
erence parameters (T& x) to const reference parameters (const T& x). The fol-
lowing C++ sample program demonstrates some consequences.

#include <iostream>

using namespace std;

void f(const double& x) { cout << "Formal argument with const" << endl; }

void f(double& x) { cout << "No const qualifier" << endl; }

int main()

{

double x=2;
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f(1.0); //1, actual argument is not an lvalue

f(x); //2, x is an lvalue

f(1.0+x); //3, actual argument is not an lvalue

f(x+x); //4, actual argument is not an lvalue

return 0;

}

/*

Formal argument with const

No const qualifier

Formal argument with const

Formal argument with const

*/

Note, due to the const qualifier the signatures in the two definitions of f()
are different in C++! If we remove the first definition of f(), the function calls in
the lines indicated by 1, 3, and 4 produce errors during the compilation process.
In these cases the actual arguments are not lvalues whereas the formal argument
of type double& (see the second definition of f) requires an lvalue.

Note, that the two definitions

void g(const double x) {cout << "Formal argument with const" << endl;}

void g(double x) {cout << "No const qualifier" << endl;}

are not allowed simultaneously in a C++ program unit. Here, the formal
arguments are not declared as references. This implies that in both cases the
actual argument in a function call is passed by value (the values of the actual
arguments can not be changed in the body of the function). So an additional
const qualification does not make sense.

Operators like [] as member function of a class may be overloaded differ-
ently for objects and const-objects. This is demonstrated by the following C++
sample code (the const between the parameterlist and the body of the operator
definition indicates that in the body of the function the attributes of the left
hand side object in a corresponding operator call are not modifiable):

#include<iostream>

using namespace std;

typedef double T;

struct vector {

vector(int k) //constructor

{

start= new T[k];

for (int i=0; i<k; i++) start[i]= i;

}

//operator [] may be applied to vectors

//elements are readable and writable (result type is T&)

T& operator[](int k)

{
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cout << "[] without const ... " << endl;

return start[k];

}

//operator [] may be applied to const vectors

//elements are only readable (result type is const T&)

const T& operator[](int k) const

{

cout << "[] with const ... " << endl;

return start[k];

}

~vector() { delete[] start; } //destructor

private:

T* start;

};

int main() {

vector x(3);

cout << "x[2]: " << x[2] << endl;

x[2]= 5; //Note, calling operator[] creates output (see below)

cout << "x[2]: " << x[2] << endl;

const vector y(3); //the same as vector const y(3);

cout << "y[2]: " << y[2] << endl;

// y[2]= 5; //would lead to a compile time error:

//The left operand cannot be assigned to

return 0;

}

/* Output:

x[2]: [] without const ...

2

[] without const ...

x[2]: [] without const ...

5

y[2]: [] with const ...

2

*/

In contrast to the older C-XSC versions C-XSC 2.0 uses additional helper
classes intvector_slice, rvector_slice, ivector_slice, cvector_slice,
civector_slice, l_rvector_slice, l_ivector_slice, intmatrix_slice,
intmatrix_subv, rmatrix_slice, rmatrix_subv, imatrix_slice,
imatrix_subv, cmatrix_slice, cmatrix_subv, cimatrix_slice,
cimatrix_subv, l_rmatrix_slice, l_rmatrix_subv, l_imatrix_slice,
l_imatrix_subv to implement subvectors and subarrays.

The following program shows how the first row and the first column of a real
matrix may be modified calling a function called testfct. The formal parameter
of this function must be of data type rmatrix_subv.
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#include <iostream>

#include "rmatrix.hpp" //C-XSC header for real matrices

//header for real vectors is included automatically

using namespace std;

using namespace cxsc;

void testfct(const rmatrix_subv& y) //pay attention to the data type of y

//void testfct(const rvector& y) an error message or a warning would be

// generated by actual compilers

{

for (int i=Lb(y); i<=Ub(y); i++) y[i]= i;

}

int main(void)

{

rmatrix M; //M is a real matrix

int dim;

cout << "Dimension = "; cin >> dim;

Resize(M,dim,dim); //create M with dim rows and dim columns

M= 1; //set all elements of M to 1

cout << "Matrix M:" << endl << M << endl;

testfct(M[1]); //M[1] means the first row of M

cout << "Matrix M:" << endl << M << endl;

testfct(M[Col(1)]); //M[Col(1)] means the first column of M

cout << "Matrix M:" << endl << M << endl;

M[Col(1)]= 9; //set all elements of column 1 to 9

cout << "Matrix M:" << endl << M << endl;

return 0;

}

/* Output

Dimension = 3

Matrix M:

1.000000 1.000000 1.000000

1.000000 1.000000 1.000000

1.000000 1.000000 1.000000

Matrix M:

1.000000 2.000000 3.000000

1.000000 1.000000 1.000000

1.000000 1.000000 1.000000

Matrix M:
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1.000000 2.000000 3.000000

2.000000 1.000000 1.000000

3.000000 1.000000 1.000000

Matrix M:

9.000000 2.000000 3.000000

9.000000 1.000000 1.000000

9.000000 1.000000 1.000000

*/

5 Examples

In this section we give a couple of complete sample codes to demonstrate the
usage and several features of C-XSC 2.0.

5.1 Example: Accurate summation of floating-point numbers

Let us start with a very simple demonstration of how the accurate dot prod-
uct feature may be used to get accurate results when summing up floating-point
numbers of very different orders of magnitude. The C-XSC routine
accumulate(a,x,y) computes a+x*ywithout any error. Here x and y are floating-
point numbers and a is a variable of type dotprecision (a so called long accu-
mulator):

//Severe cancellation when computing the sum of three numbers

//Using a dotprecision variable results in the correct result

#include <iostream> //C++ input and output

#include "dot.hpp" //make available C-XSC’s accurate dot product feature

using namespace std;

using namespace cxsc; //make available C-XSC names without cxsc::

int main() {

const real large(1.23e35); //create a large number

dotprecision a(0); //a is a dot precision variable initialized by 0

accumulate(a, 1.0, large); //a = 1.0*large = 1.23e35

cout << a << endl;

accumulate(a, 1.0, 1.5); //a = 1.0*large + 1.0*1.5

// = 1.2300...015e35

accumulate(a, -1.0, large); //a= large + 1.5 - large = 1.5

cout << "Final correct result is" << a << endl;

cout << "Naive floating point evaluation gives" << endl

<< " the totally wrong result"

<< large + 1.5 - large << endl;

return 0;
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}

/* output:

1.2300000000E+0035

Final correct resultis is 1.5000000000

Naive floating point evaluation gives

the totally wrong result 0.000000

*/

The possibility to compute dot products of floating point vectors accurately
is the key for the implementation of matrix/vector operations of maximum
accuracy in C-XSC. This feature is also used extensively in defect correction
steps of iterative schemes. The operations for the staggered data type (multiple-
precision) available in C-XSC [9] are heavily based on accurate dot product
computations.

5.2 Example: Accurate evaluation of arithmetical expressions

The following arithmetical expression has been used by Loh and Walster [12] as
an example in which numerical evaluations using IEEE 754 arithmetic gave a
misleading result, even though use of increasing arithmetic precision suggested
reliable computation (the expression is a rearrangement of Rump’s original ex-
ample given in [17]). Evaluating

f(a, b) = (333.75− a2)b6 + a2(11a2b2 − 121b4 − 2) + 5.5b8 +
a

2b
(1)

for a = 77617 and b = 33096 using 32-bit, 64-bit, and 128-bit round-to-nearest
IEEE-754 arithmetic produces:

32-bit: f = 1.172604
64-bit: f = 1.1726039400531786
128-bit: f = 1.1726039400531786318588349045201838

However, the correct result is -0.8273960...
To compute a sharp enclosure of f(a, b) we use the staggered interval arith-

metic available in C-XSC.

#include <iostream>

#include "l_interval.hpp" //staggered intervals (multi-precision intervals)

using namespace cxsc; //make available routines from namespace cxsc

using namespace std;

l_interval f ( const l_interval& a, const l_interval& b )

{

l_interval z; //multi-precision interval

z = (333.75 - power(a,2))*power(b,6) + power(a,2)*(11.0*power(a,2)

*power(b,2) - 121.0*power(b,4) - 2.0) + 5.5*power(b,8) + a/(2.0*b);
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return(z);

}

int main( )

{

l_real a, b; //multi-precision reals

l_interval res; //multi-precision interval

real Eps;

cout << "Enter the arguments:" << endl;

cout << " a = " ; cin >> a; //read a multi-precision real

cout << " b = "; cin >> b;

cout << endl;

cout << "Desired accuracy: Eps = "; cin >> Eps;

cout << endl;

cout << "Evaluation of (333.75 -a^2)b^6+a^2(11a^2b^2-121b^4-2)

+5.5b^8+a/(2b)"

<< endl << endl;

stagprec=0;

do {

stagprec++;

res = f(l_interval(a),l_interval(b));

//Output format via dotprecision

cout << SetDotPrecision(16*stagprec, 16*stagprec-3);

cout << "Interval enclosure: " << res << endl;

cout << SetDotPrecision(5,2);

cout << "Diameter: " << diam(res) << endl;

} while (diam(res)>Eps);

return 0;

}

/* ----------------------- Output --------------------------

Enter the arguments:

a = 77617

b = 33096

Desired accuracy:

Eps = 1e-100

Evaluation of (333.75 -a^2)b^6+a^2(11a^2b^2-121b^4-2)+5.5b^8+a/(2b)

Interval enclosure: [-3.5417748621523E+0021,

3.5417748621523E+0021]

Diameter: 7.08E+0021

Interval enclosure: [-6.55348273960599472047761082650E+0004,
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1.17260394005317869492444060598]

Diameter: 6.55E+0004

Interval enclosure: [-0.827396059946821368141165095479816291999033116,

-0.827396059946821368141165095479816291999033115]

Diameter: 2.74E-0048

Interval enclosure: [-0.827396059946821368141165095479816291999033115

7843848199178149,

-0.827396059946821368141165095479816291999033115

7843848199178148]

Diameter: 1.52E-0064

Interval enclosure: [-0.827396059946821368141165095479816291999033115

78438481991781484167270969301427,

-0.827396059946821368141165095479816291999033115

78438481991781484167270969301426]

Diameter: 1.69E-0080

Interval enclosure: [-0.827396059946821368141165095479816291999033115

784384819917814841672709693014261542180323906

213,

-0.827396059946821368141165095479816291999033115

784384819917814841672709693014261542180323906

212]

Diameter: 1.87E-0096

Interval enclosure: [-0.827396059946821368141165095479816291999033115

784384819917814841672709693014261542180323906

2122310853275320281,

-0.827396059946821368141165095479816291999033115

784384819917814841672709693014261542180323906

2122310853275320280]

Diameter: 2.08E-0112

The last enclosure is accurate to more than 110 digits (that is to all digits
printed).

Let us now solve the same problem (1) (example from Rump/Loh & Walster)
with the toolbox algorithm for the accurate evaluation of arithmetical expres-
sions:

#include <expreval.hpp> //Expression evaluation

using namespace cxsc;

using namespace std;

Staggered f ( StaggArray& v )

{

Staggered a, b;
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a = v[1];

b = v[2];

return((333.75 - Power(a,2))*Power(b,6) + Power(a,2)*(11.0*Power(a,2)

*Power(b,2) - 121.0*Power(b,4) - 2.0) + 5.5 * Power(b,8) + a/(2.0*b));

}

int main ( )

{

real Eps, Approx;

int StaggPrec, Err;

rvector Arg(2);

interval Encl;

cout << SetPrecision(23,15) << Scientific; //Output format

cout << "Evaluation of (333.75 -a^2)b^6+a^2(11a^2b^2-121b^4-2)

+5.5b^8+a/(2b)"

<< endl << endl;

cout << "Enter the arguments:" << endl;

cout << " a = " ; cin >> Arg[1];

cout << " b = "; cin >> Arg[2];

cout << endl;

cout << "Desired accuracy: Eps = " ; cin >> Eps;

cout << endl;

Eval(f, Arg, Eps, Approx, Encl, StaggPrec, Err);

if (!Err) {

cout << "Floating-point evaluation: " << Approx << endl;

cout << "Interval enclosure: " << Encl << endl;

cout << "Defect corrections needed: " << StaggPrec << endl;

}

else

cout << EvalErrMsg(Err) << endl;

return 0;

}

/* ----------------------- Output --------------------------

Evaluation of (333.75 -a^2)b^6+a^2(11a^2b^2-121b^4-2)+5.5b^8+a/(2b)

Enter the arguments:

a = 77617

b = 33096

Desired accuracy: Eps = 1e-15
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Floating-point evaluation: 1.172603940053179E+000

Interval enclosure: [-8.273960599468215E-001,-8.273960599468213E-001]

Defect corrections needed: 2

--------------------------------------------------------- */

Again, the computed interval enclosure is sharp.

5.3 Example: Linear System of Equation

We want to solve the (ill-conditioned) system of linear equations Ax = b with

A =
(

a11 a12

a21 a22

)
=
(

64919121 −159018721
41869520.5 −102558961

)
, b =

(
b1

b2

)
=
(

1
0

)
, x =

(
x1

x2

)

The correct solution is x1 = 205117922, x2 = 83739041.
To solve this 2 × 2 system numerically we first use the wellknown formulas

x1 =
a22

a11a22 − a12a21
, x2 =

−a21

a11a22 − a12a21
(2)

The following ANSI-C program

#include <stdio.h>

int main(void)

{

double a11= 64919121.0, a12= -159018721.0,

a21= 41869520.5, a22= -102558961.0,

h1, h2, x1, x2;

h1= a11*a22;

h2= a12*a21;

x1= a22/(h1-h2);

x2= -a21/(h1-h2);

printf("x1= %15f x2= %15f\n", x1, x2);

return 0;

}

produces the totally wrong result

x1 = 102558961, x2 = 41869520.5.

I. e. using IEEE double-arithmetic to evaluate the formulas (2) shown above give
meaningless numerical results.

We now try to solve the linear system using Matlab.
Here we compute the inverse matrix (theoretically, the first column of the inverse
is the solution of the linear system)
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>> inv(A)
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.651447e-17.
ans =

106018308.007132 -164382474.017831
43281793.0017831 -67108864

>> A*inv(A)
ans =

0 2
-1 2

>> inv(A)*A
ans =

1 2
0 1

A*inv(A) as well as inv(A)*A should give the identity matrix. Obviously, the
computed results are again not reliable. But this time we get at least a warning
from Matlab.

If we try to compute an enclosure of the solution vector x using Rump’s
IntLab package [18]

x = verifylss(A,b)

we get the same warning as in Matlab (indeed it is the Matlab warning) and the
output

No inclusion achieved.
x =

NaN
NaN

IntLab is not able to solve the system. No meaningless numerical values are
produced.

Let us now try to solve our ill-conditioned problem using C-XSC. Calling
the solver for systems of linear equations from the Toolbox library [2] (using the
interactive toolbox example program lss_ex) we get the following enclosure of
the solution:

Enter the dimension of the system: 2

Enter matrix A:
64919121 -159018721
41869520.5 -102558961

Enter vector b:
1 0

Naive floating-point approximation:
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2.051179220000000E+008
8.373904100000000E+007

Verified solution found in:
[ 2.051179220000000E+008, 2.051179220000000E+008]
[ 8.373904100000000E+007, 8.373904100000000E+007]

Condition estimate: 1.2E+017

The computed result is the correct solution (internally the toolbox routine makes
use of the accurate dot product evaluation available in C-XSC).

5.4 Example: Cauchy principal value integral

The freely available package CLAVIS (Classes for verified Integration over
Singularities) has been developed and implemented using C-XSC by Wedner
as part of his thesis [20]. This package allows the computation of enclosures for
definite integrals of several kinds (Riemann, Cauchy principal values, . . .).
Let us start with two definitions:

The Cauchy principal value integral I(f ; λ) is defined as follows

I(f ; λ) :=
∫ b

a

− f(x)
x − λ

dx := lim
ε→0+

(∫ λ−ε

a

f(x)
x − λ

dx +
∫ b

λ+ε

f(x)
x − λ

dx

)
, λ ∈ (a, b)

and f ∈ C2n+1[a, b].
The nested integral I(f ; λ, µ) is defined in the following way:

I(f ; λ, µ) =
∫ b

a

−
∫ d

c

− f(x, y)
(x − λ)(y − µ)

dy dx , λ ∈ (a, b), µ ∈ (c, d).

We now compute an enclosure of the nested integral

I(f ; λ, µ) =
∫ 2

1

−
∫ 2

1

− sin(ex2
) sin(ey2

)ex2+y2

(x − λ)(y − µ)
dy dx

with λ = 1.25 and µ = 1.5 using the CLAVIS library. The header file "cubature.h"
belongs to the CLAVIS library. To be able to link the program cubature.o must
be linked. The following program also demonstrates how exceptions may be han-
dled.

#include <iostream>

#include "cubature.h" //don’t forget to link cubature.o

//source code of this program is assumed to be in the clavis directory

using namespace std;

using namespace cxsc;
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// cauchy x cauchy integral (using cauchy x cauchy formula)

//

// f(x,y) = sin(exp(y*y)) * exp(y*y) * sin(exp(x*x)) * exp(x*x)

//

// complete integrand of I(f; lambda, mu): f(x,y) / ((x-lambda)*(y-mu))

//

// -------------------------------------------------------------------------

int main() {

try {

operand r( exp(sqr(y)) ), s( exp(sqr(x)) );

integrand f = sin(r) * r * sin(s) * s;

double lambda=1.25; //singularity in x direction

double mu=1.5; //singularity in y direction

double xlb=1, xub=2; //x-range of integration

double ylb=1, yub=2; //y-range of integration

double eps= 1e-6; //required accuracy

cauchy_integral example(f, lambda, mu);

//compute an enclosure of I(f; lambda, mu):

example.integrate(xlb, xub, ylb, yub, eps);

cout << SetPrecision(8,2) << Scientific

<< "Required max. diameter of remainder: " << eps << endl

<< SetPrecision(16,12) << example << endl;

}//try

catch(integrand::error e)

{ cout << " formelgen. " << e.i << endl; }

return 0;

}//main

/* Output:

Required max. diameter of remainder: 1e-06

number of intervals : 109 (44)

#f : 17233

approximationsum : [-7.6237054671070354E+001,-7.6237054670795458E+001]

d(approximationsum) : 2.7489477361086756E-010

remainder : [-4.9415981455851922E-007,4.9416704156171493E-007]

d(remainder) : 9.8832685612023414E-007

enclosure : [-7.6237055165230175E+001,-7.6237054176628404E+001]

d(enclosure) : 9.8860176933612820E-007

*/
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The output shows, that

∫ 2

1

−
∫ 2

1

− sin(ex2
) sin(ey2

)ex2+y2

(x − 1.25)(y − 1.5)
dy dx ∈ [−76.2370552,−76.2370541].

This result is guaranteed by the algorithm itself.

5.5 Example: Time measurements

We are frequently asked for timings. Here we give a frame for time measurements.
The source code can be modified in an obvious way to do timings for other
operations and functions.

//Simple frame for time measurements

#include <iostream>

#include <ctime> //clock()

#include "interval.hpp" //interval operations

#include "imath.hpp" //elementary functions for interval arguments

using namespace std;

using namespace cxsc;

void start_clock(clock_t& t1); //function to start the timer

void print_time_used(clock_t t1);

int main()

{

long iMax= 100000;

cout << "Number of repetitions: "<< iMax << endl;

interval x(200.0,200.001);

clock_t t; //defined in <ctime>

cout << "Elementary function calls ..." << endl;

start_clock(t);

for(long i=0; i<iMax;)

{

x= ln(exp(atan(sin(cos(x)))));

i++; //avoid compiler optimization

}

print_time_used(t);

}

void start_clock(clock_t& t1)

{

t1= clock();

if (t1 == clock_t(-1)) //terminate if timer does not work properly

{

cerr << "Sorry, no clock\n";
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exit(1);

}

}

void print_time_used(clock_t t1)

{

clock_t t2= clock();

if (t2 == clock_t(-1))

{

cerr<< "Sorry, clock overflow\n";

exit(2);

}

cout << "Time used: " << 1000*double(t2-t1)/CLOCKS_PER_SEC

<< " msec" << endl;

}

/*

Results computed on a SUN Ultra 60 Workstation running Solaris 7

using GNU C++ Compiler Version 3.2 without any optimization:

Number of repetitions: 100000

Elementary function calls ...

Time used: 1370 msec

*/

Note that the given frame for time measurements is not so appropriate to mea-
sure very short or very long execution times.

6 Current Work on C-XSC

– Finish the final version C-XSC 2.0 (the actual version is: Betarelease 2 from
December 2002)

– Modify the sources in such a way that C-XSC will run with more C++ com-
pilers (e.g. with SUN Forte, Compaq, other compilers available for Windows
systems; up to now C-XSC 2.0 only runs with GNU C++ compilers from
version gcc 2.95.2 to version gcc 3.2.)

– Adaptation and completion of the C-XSC test suite to more C++ compiler
versions (most C++ compiler do not conform completely to the C++ stan-
dard. This still causes problems when using the already existing rudimentary
test suite. Meanwhile the installation of the C-XSC library is checked in the
following way: Install also the numerical toolbox and look whether the tool-
box programs deliver correct results. If the computed results are equal to
the prestored correct values it is assumed that the C-XSC installation was
successful.)

– Improve performance: due to the extensive use of the C++ exception han-
dling, the extensive use of template classes, and the extensive use of function
inlining it is (up to now) not possible to compile C-XSC with the GNU Com-
piler using e. g. the compiler option -O3 as optimization level



20 Werner Hofschuster, Walter Krämer

– For historical reasons C-XSC is build on emulations for several basic floating
point operations. This makes the actual C-XSC run time system portable
but slow compared to the speed of hardware operations. Nowadays most
processors conform to the IEEE 754 standard. So, fast hardware operations
are available for all rounding modes. These operations will be used in forth-
coming C-XSC versions (at least for special processors like Intel and SUN)

– A thorough documentation of the routines available in C-XSC will be pre-
pared. This is important because due to significant modifications concerning
C++ most available documentation is no longer up to date

– Simplification and redesign of the runtime system (RTS). The RTS com-
prises rounding control, reliable input/output routines, routines to compute
accurate dot products for data types real, complex, interval, and complex
interval, . . .

– Development and implementation of parallel versions of selfverifying solvers
based on C-XSC and MPI on cluster computers
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