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filib++ is an extension of the interval library filib originally developed at the University of
Karlsruhe. The most important aim of £ilib is the fast computation of guaranteed bounds for
interval versions of a comprehensive set of elementary functions. filib++ extends this library in
two aspects. First, it adds a second mode, the “extended” mode, that extends the exception-
free computation mode using special values to represent infinities and NaNs known from the
IEEE floating-point standard 754, to intervals. In this mode, the so-called containment sets are
computed to enclose the topological closure of a range of a function over an interval. Second,
our new state of the art design uses templates and traits classes to obtain an efficient, easily
extendable and portable C++ library.
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brary design; G.1.0 [Numerical Analysis]: General-Interval arithmetic
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1. INTRODUCTION AND MOTIVATION

Let us first give some striking examples of why validated numerics (based on interval
computations) may be needed. The following figure shows some graphical results
produced with Maple’s implicitplot command. The first two plots in Fig. 1.
show Maple results when plotting the curve defined by (22 + y2)% — 272%y? = 0,
the second two plots in Fig. 2. show (22 + 3% — 62)? — 22 — y? = 0, and the plots
in Fig. 3. show 2% +y* — 822 — 10y? + 16 = 0. In the plots in the right column,
the parameter numpoints of the implicitplot command is set explicitly, whereas
in the left column Maple’s default setting is used.

The difficulty in plotting these implicitly defined simple curves is not the lack of
precision in the computations. The erroneous results come from the interpolation
process. At least, near intersection points or near singularities, this process is
difficult to control automatically.
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Using interval tools, as for example provided by our new library filib++, the
results in Figures 4. to 6. are obtained without any intervention by the user.
These results are verified to be correct.
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filib++ also provides containment computations to handle infinite intervals.
Thus, we can, for example, compute enclosures of all zeros of a one-dimensional
function over the complete real line (see below).

For the following, we assume that the reader is familiar with the basic ideas
of interval arithmetic (for a good introduction and references see [Hammer et al.
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1995]). We use bold face for continuous intervals, represented by two real bounds.
That is,

x=[z,T]|={zeR|z<z<T}

IIR denotes the space of all finite closed intervals, and f(x) = {f(z) | z € x}
denotes the range of values of the function f : Dy C IR — IR over the interval
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x C Dy. In this paper, we restrict our consideration to the one-dimensional case.
Extensions to more dimensions are more or less obvious.

For those who are interested in recent developments in the fields of interval
mathematics and applications of it, we refer to [Kramer and Wolff von Gudenberg
2001; Kulisch et al. 2001].

2. INTERVAL EVALUATION

We consider the enclosure of the range of a function, one of the main topics of
interval arithmetic.

DEFINITION 1. The interval evaluation f : IIR — IR of f is defined as the
function that is obtained by replacing every occurrence of the variable x by the
interval varitable x, by replacing every operator by its interval arithmetic counterpart
and by replacing every elementary function by its range. Note that this definition
holds, if all operations are executable without exceptions.

The following theorem is known as the fundamental theorem of interval arithmetic
[Alefeld and Herzberger 1983].

THEOREM 2.1. If the interval evaluation is defined, we have

f(x) € f(x)

The interval evaluation is not defined, if x contains a point y ¢ Dy. Division
by an interval containing 0, for example, is forbidden. Note, that, even if x C Dy,
f may not be defined. The result depends on the syntactic formulation of the
expression for f. For the function fi(z) = 1/(z - x + 2) the call f;([-2,2]) is
not defined, because [—2,2] - [-2,2] = [~4,4], whereas fo(z) = 1/(2? + 2) yields
f>([-2,2]) = [1/6,1/2]. Of course, for real arguments x, fi(x) = fa(x).

The result of an elementary function call over an interval is defined as the interval
of all function values. Such function calls are not defined, if the argument interval
contains a point outside the domain of the corresponding function. For elementary
functions f €{ sin,cos,exp...}, it holds that f(x) := f(x) = {f(z)|]z € x C
Dy} . That is, the result of an interval evaluation of such a function is by definition
equal to the range of the function over the argument interval.

3. CONTAINMENT EVALUATION

To overcome the difficulties with partially defined functions throwing exceptions,
we introduce a second mode, the “extended” mode. Here, no exceptions are raised,
but the domains of interval functions and ranges of interval results are consistently
extended. In the extended mode, intervalarithmetic operations and mathematical
functions form a closed mathematical system. This means that valid results are
produced for any possible operator-operand combination, including division by zero
and other undetermined forms involving zero and infinities.

Following G. W. Walster in [Chiriaev and Walster 1999; Walster et al. 2000b] we
define the containment set:

DEFINITION 2. Let f : Dy C IR — IR. Then the containment set f* : IR*
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+ —oc0 Yy +oo — -0 Yy +oo
—o0|—00 —oo R* —o| R* —o0 —o0
x —o0 T +Yy +0o T +o00 x—y —o0
+oo| R* 400 4o +oo|+o0 +oo R*

Table I. Extended addition and subtraction

* —o00o y<0 0 y>0 +4o0
-0 |+o00 4oo R* —oco —o0
z<0|4oc0 zxy 0 zxy —o0
0 R* 0 0 0 R*
z>0|—c0 zxy 0 zxy +oo
+oo |—o0 —oo R* 400 +o0

Table II. Extended multiplication

QIR* defined by
£ = {f@le €xNDJUL, lim _f@)le” €x} CR 1)

contains the extended range of f, where R* = RU {—o0} U {o0}.

Hence, the containment set of a function encloses the range of the function, as
well as all limits and accumulation points.

Our goal is now to define an analogue to the interval evaluation, which encloses
the containment set, and is easy to compute.

Let TR* denote the set of all extended intervals with endpoints in R*, supple-
mented by the empty set (empty interval).

DEFINITION 3. The containment evaluation f* : IR* — IR* of f is defined
as the function that is obtained by replacing every occurrence of the variable x by
the interval variable x and by replacing every operator or function by its ertended
interval arithmetic counterpart.

We then have [Walster et al. 2000)

THEOREM 3.1. The containment evaluation is always defined', and it holds
fr(x) €7 (x)

For the proof of this theorem, all arithmetic operators and elementary functions
are extended to the closure of their domain. This can be done in a straight forward
manner; cf. [Chiriaev and Walster 1999]. We apply the well known rules to compute
with infinities. If we encounter an undefined operation like 0 - co we deliver the set
of all limits, which is R*. Note that negative values are also possible, since 0 can
be approached from both sides.

lin contrast to the interval evaluation
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/ -0 y<0 0 y>0 +oo
—oo |[[0,400] 400 {—00,+o0} —oo0 [—00,0]
<0 0 z/y {—oco,+o0} z/y 0

0 0 0 R* 0 0

x>0 0 z/y {—o0,+00} z/y 0
400 |[-00,0] —oco {—o00,400} +oo [0,+400]

Table III. Extended division

A=la;a) B=[b;b Range containment set
0eA 0eB IR* R*

0cA B =[0;0] {—o0;+00} R*

a<0 b<b=0 [a/b,o0) [@/b, oo

a<o b<0<b (—o0,a/blU[a/b, +o0) IR*

a<0 0=b<b (—o0,a/b [—o0,@/b]
a>0 b<b=0 (—o0,a/b] [—o0,a/b]
a>0 b<0=b (—00,a/blU[a/b,+oc0) IR*

a>0  0=b<b [a/b,+0) [a/b, +o0]

Table IV. Extended interval division

Tables I to IV show the containment sets for the basic arithmetic operations. From
these tables, the definition of extended interval arithmetic can easily be deduced.
For addition, subtraction, and multiplication infinite intervals can be returned, if
a corresponding operation is encountered. Some typical computations are [2, co] +
[3, 00] =[5, 0], [2,00] — [3,00] = R*, [2,00] * [—3,3] = R*. Division is more subtle.
Table IV shows the cases where the denominator contains 0.

For the elementary functions, Table V shows the extended domains and extended
ranges. The containment set for an elementary function is computed by directly
applying the definition of a containment set. If the argument lies strictly outside
the domain of the function, we obtain the empty set as result. If the argument x
contains a singularity the corresponding values for 400 are produced. The functions
in containment mode never produce an overflow or illegal argument error. Their
realizations on a computer never throw an exception. Some typical examples are
log[—1,1] = [0, 0], \/[—1,1] = [0,1], log[—2, —1] = 0, coth[-1,1] = IR*.

The special values column shows the results of the interval version at points on the
border of the open domain. In all cases, the lim construction in (1) is applied and
containment is guaranteed. Note that for the power function z* only lim,_g z°
is to be considered, whereas z¥ is calculated as e¥™® in the pow function. We
intentionally chose 2 different names, since power(x, k) C pow(x, [k, k]) does not
hold for negative x.

It has been shown in [Walster et al. 2000b; 2000a] that, using extended operations,
the containment evaluation can be computed without exceptions.
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name domain range special values

sqr R* [0, 0]

power R* X Z R* power([0,0],0) = [1,1]

pow [0, 0] x R* [0, o] pow([0,0],]0,0]) =[0, oc]

sqrt [0, o0] [0, o0]

exp, expl0, exp2 R* [0, o0]

expm1 R* [—1, 00]

log, log10, log2 [0, o] R* log ([0,0]) = [—o0]

loglp [—1,00] R* loglp ([=1, —1]) = [-oq]

sin R* [—1,1]

cos R* [—1,1]

tan R* R* tan(x) = R*, if
w/2+kr€ex, k€L

cot R* R* cot(x) = R*, if
krex,keZ

asin [—1,1] [—m/2,7/2]

acos (—1,1] [0, 7]

atan R* [—7/2,7/2]

acot R* [0, 7]

sinh R* R*

cosh R* [1, 00]

tanh R* [—1,1]

coth R* [—o0,—1]U[1l,00] coth[0,0] =R*

asinh R* R*

acosh [1, o0] [0, o0]

atanh [—1,1] R*

acoth [—oo,—1]U[l,00] R* acoth[—1, —1] = [—o0]

acoth[1, 1] = [o0]

Table V. Extended domains and ranges for the elementary functions

4. FILIB4++ BUILT AS A TEMPLATE LIBRARY
4.1 Traits and Templates

To describe the up-to-date design of filib++, we assume that the reader has some
knowledge of C++ templates.

In analogy to the basic_string template of the C++ standard, we use a concept
called a traits class for our implementation. A traits class is a template class
that allows accessing features and operations of its template parameter(s). In the
example case of the basic_string template, a character traits class is used. This
traits class can be invoked for several character types, as the well-known char
primitive type, but usually also for some kind of a wide character type. It brings
functions like assigning characters (an operation on characters) and functions that
return some special value of the parameter type like the eos symbol (end of string,
a special feature value of the parameter type). The methods of the basic_string
template can work exclusively with the functions of the traits class, without directly
using any special properties of the template parameter, and thus, without need for
a specialization for template arguments.

In our case, we use a traits class fp_traits for the basic number type on which we
build interval arithmetic on. It provides all the functions we need for basic interval
operations, like directed addition, subtraction, multiplication and division, as well
as some functions returning special values, like returning the maximum finite value
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of the type. It also has functions for testing properties of the number type, like
testing for infinity.

Our traits class has two template parameters: the first selects the basic number
type, for example float or double, and the second selects the implementation of
the directed rounding, for example hardware based or software based, by computing
the predecessor or successor of a number.

We currently have the following rounding methods:

—native_switched: operations are based on hardware support. After using di-
rected operations, we switch the rounding mode back to the default (round to
nearest).

—native_directed: is like native_switched, but without switching back to the
default mode. This changes the floating point semantics of the rest of the pro-
gram, since usually the default floating point rounding mode is round to nearest.
Because on most processors switching the rounding mode is a very expensive
operation, this may speed up the computation, if only interval arithmetic is used
or the traits class is called to reset the rounding mode to the default explicitly,
when needed.

—multiplicative: rounding is implemented by multiplication with the predeces-
sor or successor of 1. This relies on the hardware implementation to produce
results that were rounded with the round to nearest rounding scheme.

—mno_rounding: used for debugging reasons, not useable for applications.

—native_onesied_switched: use only rounding in one direction and compute the
other side by factoring out —1 and then using negation. On machines where
switching the rounding mode is expensive, it may be faster though, as only one
switch to a directed rounding mode is used.

—native_onesided_global: like native_onesided_switched plus no switching
back to the default rounding mode after interval operations. As the rounding
mode only needs to be set at the beginning of the programs, this mode will
bring the fastest computation on machines, where switching the rounding mode
is expensive. But it has the problems described in native_directed plus it
is necessary to also set the rounding mode to downward again, if we want to
continue using this mode, after having gone back to the default rounding.

—pred_succ_rounding: do rounding by computing the predecessor or successor
after performing a computation. The machine may not compute results that are
off by more then one ulp (unit in the last place) for this mode to be able to work
correctly.

These seven rounding modes are provided, since the degree of conforming to or
exploiting the IEEE arithmetic differs from machine to machine and compiler to
compiler. Therefore, we suggest to test the performance for any rounding mode on
the target machine, see 6.1 for our test results.

The availablity of various rounding modes further enhances the portability of
the libray. Whereas some modes need assembler statements to access the directed
roundings, the multiplicative rounding always works on IEEE architectures. Spe-
cializations of this traits class for double and float are provided in the library, as
listed in Table VI.
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The specializations for rounding modes that rely on machine specific rounding
control methods inherit these methods from an instantiation of the template class
rounding control. That is illustrated in Fig. 7., which shows part of the inheri-
tence hierarchy used in the library (note that this is a simplified diagram).

Our implementation can be easily extended for new number types by producing
new specializations of the fp_traits template. At the current stage of the library,
this is not true for the standard functions, as they are derived from £i_1ib and have
not been converted to using the traits concept, for speed and complexity reasons.

Examples showing how to call the fp_traits functions directly can be found in
the interval example code shown below.

N
rounding_control N, K
interval
setup()
upward() .
downward() operator+=(interval<> 0)
reset()
/<<bind>>(double)
. N, K
; fp_traits
roundlng_control<double%
A Isinf(N a)
upward_plus(N a, N b)
downward_plus(N a, N b)
7 ™
/<<bind>> . <<bind>>
fp_traits<doublenative switched> fp_traits<double multiplicative>
rounding control based machine independant
implementation implementation

Fig. 7. Part of the Inheritence Hierarchy

The filib++ interval class is realized as a template class. Currently there are
two template parameters, the underlying basic (floating-point) number type N, and
the method, implementing the directed roundings rounding control. Here, the
basic number type N may be float or double, and rounding control may be
native_switched, native_directed and multiplicative (see Table VI).

The interval<> class implements its operations relying on functions for directed
floating-point arithmetic operations and on a function to reset the rounding mode.
For example a simplified version of the += operator looks like:
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interval<N,K> & interval<N,K>::operator +=
(interval<N,K> const & o)
{
INF=fp_traits<N,K>::downward_plus(INF,o.INF);
SUP=fp_traits<N,K>: :upward_plus(SUP,o0.SUP);
fp_traits<N,K>::reset();
return *this;

}

Some examples may help to use the library:

filib::interval<double> A;

This is the default instantiation of an interval: A is an interval over the floating-
point type double, the second and third template parameters are set to their
default

filib::native_switched or filib: :i mode normal implicitly.
filib::interval<double,filib::multiplicative,filib::i mode_extended>
A;

A is an interval over double. Multiplicative rounding is used. The hardware need
not support directed roundings. The extended mode is used.
filib::interval<double,filib: :native_onesided_global> A;

This is probably the fastest mode for most of the currently available machines,
but it changes the floating-point semantics of the program.

Another example can be found in the examples directory of the distribution.

Of course the interval class is compatible with the STL (standard template li-
brary). This means that we can easily use the data structures provided there for
vectors, lists, queues, etc. as they are often needed in applications. As the STL is
part of the C++ standard, it is portable and usually very efficient.

4.2 Template Arguments

The fp_traits<> class as well as the interval<> class are template classes with
two or three template arguments. The first argument must be to be a numeric type,
where there are currently implementations for float and double. The second pa-
rameter is a non-type parameter of type rounding strategy as described in the
preceding section. Table VI shows all currently available combinations. In forth-
coming filib++ versions the third parameter of interval<> will denote the interval
evaluation mode. So it will be possible to switch from containment evaluations to
interval evaluation mode.

4.3 Utility Functions Coming from the fp_traits<> class
The following static member functions are mandatory for all implementations of
the fp_traits<> class (N denotes the first template parameter):

bool IsNaN (N const & a): test if a is not a number

bool IsInf(N const & a): test if a is infinite

N const & infinity (): returns positive infinity

N const & ninfinity (): returns negative infinity
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first param | second param

double native_switched

double native_directed

double multiplicative

double no_rounding

double native_onesided_switched
double native_onesided_global
double pred_succ_rounding

float native_switched

float native_directed

float multiplicative

float no_rounding

float native_onesided_switched
float native_onesided_global

Table VI. Currently existing fp_traits implementations

N const & quiet_NaN(): returns a quiet (non-signaling) NalN
N const & max(): returns the maximum finite value possible for N

N const & min(): returns the minimum finite positive non-denormalized value
possible for N

N const & l_pi(): returns a value that is no bigger than =

N const & u_pi(): returns a value that is no smaller than w
int const & precision(): returns the current output precision
N abs(N const & a): returns the absolute value of a

N upward_plus(N const & a, N const & b): returns a value of type N. It
shall be as close to a + b as possible and no smaller than a + b.

N downward_plus(N const & a, N const & b): returns a value of type N. It
shall be as close to a + b as possible and no bigger than a + b.

N upward_minus(N const & a, N const & b): returns a value of type N. It
shall be as close to a — b as possible and no smaller than a — b.

N downward_minus(N const & a, N const & b): returns a value of type N.
It shall be as close to a — b as possible and no bigger than a — b.

N upward_multiplies(N const & a, N const & b): returns a value of type
N. It shall be as close to a - b as possible and no smaller than a - b.

N downward_multiplies(N const & a, N const & b): returns a value of type
N. It shall be as close to a - b as possible and no bigger than a - b.

N upward_divides(N const & a, N const & b): returns a value of type N. It
shall be as close to a/b as possible and no smaller than a/b.

N downward_divides(N const & a, N const & b): returns a value of type
N. It shall be as close to a/b as possible and no bigger than a/b.

void reset(): reset the rounding mode

4.4 The interval<> class

Let z and T denote the infimum and supremum of the interval X. The interval
*this is written as T = [¢, #]. N denotes the underlying basic number type, i.e. the
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type of the bounds. Furthermore M is the largest representable number of type N
and +INFTY denotes an internal constant for +co. [NaN, NaN] represents the empty
interval, where NaN denotes an internal representation for “Not a Number”.

The typename value_type is defined for the basic number type and the type of
traits used by the interval class is introduced as traits_type.

The following constructors are provided for the interval class:

interval (): the interval [0, 0] is constructed.

interval(N const & a): the interval [a, a] is constructed.The point intervals for
+o0o and —oo are given by [M, +INFTY] or [—INFTY, —M], respectively.
interval(N const & a, N const & b): if a < b the interval [a, b] is constructed,
otherwise the empty interval.

interval(std: :string const & infs, std::string const & sups)
throw(filib::interval_io_exception): construct an interval using the strings
infs and sups. The bounds are first transformed to the primitive double type by
the standard function strtod and then the infimum is decreased to its predecessor
and the supremum is increased to its successor. If the strings cannot be parsed
by strtod, an exception of type filib: :interval io_exception is thrown.

interval (interval<> const & o): copy constructor, an interval equal to the
interval o is constructed.
The assignment operator is

interval<> & operator=(interval<> const & o): the interval o is assigned.

The following arithmetic methods are provided for updating arithmetic operations.
Note that the usual operators are available as global functions (see V).

The special cases of the extended mode are not explicitly mentioned here, see
Tables I, II, refdiv for details.

interval<> const & operator+() const (unary plus):
The unchanged interval is returned.

interval<> operator-() const (unary minus):
[, —1] is returned.
interval<> & operator+=(interval<> const & A)(updating addition):
t:=t+a t:=t+a
interval<> & operator+=(N const & a)(updating addition):
ti=t+a,t:=t+a
interval<> & operator-=(interval<> const & A)(updating subtraction):
ti=t—a,t:=t—a
interval<> & operator-=(N const & a)(updating subtraction):
ti=t—a,t:=t—a
interval<> & operator*=(interval<> const & A)(updating multiplication):
t:=min{t*xa,txa,txa,txa}, t := max{t*a,txa,lxa,txa}
interval<> & operator*=(N const & a)(updating multiplication):
ACM Transactions on Mathematical Software, Vol. V, No. N, December 2003.
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t:=min{t*a,txa}, t := max{t*a,l *xa}
interval<> & operator/=(interval<> const & A)(updating division):
t:=min{t/a,t/a,t/a,t/a}, t := max{t/a,t/a,t/a,t/a}

The case 0 € A throws an error in normal mode. R* is returned in extended
mode.

interval<> & operator/=(N const & a)(updating division):
t:=min{t/a,t/a}, T := max{t/a,t/a}
The case a = 0 throws an error in normal mode. R* is returned in extended

mode.

The following access and information methods are provided. Methods only available
in extended mode are marked with the specific item marker .

N const & inf() const: returns the lower bound.
N const & sup() const: returns the upper bound.

*

bool isEmpty () const: returns true iff T is the empty interval.

*

bool isInfinite() const: returns true iff T has at least one infinite bound.

* static interval<> EMPTY O: returns the empty interval.

*x static interval<> ENTIREQ: returns R*.

static interval<> NEG_INFTY O): returns the point interval —oo = [-INFTY, —M].
static interval<> POS_INFTY () returns the point interval +o00 = [M, +INFTY].
static interval<> ZERO(): returns the point interval 0 = [0.0,0.0]

static interval<> ONE() : returns the point interval 1 = [1.0,1.0]

static interval<> PI(): returns an enclosure of .

*

*

bool isPoint() const: returns true iff T is a point interval.

static bool isExtended() const: returns true iff the library has been com-
piled in the extended mode.

bool hasUlpAcc(unsigned int const & n) const: returns true iff the dis-
tance of the bounds f —¢ < n ulp, i.e. the interval contains at most n+ 1 machine
representable numbers.

N mid() const: returns an approximation of the midpoint of T that is contained
inT

In the extended mode the following cases are distinguished:

NaN for T ==

0.0 for T == R*

+INFTY for T == [a,+INFTY]

—INFTY for T == [—INFTY,al

T.mid() =

N diam() const: returns the diameter or width of the interval (upwardly rounded).
The method is also available under the alias width. In the extended mode the
following cases are distinguished:

NaN ifT ==

T.diam() = { +INFTY if T.isInfinite()
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N relDiam() const: returns an upper bound for the relative diameter of T:
T.relDiam() == T.diam() if T.mig() is less than the smallest positive nor-
malized floating-point number,

T.relDiam() == T.diam()/T.mig() otherwise.
In the extended mode the following cases are distinguished:

NaN if T ==

T.relbiam() = { +INFTY if T.isInfinite()

N rad() const: returns the radius of T (upwardly rounded) In the extended
mode the following cases are considered:

NaN if T ==
+INFTY if T.isInfinite()

T.rad() = {
N mig() const: returns the mignitude, i.e.
T.mig() == min{abs(t) t€ T}
In the extended mode the following cases are considered:
T.mig() = NaN ifT ==
N mag() const: returns the magnitude, the absolute value of T. That is,
T.mag() == max({abs(t) t€ T}).
In the extended mode the following cases are considered:

T omag() — J el T ==
‘MagL) =\ LINFTY if T.isInfinite()

interval<> abs() const:
returns the interval of all absolute values (moduli) of T:

T.abs() = [ T.mig(), T.mag(O]

In the extended mode the following cases are considered:

0 for T ==
T.abs() = ¢ [T.mig(),+INFTY] if T.isInfinite() and one bound is finite
[M, +INFTY] if both bounds are infinite

The set theoretic methods are

interval<> imin(interval<> const & X):returns an enclosure of the interval
of all minima of T and X, i.e.

T.imin(X) == { z: z == min(a,b): a €T, b € X }
In the extended mode, it returns
T.imin() = @ for T == Qor X ==

interval<> imax(interval<> const & X): returns an enclosure of the inter-
val of all maxima of T and X, i.e.

T.imax(X) == { z: z == max(a,b): a €T, b € X }
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In the extended mode this function returns
T.imax() =0 for T == PorX == .

N dist(interval<> const & X):returnsan upper bound of the Hausdorff-distance
of T and X, i.e.

T.dist(X) == max { abs(T.inf()-X.inf()), abs(T.sup()-X.sup()) }
In the extended mode this function returns
T.dist(X) = NaN for T == Qor X == 0.
interval<> blow(N const & eps) const: returns the e-inflation:
T.blow(eps) == (1+eps)-T - eps-T

interval<> intersect(interval<> const & X) const: returns the intersec-
tion of the intervals T and X. If T and X are disjoint, it returns () in the extended
mode and an error in the normal mode.

interval<> hull(interval<> const & X) const: the interval hull.

In the extended mode, it returns

T.hull() = () if T == X ==

This function is also available under the interval_hull() alias.

interval<> hull(N const & X) const: the interval hull.
In the extended mode, it returns

T.hull() =@ if T == ) and X == NaN

This function is also available under the interval hull() alias.

bool disjoint(interval<> const & X) const: returns true iff T and X are
disjoint, i.e. T.intersect(X) ==

bool contains(N x) const:returns trueiff x € T

bool interior(interval<> const & X) const: returns true iff T is contained
in the interior of X.

In the extended mode it returns true if T ==

bool proper_subset(interval<> const & X) const: returns true iff T is a
proper subset of X.

bool subset(interval<> const & X) const: returns true iff T is a subset of
X.

bool proper_superset(interval<> const & X) const: returns true iff T is
a proper superset of X.

bool superset(interval<> const & X) const:returns true iff T is a superset
of X.

Three kinds of interval relational methods are provided: set relations, certainly
relations, and possibly relations. The first character of the name of such a method
is s for set relations, ¢ for certainly relations, and p for possibly relations.

Set Relations

Set relational functions are true if the interval operands satisfy the underlying
relation in the ordinary set theoretic sense.
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bool seq(interval<> const & X) const:returns true iff T and X are equal
sets.

bool sne(interval<> const & X) const: returns true iff T and X are not
equal sets.

bool sge(interval<> const & X) const: returns true, iff the > relation holds
for the bounds

T.sge(X) == T.inf() > X.inf() && T.sup() > X.sup()

In the extended mode return true, if T == () and X == (.

bool sgt(interval<> const & X) const: returns true iff the > relation holds
for the bounds

T.sgt(X) == T.inf() > X.inf() && T.sup() > X.supQ).

In the extended mode, it returns false if T == () and X == (.

bool sle(interval<> const & X) const: returns true iff the < relation holds
for the bounds

T.sle(X) == T.inf() < X.inf() && T.sup() < X.supOQ.

In the extended mode, it returns true if T == () and X == (.

bool slt(interval<> const & X) const: returns true iff the < relation holds
for the bounds

T.slt(X) == T.inf() < X.inf() && T.sup() < X.supQ).
In the extended mode, it returns false if T == () and X == (.

Certainly Relations
Certainly relational functions are true if the underlying relation (e. g. less than) is
true for every element of the operand intervals.

bool ceq(interval<> const & X) const: returns true iff the = relation holds
for all individual points from T and X, i.e. Vi €e T,Vx € X:t ==

That implies that T and X are point intervals.

In the extended mode, it returns false if T == @ or X == (.

bool cne(interval<> const & X) const: returns true iff the # relation holds
for all individual points from T and X, i.e. Vi e T,Vz € X:t £ x

That implies that T and X are disjoint.

In the extended mode, it returns true if T == @ or X == (.

bool cge(interval<> const & X) const: returns true iff the > relation holds
for all individual points from T and X, i.e. Vi e T,Vx € X:t > x

In the extended mode, it returns false if T == @ or X == (.

bool cgt(interval<> const & X) const: returns true iff the > relation holds
for all individual points from T and X, i.e. Vt € T,Vx € X : t > =

That implies that T and X are disjoint.

In the extended mode, it returns false if T == @ or X == (.

bool cle(interval<> const & X) const: returns true iff the < relation holds
for all individual points from T and X, i.e. Vt € T,Vz € X:t <=z

In the extended mode, it returns false if T == @ or X == (.
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bool clt(interval<> const & X) const: returns true iff the < relation holds
for all individual points from T and X, i.e. Vi e T,Vx € X:t < x

That implies that T and X are disjoint.

In the extended mode, it returns false if T == @ or X == (.

Possibly Relations
Possibly relational functions are true if any element of the operand intervals satisfy
the underlying relation.

bool peq(interval<> const & X) const: returns true, iff the = relation holds
for any points from T and X, i.e. I €T,z €X:t =2
In the extended mode , it returns false if T == (J or X == ().

bool pne(interval<> const & X) const: returns true iff the # relation holds
for any points from T and X, i.e. # € T,Jx € X:t £
In the extended mode, it returns true if T == () or X == (.

bool pge(interval<> const & X) const: returns true iff the > relation holds
for any points from T and X, i.e. I €T,z €X:t > x
In the extended mode, it returns false if T == @ or X == (.

bool pgt(interval<> const & X) const: returns true iff the > relation holds
for any points from T and X, i.e. I €T,z €X:t > x

In the extended mode, it returns false if T == @ or X == (.

bool ple(interval<> const & X) const: returns true iff the < relation holds
for any points from T and X, i.e. It €T,z €X:t <=z

In the extended mode, it returns false if T == @ or X == (.

bool plt(interval<> const & X) const: returns true iff the < relation holds
for any points from T and X, i.e. I €T,z €X:t <x

In the extended mode, it returns false if T == @ or X == (.

Input and Output routines are

std::ostream & bitImage(std::ostream & out) const: output the bitwise
internal representation.

std: :ostream & hexImage(std::ostream & out) const: output a hexadeci-
mal representation. This routine is not available for the macro version of filib++.

static interval<N,K> readBitImage(std::istream & in)

throw(filib: :interval_io_exception): read a bit representation of an inter-
val from in and return it. If the input cannot be parsed as a bit image, an
exception of type filib: :interval io_exception is thrown.

static interval<N,K> readHexImage(std::istream & in)
throw(filib::interval io_exception): read a hex representation of an inter-
val from in and return it. If the input cannot be parsed as a hex image, an
exception of type filib::interval io_exception is thrown. This routine is
not available for the macro version of £ilib++.

static int const & precision(): returns the output precision that is used by
the output operator <<.

static int precision(int const & p): set the output precision to p. The
default value is 3.
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The methods of the class interval<> are available as global functions as well. This
interface to the operations is not only more familiar and convenient for the user
(mathematical notation of expressions), but also more efficient.

The class interval<double> also provides the elementary mathematical func-
tions sin, cos, acos, acosh, acot, acoth, asin, asinh, atan, atanh, acoth, exp, exp 10,
exp 2, expml, log, log 10, log 1p, log 2, pow, sinh, sqr, sqrt, tan, tanh in both the
normal and the extended interval mode. The typical interface for such a function
with one argument is
interval<> sin(interval<> const & A):
sine function with resulting set {sin(a) : a € A}.

For functions with two arguments we typically have
interval<> pow(interval<> const & A, interval<> const & B):
general power function with resulting set {a®: a € A,b € B}.

5. APPLICATION

The following program code demonstrates the use of the £ilib++ library in con-
nection with the standard template library (STL) of C++ to get verified graphics
of implicitly defined curves as shown in the first chapter of this paper.

//Verified computation of level curves using filib++ and routines from the STL
#include <fstream>

#include <list>

#include <interval/interval.hpp> //filib++
//...

using namespace filib;

//Simplify instantiation of intervals
typedef filib::interval<double> I;

//...

//Data type for two dimensional boxes
typedef pair<I,I> rectangle;

void levelCurve(
ofstream& out, //output file
I(*f) (rectangle), //function
rectangle x,
I level,
double epsilon

list<rectangle> toDo;
toDo.push_back(x);
while( !toDo.empty() )
{
rectangle box= toDo.front();
toDo.pop_front();
I fRange= f(box);
if (!disjoint(level, fRange)) //box may contain points of level curve
{
if ( diam(box) < epsilon )
plotBox(out, box); //write data to plot box using gnuplot
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else
{
if ( diam(box.first) > diam(box.second) )
{
pair<I,I> p = bisect(box.first);
toDo.push_back(make_pair(p.first, box.second));
toDo.push_back(make_pair(p.second, box.second));
}
else
{
pair<I,I> p = bisect(box.second);
toDo.push_back(make_pair(box.first, p.first));
toDo.push_back(make_pair(box.first, p.second));
}
}
}
}
}
I f(rectangle box) //two dimensional (interval) function
{
I x(box.first), y(box.second);
I h= sqr(x) + sqr(y); //x72+y"2
return sqr(h-I(6)*x) - h; //(x"2+y~2-6x)72 - (x"2+y~2)
}

With the data and function calls

double epsilon=0.01;

I level(0,0);

rectangle x(make_pair(I(-8, 8), I(-8, 8)));
levelCurve(out, f, x, level, epsilon); //fine
levelCurve(out, f, x, level, 60*epsilon); //coarse

we get the verified graphic in Fig. 8. The boxes are a coarse coverage of the curve.
Note, that the variable level is of type interval. This allows plotting level curves
simultaneously for a given range of levels. The figure 9. has been produced using
level(-1,20) and epsilon=0.05.

Containment computations also allow the treatment of functions over infinite
domains, functions with singularities, or functions that are only defined partially.
For example, a coverage of the graph of f(z) := x + arctan(log(sin(10z)/(x + 1)))
may be computed using the program from above with a function g(x,y) := f(x)—y
without any modification. The result is shown in Figure 10 (left part).

The corresponding (unreliable) Maple plot using numpoints=10000 is also shown
(right figure). Here, e. g. the part of the graph of f close to 2 = —1 is missing. Note
that the natural domain of definition Dy is the union of infinitely many disjoint
open intervals. The interval plot routine never loses points of the graph.

Using the bisection algorithm described in [Lerch et al. 2001] verified enclosures
for all zeros of f over the entire real line (stored in a list named zeros) may be
computed using
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list<interval> zeros= findAllZeros(f<interval>, interval::ENTIRE(), epsilon);
For epsilon=0.0001 we get the enclosures

There may be zeros in the interval(s):
1 [-1.00006103515624978, -0.99999999999999988]
2 [-0.95947265624999989, -0.95941162109374988]
3 [-0.52752685546874989, -0.52740478515624988]
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Fig. 10. f(z) := z + arctan(log(sin(10z)/(x 4 1))): verified (left)/Maple (right)

4 [-0.42694091796874995, -0.42681884765624995]
5 [0.142700195312499972, 0.14282226562499998]
6 [0.174560546874999972, 0.17468261718749998]
7 [0.709289550781249889, 0.70941162109374989]
8 [0.883361816406249889, 0.88342285156249989]
9 [1.26605224609374978, 1.26611328124999978]
10 [1.57073974609374978, 1.57080078124999978]

Note that f(—1) is not defined (division by zero) and lim, .z f(x) = 0.

6. PERFORMANCE
6.1 Internal Comparison

Instantiations of the interval<> class with different rounding strategies or evalu-
ation modes differently perform. The performance heavily depends on the harware
architecture and the compiler version.

We tested the arithmetic operations in a loop, the numbers (double) were ran-
domly generated into vectors of different lengths. The processor was a 2GHz Pen-
tium 4 running under Linux. We used the gcc 3.2.1 compiler with optimization
level O3. The following two tables show the performance in MIOPs (million inter-
val operations per second) for the normal and the extended mode.

Rounding mode + - * /
native 224 | 222 | 11.4 | 8.8
native-switch 3.9 3.9 3.5 1 3.0
native-onesided 20.9 | 21.2 | 13.9 | 8.2
native-onesided-switch | 19.2 | 19.3 89 1] 6.3
no-switch 24.7 1 24.6 | 16.4 | 9.2
multiplicative 88| 89| 6.1 6.2
pred-succ 7.5 7.8 1.5 | 1.7

normal interval mode
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Rounding mode + - * /
native 18.7 | 18.9 4.5 | 85
native-switch 3.6 3.6 2.5 | 2.8

native-onesided-switch | 11.9 | 11.9 791 6.3
native-onesided-switch | 10.5 | 10.6 4.5 | 5.0

no-switch 22.0 | 22.1 | 106 | 9.1
multiplicative 85| 85| 4.6 | 5.6
pred-succ 6.8 7.0 0.5 1] 0.9

extended interval mode

6.2 External Comparison

The same test scenario has been applied to compare filib++4 with Profil/BIAS
[Kniippel 1994]. Note that the latter could only be compiled using the gnu 2.95.2
compiler.

Library + - * /
filib++ | 22.4267 | 22.1937 | 11.3699 | 8.85632
profil | 11.6108 | 11.274 | 7.63891 | 9.76969

We further compared our portable open source library filib+4 on a sun solaris
workstation with the native interval support in the nonportable commercial sun
forte environment [Sun Microsystems 2001] (so the comparison is not realy fair for
filib++). Nevertheless, the results are interesting.

Note, that the results depend significantly on the optimization level chosen for
the compilation. In all cases we use optimization level O3.

The expression we use for the time measurement of basic interval operations
is(x*x(z+y)—(x*xy—2z)—x)/(2 *y). This expression is evaluated within a
loop (1000000 repetitions). filib4++ on a sun solaris compiled with the gnu 2.95.2
compiler takes 3130 msec. Using the native interval operations of the sun forte
compiler on the same machine takes 3370 msec.

For the time measurement of elementary interval function calls we compute the
expression log(exp(arctan(sin(y) * cos(x)))). Again 1000000 repetitions are per-
formed. Here, filib4++ on a sun solaris compiled with the gnu 2.95.2 compiler takes
8470 msec whereas the native interval functions of the sun forte compiler take 5240
msec.

To facilitate tests on other machines, the source code of the program for the time
measurement is part of the filib++ distribution.

7. CONCLUSION

filib++ is an efficient, powerful, portable, publicly available C++ interval library
supporting containment computations. Its design using template classes in combi-
nation with traits classes is flexible and up to date. The library can be used with
any C++ compiler conforming to the C++ standard from 1998.

In this paper we payed only little attention to the use of the library. Only
some small applications have been discussed to show the quality of mathematical
results that may be achieved using £ilib++. The numerical results are guaranteed
to be correct in a mathematical sense. The library is designed to be of maximum
value in the field of Validated Computing. Containment computations allow writing
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robust code with only little programming effort. Some additional applications (for
example, the verified computation of all solutions of a nonlinear equation) may
be found in [Lerch et al. 2001]. The complete source codes are available in the
examples directory of the £ilib++ installation.

In a forthcoming version the interval class interval<> of filib4++ will have an
additional third template parameter to enable the user to do computations using
containment sets as well as comutations using ordinary interval operations. This
may be helpful for the verified computation of roots and fixed-points of systems of
equations using Brouwer’s fixed-point theorem [Hammer et al. 1995].

There are a number of public domain and commercial interval libraries [Hofschus-
ter et al. 2001; Kniippel 1994; Kearfott et al. 1994; Kearfott 1996; Rump 1998; Sun
Microsystems 2001]. Beside Sun Forte C++ with interval support [Sun Microsys-
tems 2001], which is not portable and only commercially available, the new library
filib++ is the only one providing extended interval arithmetic based on contain-
ment sets. £ilib++ sources are available from
http://www.math.uni-wuppertal .de/wrswt/software/filib.html.
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